Расчет статически неопределимых стержневых систем

Связи, накладываемые на систему. Характеристика общих методов раскрытия статической неопределимости на примере стержневых систем. Плоские системы и деформации в них. Плоскопространственная и пространственная рамная конструкция. Схемы эквивалентных связей.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.10.2014
Размер файла 53,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Расчет статически неопределимых стержневых систем

Связи, накладываемые на систему. Степень статической неопределимости

статический неопределимость стержневой деформация

Для решения большинства статически неопределимых встречающихся на практике задач обозначенные приемы оказываются, однако, далеко не достаточными. Поэтому необходимо остановиться на более общих методах раскрытия статической неопределимости на примере стержневых систем.

Под стержневой системой в широком смысле слова понимается всякая конструкция, состоящая из элементов, имеющих форму бруса. Если элементы конструкции работают в основном на растяжение или сжатие, то стержневая система называется фермой (рис. 1).

Рис.1. Расчетная схема формы

Ферма состоит из прямых стержней, образующих треугольники. Для формы характерно приложение внешних сил в узлах.

Если элементы стержневой системы работают в основном на изгиб или кручение, то система называется рамой (рис. 2).

Особую, наиболее простую для исследования группу стержневых систем составляют плоские системы. У плоской рамы или фермы оси всех составляющих элементов до и после деформации расположены в одной плоскости. В этой же плоскости действуют все внешние силы, включая и реакции опор (см. рис. 2,а).

Наряду с плоскими рассматриваются так называемые плоско-пространственные системы. Для такого рода систем оси составляющих элементов в недеформированном состоянии располагаются, как и для плоских систем, в одной плоскости. Внешние же силовые факторы действуют в плоскостях, перпендикулярных к этой плоскости (рис. 2,в). Стержневые системы, не относящиеся к двум указанным классам, называются пространственными (рис.2,в).

Рамы и фермы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая кинематически неизменяемая система, для которой все реакции опор могут быть определены при помощи уравнений равновесия, а затем при найденных опорных реакциях методом сечений могут быть найдены также и внутренние силовые факторы в любом поперечном сечении. Под статически неопределимой системой имеется в виду такая, опять же кинематически неизменяемая система, для которой определение внешних реакций и внутренних силовых факторов не может быть произведено при помощи метода сечений и уравнений равновесия.

а) плоская, б) плоскопространственная. в) пространственная

Рис.2. Расчетные схемы рамных конструкций:

Разность между числом неизвестных (реакций опор и внутренних силовых факторов) и числом независимых уравнений статики, которые могут быть составлены для рассматриваемой системы, носит название степени или числа статической неопределимости. В зависимости от этого числа системы разделяются на один, два, три...., n раз статически неопределимые. Иногда говорят, что степень статической неопределимости равна числу дополнительных связей, наложенных на систему. Остановимся на этом вопросе подробнее.

Положение жесткого бруса в пространстве определяется шестью независимыми координатами, иначе говоря, жесткий брус обладает шестью степенями свободы. На брус могут быть наложены связи, т. е. ограничения, обусловливающие его определенное положение в пространстве. Наиболее простыми связями являются такие, при которых полностью исключается то или иное обобщенное перемещение для некоторых сечений бруса. Наложение одной связи снимает одну степень свободы с бруса как с жесткого целого. Следовательно, если на свободный жесткий брус наложено шесть связей, то положение его в пространстве как жесткого целого будет, за некоторыми исключениями, определено полностью и система из механизма, обладающего шестью степенями свободы, превращается в кинематически неизменяемую систему. То число связей, при котором достигается кинематическая неизменяемость, носит название необходимого числа связей. Всякую связь, наложенную сверх необходимых, называют дополнительной. Число дополнительных связей равно степени статической неопределимости системы.

Связи в рамах и стержневых системах делят обычно на связи внешние и связи внутренние, или взаимные. Под внешними связями понимаются условия, накладываемые на абсолютные перемещения некоторых точек системы.

