Метод сил

Изучение метода сил, как наиболее широко применяемого в машиностроении метода раскрытия статической неопределимости стержневых и рамных систем. Интерпретация коэффициентов уравнений метода сил. Статическая неопределимость изгибающих моментов для рамы.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 22.10.2014
Размер файла 126,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Метод сил

Наиболее широко применяемым в машиностроении общим методом раскрытия статической неопределимости стержневых и рамных систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и взаимных, а их действие заменяется силами и моментами. Величина их в дальнейшем подбирается так, чтобы перемещения в системе соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом, при указанном способе решения неизвестными оказываются силы. Отсюда и название «метод сил». Такой прием не является единственно возможным. В строительной механике широко применяются и другие методы, например метод деформаций, в котором за неизвестные принимаются не силовые факторы, а перемещения в элементах стержневой системы.

Итак, раскрытие статической неопределимости любой рамы методом сил начинается с отбрасывания дополнительных связей. Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной системы.

а-д) модификации основной системы

Рис.1. пример стержневой рамы:

машиностроение сила статическая неопределимость

Для каждой статически неопределимой стержневой системы можно подобрать, как правило, сколько угодно основных систем. Например, для рамы, показанной на рис. 1, можно предложить основные системы, а), б),..., которые получены путем отбрасывания семи дополнительных связей в различных комбинациях. Вместе с тем нужно помнить, что не всякая система с семью отброшенными связями может быть принята как основная. На рис. 2 показано три примера для той же рамы, в которой также отброшено семь связей, однако сделано это неправильно, так как оставшиеся связи не обеспечивают кинематической неизменяемости системы, с одной стороны, и статической определимости во всех узлах,-- с другой.

Рис.2.Некорректные преобразования заданной системы в основные по причине кинематической изменяемости - а) б), или статической определимости во всех узлах -- в)

После того как дополнительные связи отброшены и система превращена в статически определимую, необходимо, как уже говорилось, ввести вместо связей неизвестные силовые факторы. В тех сечениях, где запрещены линейные перемещения, вводятся силы. Там, где запрещены угловые смещения, вводятся моменты. Как в том, так и в другом случае неизвестные силовые факторы будем обозначать Xi-, где i -- номер неизвестного. Наибольшее значение i равно степени статической неопределимости системы. Заметим, что для внутренних связей силы Xi, -- являются взаимными. Если в каком-либо сечении рама разрезана, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям системы.

а)-д) по отношению к заданной системе

Рис.3. Пять разновидностей основных систем

Основная система, к которой приложены все внешние заданные силы и неизвестные силовые факторы, носит название эквивалентной системы. На рис. 3 показано пять эквивалентных систем, которые соответствуют приведенным выше основным системам (рис. 1). Принцип приложения неизвестных силовых факторов становится ясным без дальнейших пояснений.

Теперь остается составить уравнения для определения неизвестных.

Обратимся к некоторому конкретному примеру. Рассмотрим, например, первую эквивалентную систему из числа представленных на рис. 3,4. Тем, что рассматривается конкретно взятая семь раз статически неопределимая система, общность рассуждений не будет нарушена.

Перейдем теперь к составлению уравнений для определения неизвестных силовых факторов. Условимся через обозначать взаимное смещение точек системы.

Рис.4. Пример расчета рамы а) по выбранной основной системе- б)

Первый индекс при соответствует направлению перемещения, а второй -- силе, вызвавшей это перемещение.

В рассматриваемой раме в точке А отброшена неподвижная опора. Следовательно, горизонтальное перемещение здесь равно нулю и можно записать:

Индекс 1 означает, что речь идет о перемещении по направлению силы Х1, а индекс [Х1, Х2,..., Р] показывает, что перемещение определяется суммой всех сил, как заданных, так и неизвестных.