а) внешняя связь, б) две внешние связи в) шесть внешних связей в общем случае

Рис.3. Схемы эквивалентных связей

Если, например, на левый конец бруса (рис. 3, а) наложено условие, запрещающее вертикальное перемещение, говорят, что в этой точке имеется одна внешняя связь. Условно она изображается в виде двух шарниров или катка. Если запрещено как вертикальное, так и горизонтальное смещение, говорят, что наложены две внешние связи (рис. 3, б). Заделка в плоской системе дает три внешние связи. Пространственная заделка соответствует шести внешним связям (рис. 3, б). Внешние связи часто, как уже упоминалось, делят на необходимые и дополнительные. Например, на рис. 4, а и б показана плоская рама, имеющая в первом случае три внешние связи, а во втором -- пять внешних связей. Для того чтобы определить положение рамы в плоскости как жесткого целого, необходимо наложение трех связей. Следовательно, в первом случае рама имеет необходимые внешние связи, а во втором, кроме того, две дополнительные внешние связи.

а) три внешних связи, б) пять внешних связей

Рис.4. Плоская рама

Под внутренними, или взаимными, связями понимаются ограничения, накладываемые на взаимные смещения элементов рамы. Здесь также можно говорить как о необходимых, так и о дополнительных связях. Так, например, плоская рама, показанная на рис. 5, а, имеет необходимое количество как внешних, так и внутренних связей между элементами. Это -- кинематически неизменяемая система. Если будут заданы внешние силы, мы сможем найти как реакции опор, так и внутренние силовые факторы в любом поперечном сечении рамы. В той же раме, показанной на рис. 5, б, дополнительно наложены две дополнительные внутренние связи, запрещающие взаимное вертикальное и горизонтальное смещения точек А и В. Система в данном случае дважды статически неопределима (иногда добавляют: «внутренним образом»).

В раме рис. 4, а и б также имеются внутренние дополнительные связи. Контур рамы полностью замкнут. Разрезая его в любом сечении (рис.5 в), мы, не нарушая кинематической неизменяемости, получаем возможность при заданных силах найти внутренние силовые факторы в каждом сечении рамы. Следовательно, разрезая замкнутую раму, мы снимаем дополнительные связи, т.е. позволяем сечениям А и В поворачиваться и смещаться в двух направлениях друг относительно друга. Обобщая, можно сказать, что замкнутый плоский контур имеет три дополнительные взаимные связи-- трижды статически неопределим. Таким образом, рама, показанная на рис. 4, а, трижды статически неопределима. Рама, показанная на рис. 4, б, пять раз статически неопределима (три раза внутренним образом и два раза -- внешним).

а) кинематически неизменяемая, б) неопределимая внутренним образом, в) со снятием дополнительных связей

Рис.5. Классификационные признаки рам:

Рассмотрим теперь несколько примеров определения степени статической неопределимости стержневых и рамных систем. На рис. 6 показано несколько рам. Последовательно рассмотрим их.

а) Рама имеет четыре дополнительные внешние связи и три взаимные связи, т. е. семь раз статически неопределима.

б) Полагаем сначала, что шарнир А отсутствует. Тогда имеются две внешние и три внутренние дополнительные связи. Система без шарнира А была бы пять раз статически неопределимой.

Шарнир А принадлежит одновременно трем стержням. Его можно рассматривать как два совпавших шарнира (рис. 7). Так как каждый шарнир снимает одну связь, т. е. разрешает поворот одного сечения относительно другого, то можно сказать, что шарнир А снимает две связи. Система становится, таким образом, вместо пяти -- три раза статически неопределимой.

Обобщая сказанное, можно сделать вывод, что шарнир снимает число связей, на единицу меньшее числа сходящихся в нем стержней. В данном случае в шарнире А сходятся три стержня и шарнир снимает две связи.

а) статически неопределимая -- семь, б) -- три, в) -- четыре, г) -- три, е) -- двенадцать, ж) -- семь, д) -- три, и) -- тринадцать раз статически неопределима

Рис.6. Примеры рамных конструкций:

в) Если бы шарнир А отсутствовал, система была бы четыре раза внешним образом и три раза внутренним образом статически неопределимой, т. е. всего семь раз. Шарнир А снимает число связей, на единицу меньшее числа сходящихся в нем стержней, т. е. три связи. Рама четыре раза статически неопределима.

г) Рама три раза статически неопределима.

д) Внешние связи не удовлетворяют условиям кинематической неизменяемости. Это -- механизм, точнее говоря, мгновенный механизм. Система имеет возможность поворачиваться относительно верхней опоры как жесткое целое Понятно, что угол поворота будет небольшим. Нижняя связь заклинится и будет достигнуто какое-то положение равновесия, но новое положение связей будет зависеть от жесткости системы. К раме неприменимы основные принципы сопротивления материалов: принцип неизменности начальных размеров и принцип независимости действия сил.

Рис.7. модель двух совпадших шарниров

е) Рама -- пространственная. Имеется шесть дополнительных внешних связей (лишняя заделка) и шесть дополнительных взаимных связей (замкнутый контур) Система 12 раз статически неопределима.

ж) Система семь раз статически неопределима (один раз внешним образом и шесть раз -- внутренним).

з) Здесь для плоской рамы не показаны внешние связи, но дана система внешних сил, удовлетворяющая условиям равновесия. В таком случае условились считать, что дополнительных внешних связей нет, и положение рамы в пространстве считается определенным; рассматриваются только внутренние связи. Система три раза статически неопределима.

и) Здесь также рассматриваются только внутренние связи, поскольку система указанных внешних сил удовлетворяет условиям равновесия. Нужно подсчитать, сколько сечений необходимо сделать в раме, чтобы, с одной стороны, она не «рассыпалась», а с другой, чтобы в ней не осталось ни одного замкнутого контура. Таких сечений следует сделать пять (см. рис. 6, и). Система 30 раз статически неопределима.

Размещено на Allbest.ru

...

Подобные документы

  • Описание решения стержневых систем. Построение эпюр перерезывающих сил и изгибающих моментов. Расчет площади поперечных сечений стержней, исходя из прочности, при одновременном действии на конструкцию нагрузки, монтажных и температурных напряжений.

    курсовая работа [2,2 M], добавлен 23.11.2014

  • Проведение расчета площади поперечного сечения стержней конструкции. Определение напряжений, вызванных неточностью изготовления. Расчет балок круглого и прямоугольного поперечного сечения, двойного швеллера. Кинематический анализ данной конструкции.

    курсовая работа [1,0 M], добавлен 24.09.2014

  • Расчет параметров схемы замещения в относительных единицах. Определение электродвижущей силы генератора и соответствующих им фазовых углов. Расчет статической устойчивости электрической системы. Зависимость реактивной мощности от угла электропередачи.

    курсовая работа [941,9 K], добавлен 04.05.2014

  • Эффективность создания и объединения электроэнергетических систем. Эффект масштаба. Основные эффекты, достигаемые при объединении электроэнергетических систем. Межгосударственные электрические связи и объединения. Разновидности межгосударственных связей.

    презентация [3,3 M], добавлен 26.10.2013

  • Расчет и анализ установившихся режимов схемы электроэнергетической системы (ЭЭС). Оценка статической устойчивости ЭЭС. Определение запаса статической устойчивости послеаварийного режима системы. Отключение сетевого элемента при коротком замыкании.

    курсовая работа [563,4 K], добавлен 11.09.2015

  • Выбор технологического оборудования и обоснование технологической схемы системы электрификации котельной с двумя котлами Е-1/9Ж. Вентиляционный и светотехнический расчет котельной. Определение общих электрических нагрузок и расчет силовой сети котельной.

    дипломная работа [600,2 K], добавлен 17.02.2013

  • Определение запаса статической устойчивости по пределу передаваемой мощности при передаче от генератора в систему мощности по заданной схеме электропередачи. Расчет статической и динамической устойчивости. Статическая устойчивость асинхронной нагрузки.