Аналогично можно записать:

Так как под величиной понимается взаимное смещение точек, то обозначает вертикальное смещение точки В относительно С, -- горизонтальное взаимное смещение тех же точек, есть взаимное угловое смещение сечений В и С. Угловым смещением будет также в рассматриваемой системе величина .

В точках A и D смещения являются абсолютными. Но абсолютные смещения можно рассматривать как смещения, взаимные с неподвижными отброшенными опорами. Поэтому принятые обозначения приемлемы для всех сечений системы.

Пользуясь принципом независимости действия сил, раскроем выражения для перемещений

Аналогичным образом запишем и остальные пять уравнений: каждое из слагаемых , входящих в уравнение, обозначает перемещение в направлении силы с первым индексом под действием силы, стоящей во втором индексе. Поскольку каждое перемещение пропорционально соответствующей силе, величину можно записать в следующем виде:

Что касается перемещений , и т. д., то под индексом Р будем понимать не просто внешнюю силу Р, а вообще систему внешних сил, которая может быть произвольной Поэтому величины , ,... в уравнениях оставим неизменными.

Теперь уравнения примут вид:

Эти уравнения являются окончательными и носят название канонических уравнений метода сил. Число их равно степени статической неопределимости системы. В некоторых случаях, как увидим далее, когда имеется возможность сразу указать значения некоторых неизвестных, число совместно решаемых уравнений снижается. Остается теперь выяснить, что представляют собой коэффициенты и как следует их определять. Для этого обратимся к выражению (6.1).

Если , то

Следовательно, коэффициент это есть перемещение по направлению i-го силового фактора под действием единичного фактора, заменяющего k-й фактор. Например, коэффициент уравнения представляет собой взаимное горизонтальное смещение точек B и С, которое возникло бы в раме, если бы к ней вместо всех сил была приложена только единичная сила в точке А (рис. 5 а). Если, например, вместо сил приложив единичные силы, а все прочие силы с эквивалентной системы снять (рис. 5 б), то угол поворота в сечении D под действием этих сил будет , горизонтальное перемещение в точке А будет и т. д.

а) , б) и

Рис.5. Интерпретация коэффициентов уравнений метода сил

Весьма существенно отметить, что в проделанном выводе совершенно не обусловливается то, каким образом возникают перемещения . Хотя мы и рассматриваем раму, работающую на изгиб, все сказанное с равным успехом может быть отнесено, вообще, к любой системе, работающей на кручение, растяжение и изгиб или на то, другое и третье совместно.

Обратимся к интегралам Мора. Для того чтобы определить величину , следует вместо внешних сил рассматривать единичную силу, заменяющую k-й фактор. Поэтому внутренние моменты и силы , , , , и в интегралах Мора заменим на , , , , и , понимая под ними внутренние моменты и силы от единичного k-го фактора. В итоге получим:

где , … -- внутренние моменты и силы, возникающие под действием i-го единичного фактора. Таким образом, коэффициенты получаются как результат перемножения i-го и k-го внутренних единичных силовых факторов. Индексы i и k непосредственно указывают, какие факторы должны быть перемножены под знаком интегралов Мора. Если рама состоит из прямых участков и можно пользоваться правилом Верещагина, то представляет собой результат перемножения i-х единичных эпюр на k-е единичные эпюры.

Очевидно, что

Это следует, с одной стороны, непосредственно из выражений для , а с другой стороны, из теоремы о взаимности перемещений, поскольку перемещения и возникают под действием одной и той же силы, равной единице.

Величины , входящие в канонические уравнения, представляют собой перемещения в направлениях 1, 2,..., возникающие под действием заданных внешних сил в эквивалентной системе. Они определяются перемножением эпюры моментов заданных сил на соответствующие единичные эпюры.

Пример Раскрыть статическую неопределимость и построить эпюру изгибающих моментов для рамы, показанной на рис. 6.

Рис.6. Заданная расчетная схема

Рама три раза статически неопределима. Выбираем основную систему, отбрасывая левую заделку. Действие заделки заменяем двумя силами , и моментом и определяем эквивалентную систему (рис. 7).

Рис.7. Динамика решения: от эквивалентной системы и силовой эпюры Р, включая эпюры моментов от единичных сил: 1, 2, 3 в точках приложения неизвестных , ,

Канонические уравнения (6.2) принимают для рассматриваемой системы такой вид:

Основные перемещения в рассматриваемой раме определяются изгибом. Поэтому, пренебрегая сдвигом и сжатием стержней, строим эпюры изгибающих моментов от заданной силы P и от трех единичных силовых факторов (рис. 7).

Определяем коэффициенты уравнений, считая, что жесткость на изгиб всех участков рамы постоянна и равна EJ. Величина определяется перемножением первой единичной эпюры самой на себя. Для каждого участка берется, следовательно, площадь эпюры и умножается на ординату этой же эпюры, проходящую через ее центр тяжести:

Заметим, что величины при всегда положительны, поскольку площади эпюр и ординаты имеют общий знак.

Определяем, далее, и остальные коэффициенты уравнений, перемножая эпюры с соответствующими номерами:

, , , , , , , .

Подставляем найденные коэффициенты в канонические уравнения. После сокращений получаем:

, ,

Решая эти уравнения, находим:

, ,

Раскрытие статической неопределимости на этом заканчивается.

Рис.8. Суммарная эпюра изгибающих моментов.

Эпюра изгибающих моментов может быть получена наложением на эпюру моментов заданных сил трех единичных эпюр, увеличенных соответственно в , и раза Суммарная эпюра изгибающих моментов представлена на рис. 8. Там же пунктиром показана форма изогнутой оси рамы.

Размещено на Allbest.ru

...

Подобные документы

  • Описание решения стержневых систем. Построение эпюр перерезывающих сил и изгибающих моментов. Расчет площади поперечных сечений стержней, исходя из прочности, при одновременном действии на конструкцию нагрузки, монтажных и температурных напряжений.

    курсовая работа [2,2 M], добавлен 23.11.2014

  • Определение угла поворота узла рамы от силовой нагрузки и числа независимых линейных перемещений. Построение единичных и грузовых эпюр изгибающих моментов для основной системы. Автоматизированный расчет рамы и решение системы канонических уравнений.

    контрольная работа [2,0 M], добавлен 22.02.2012

  • Применение метода контурных токов для расчета электрических схем. Алгоритм составления уравнений, порядок расчета. Метод узловых потенциалов. Определение тока только в одной ветви с помощью метода эквивалентного генератора. Разделение схемы на подсхемы.

    презентация [756,4 K], добавлен 16.10.2013

  • Анализ физических процессов в волноводах с изменяющимся поперечным распределением показателя преломления. Характеристика и принципы разновидностей метода моделирования, традиционно применяемого в интегральной оптике - метода распространяющегося пучка.

    курсовая работа [1,0 M], добавлен 07.05.2012

  • Сущность геофизического электроразведочного метода вызванной поляризации. Аппаратура и схемы измерительных установок. Методика проведения полевых работ. Определение значений кажущихся поляризуемости и сопротивления. Интерпретация результатов измерения.

    курсовая работа [2,4 M], добавлен 19.06.2012

  • Основное преимущество метода фазовой плоскости. Элементы фазового портрета. Анализ траекторий в окрестности особых точек. Исследование системы с переменной структурой. Построение временного процесса по фазовой траектории. Сущность метода припасовывания.

    контрольная работа [1,4 M], добавлен 24.08.2015

  • Характеристика трех методов рентгеноструктурного анализа. Роль метода Лауэ для изучения атомной структуры кристаллов. Использование метода вращения при определении атомной структуры кристаллов. Изучение поликристаллических материалов методом порошка.