    курсовая работа [617,0 K], добавлен 12.06.2011

  • Учет явлений переходных процессов на примере развития электромашиностроения. Определение параметров схемы замещения, расчёт исходного установившегося режима. Расчёт устойчивости узла нагрузки, статической и динамической устойчивости (по правилу площадей).

    курсовая работа [843,6 K], добавлен 28.08.2009

  • Расчет на прочность статически определимых систем при растяжении и сжатии. Последовательность решения поставленной задачи. Подбор размера поперечного сечения. Определение потенциальной энергии упругих деформаций. Расчет бруса на прочность и жесткость.

    курсовая работа [458,2 K], добавлен 20.02.2009

  • Составить систему уравнений. С учетом взаимной индуктивности для исходной схемы составить систему уравнений по законам Кирхгофа для мгновенных значений и в комплексной форме. Выполнить развязку индуктивной связи и привести эквивалентную схему замещения.

    реферат [245,8 K], добавлен 04.07.2008

  • Система электроснабжения как комплекс сооружений на территории предприятия связи и в производственных помещениях. Описание буферной системы электропитания. Расчет оборудования электропитающей установки. Защита от перенапряжений и токовых перегрузок.

    контрольная работа [302,2 K], добавлен 19.01.2014

  • Изучение общих характеристик прочности, а также исследование структуры сталей. Рассмотрение основных методов определения магнитных и деформационных характеристик. Описание зависимости магнитных свойств от степени деформации сдвига металла при кручении.

    реферат [460,1 K], добавлен 20.04.2015

  • Исследование надежности системы теплоснабжения средних городов России. Рассмотрение взаимосвязи инженерных систем энергетического комплекса. Характеристика структуры системы теплоснабжения города Вологды. Изучение и анализ статистики по тепловым сетям.

    дипломная работа [1,4 M], добавлен 10.07.2017

  • Понятие интенсивных и экстенсивных систем, их характеристика и отличия. Особенности групп элементов периодической системы Д.И. Менделеева как основы данных систем. Закономерности развития интенсивных и экстенсивных систем в определенных условиях.

    контрольная работа [16,5 K], добавлен 28.08.2011

  • Рассмотрение понятия, назначения и классификации силовых трансформаторов напряжения, условия включения их на параллельную работу. Описание конструкции и принципа работы преобразователей стержневых, броневых, тороидальных и с масляным охлаждением.

    контрольная работа [2,3 M], добавлен 12.12.2010

  • Теплотехнический расчет воздухообмена, мощности систем отопления, калориферов воздушного отопления, систем вентиляции; выбор вентиляторов для приточной вентиляции. Составление и расчет тепловой схемы котельной, расхода теплоты на горячее водоснабжение.

    курсовая работа [195,8 K], добавлен 05.10.2010

  • Принципы построения систем электроснабжения городов. Расчет электрических нагрузок микрорайона, напряжение системы электроснабжения. Выбор схемы, расчет релейной защиты трансформаторов подстанций.Разработка мероприятий по экономии электроэнергии.

    курсовая работа [178,1 K], добавлен 31.05.2019

  • Усилители, построенные на полупроводниковых усилительных элементах (биполярных и полевых транзисторах). Выбор принципиальной схемы. Расчет выходного, предоконечного и входного каскадов. Параметры схемы и расчет обратной связи. Расчет элементов связи.

    курсовая работа [203,3 K], добавлен 27.11.2009

  • Построение круговой диаграммы и угловых характеристик начала и конца передачи при условии отсутствия у генератора автоматического регулирования возбуждения. Расчет пределов передаваемой мощности и коэффициентов запаса статической устойчивости системы.

    курсовая работа [543,9 K], добавлен 02.03.2012

  • Понятие коэффициента спроса. Определение мощности подстанции методом коэффициента спроса. Сущность явления перенапряжения. Устройство стержневых и тросовых молниеотводов. Осуществление контроля за исправностью защитного заземления измерителем М-416.

    контрольная работа [99,1 K], добавлен 18.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.