    реферат [777,4 K], добавлен 28.05.2010

  • Определение реакции опор и построение эпюры моментов, поперечных и продольных сил для статически неопределимой Е-образной рамы с одной скользящей и двумя неподвижными опорами с помощью составления уравнений методом сил, формулы Мора и правила Верещагина.

    задача [173,2 K], добавлен 05.12.2010

  • Особенности и суть метода сопротивления материалов. Понятие растяжения и сжатия, сущность метода сечения. Испытания механических свойств материалов. Основы теории напряженного состояния. Теории прочности, определение и построение эпюр крутящих моментов.

    курс лекций [1,3 M], добавлен 23.05.2010

  • Расчет спектра собственных колебаний рамы по уточненной схеме. Коэффициенты податливости системы. Определение амплитуды установившихся колебаний. Траектория движения центра масс двигателя. Построение эпюры изгибающих моментов в амплитудном состоянии.

    курсовая работа [760,7 K], добавлен 22.01.2013

  • Анализ энергетических показателей теплоэлектростанции. Расход тепла, раздельная и комбинированная выработка электроэнергии и тепла. Применение метода энергобалансов, сущность эксергетического метода. Пропорциональный метод разнесения затрат на топливо.

    презентация [945,1 K], добавлен 08.02.2014

  • Метод уравнений Кирхгофа. Баланс мощностей электрической цепи. Сущность метода контурных токов. Каноническая форма записи уравнений контурных токов. Метод узловых напряжений (потенциалов). Матричная форма узловых напряжений. Определение токов ветвей.

    реферат [108,5 K], добавлен 11.11.2010

  • Расчет статически определимой рамы. Перемещение системы в точках методом Мора-Верещагина. Эпюра изгибающих моментов. Подбор поперечного сечения стержня. Внецентренное растяжение. Расчет неопределенной плоской рамы и плоско-пространственного бруса.

    курсовая работа [1,4 M], добавлен 04.12.2012

  • Физические основы метода гамма-гамма каротажа, применение этого метода при решении геологических и геофизических задач. Методы рассеянного гамма-излучения. Изменение характеристик потока гамма-квантов. Глубинность исследования плотностного метода.

    курсовая работа [786,8 K], добавлен 01.06.2015

  • Ознакомление с основами метода уравнений Кирхгофа и метода контурных токов линейных электрических цепей. Составление уравнения баланса электрической мощности. Определение тока любой ветви электрической цепи методом эквивалентного источника напряжения.

    курсовая работа [400,7 K], добавлен 11.12.2014

  • Практический расчет токов короткого замыкания в трехфазных установках напряжением выше 1 кВ с помощью аналитического метода, метода расчетных кривых, с использованием типовых кривых, метода спрямленных характеристик. Схема построения расчетных кривых.

    презентация [252,1 K], добавлен 11.12.2013

  • Электрическое сопротивление - основная электрическая характеристика проводника. Рассмотрение измерения сопротивления при постоянном и переменном токе. Изучение метода амперметра-вольтметра. Выбор метода, при котором погрешность будет минимальна.

    презентация [158,9 K], добавлен 21.01.2015

  • Проведение расчета площади поперечного сечения стержней конструкции. Определение напряжений, вызванных неточностью изготовления. Расчет балок круглого и прямоугольного поперечного сечения, двойного швеллера. Кинематический анализ данной конструкции.

    курсовая работа [1,0 M], добавлен 24.09.2014

  • Эвристические соображения, приводящие к градиентным методам. Теорема о линейной сходимости градиентного метода с постоянным шагом. Эвристические соображения, приводящие к методу Ньютона безусловной оптимизации. Теорема о квадратичной сходимости метода.

    курсовая работа [209,1 K], добавлен 03.06.2014

  • Содержание классического метода анализа переходных процессов в линейных цепях: непосредственное интегрирование дифференциальных уравнений, описывающих электромагнитное состояние цепи. Два закона коммутации при конечных по величине воздействиях в цепи.

    презентация [679,0 K], добавлен 28.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.