Анализ формулы Эйлера
Значения критической силы высших порядков и искривления по синусоидам с двумя, тремя полуволнами. Расчет величины критического напряжения для стержней. Влияние способа закрепления концов стержня. Значения критических нагрузок в виде формул типа эйлеровой.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 22.10.2014 |
Размер файла | 57,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Анализ формулы Эйлера
Значениям критической силы высших порядков соответствуют искривления по синусоидам с двумя, тремя и т. д. полуволнами (Рис.1):
(1)
Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).
Рис.1
Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой
а изогнутая ось представляет синусоиду
Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:
Значит, а -- это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.
Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.
Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда
Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.
Из последнего выражения видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно
Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.
Влияние способа закрепления концов стержня
искривление синусоид стержень нагрузка
Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.
Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить' к основному случаю.
Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.
Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.
Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.
Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ. Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.
Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та же, что для стойки с шарнирно-опертыми концами при длине :
Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).
Рис.3. Расчетная схема с жесткозакреплеными торцами.
Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :
Полученные выражения можно объединить с формулой для критической силы основного случая и записать:
здесь -- так называемый коэффициент длины, равный:
· при шарнирных концах (основной случай) ,
· одном свободном, другом защемленном ,
· обоих защемленных концах .
Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:
Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом
Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).
На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.
Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).
В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.
Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10--20) уменьшение свободной длины стержня.
Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.
Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.
Размещено на Allbest.ru
...Подобные документы
Понятие равновесного состояния, его виды. Пределы применимости формулы Эйлера. Влияние условий закрепления концов стержня на величину критической силы. Понятие коэффициента запаса на устойчивость. Энергетический способ определения критических сил.
курс лекций [888,8 K], добавлен 23.04.2009Равновесное состояние упругой системы называется устойчивым, если оно мало изменяется при малых возмущениях. Явление потери устойчивости. Определение величины критической силы для стержня, теряющего устойчивость в упругой стадии, по формуле Эйлера.
реферат [37,6 K], добавлен 08.01.2009Расчет и выбор элементов выпрямителя с LC-фильтром. Определение действующего значения напряжения на вторичной обмотке трансформатора, значения тока вентиля, амплитуды напряжения, сопротивления конденсатора. График внешней характеристики выпрямителя.
контрольная работа [28,4 K], добавлен 21.09.2012Расчет зенитного угла и его функции. Расчет по значению зенитного угла высоты максимума F-слоя, значения скорости ионизации в максимуме, значения константы скорости рекомбинации, электронной концентрации и критических частот. Расчет солнечного склонения.
практическая работа [37,3 K], добавлен 27.01.2010Примеры решения задач по электрическим аппаратам. Определение длительно допустимой величины плотности переменного тока, установившегося значения температуры медного круглого стержня, полного времени горения дуги, величины электродинамического усилия.
задача [77,1 K], добавлен 15.07.2010Фазовые переходы второго рода. Компьютерное моделирование критического поведения, влияние на него дефектов структуры. Модель Гейзенберга, алгоритм Вульфа. Коротковременная динамика, уточнение критической температуры. Расчет критических индексов.
дипломная работа [876,3 K], добавлен 07.02.2011Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.
лабораторная работа [191,6 K], добавлен 25.01.2015Расчет параметров схемы замещения. Расчет нагрузок на участках. Отклонение напряжения на источнике. Доза Фликера на кратковременном интервале. Определение коэффициента несинусоидальности напряжения, когда БК включена. Перегрузка токами высших гармоник.
контрольная работа [284,5 K], добавлен 29.01.2011Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.
реферат [857,3 K], добавлен 23.06.2010Расчет среднеарифметического значения и среднеквадратического отклонения результатов наблюдений. Расчет коэффициентов корреляции результатов, инструментальных погрешностей, среднего значения величины косвенного измерения, абсолютных коэффициентов влияния.
курсовая работа [108,9 K], добавлен 08.01.2016Конструкции и механический расчет проводов и грозозащитных тросов. Расчетные климатические условия, ветровые и гололедные нагрузки, влияние температуры. Определение значения напряжений и стрел провеса провода. Расчет критической температуры для пролета.
курсовая работа [2,7 M], добавлен 24.12.2014Расчет значения критической амплитуды прямоугольной грозовой волны и длины опасной зоны линии на подходе к подстанции. Определение напряжения начала коронирования на проводах. Использование грозозащитного троса и усиление заземлений опор на подходах.
контрольная работа [542,1 K], добавлен 23.12.2014Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.
курсовая работа [531,8 K], добавлен 24.12.2013Определение величины и направления технологической силы, удерживающий механизм в равновесии при действии на звенья сил тяжестей и уравновешивающего момента. Построения планов скоростей и ускорений. Расчет значения реакции в опорах методов кинетостатики.
контрольная работа [1,1 M], добавлен 07.03.2010Проектирование этапов методики выполнения измерений средневыпрямленного значения напряжения сложной формы на выходе резистивного делителя напряжения. Использование вольтметра переменного тока. Определение класса точности средства измерения (вольтметра).
курсовая работа [122,9 K], добавлен 25.11.2011Параллельное, последовательное и смешанное соединения нелинейных элементов, их вольтамперная характеристика. Определение значения тока неразветвлённой части цепи и значения напряжения цепи как суммы напряжений на отдельных участках; метод "свертывания".
лабораторная работа [45,7 K], добавлен 12.01.2010Расчет трансформатора стержневого типа с концентрическими обмотками. Нахождение испытательного напряжения обмоток промышленной частоты. Определение размеров магнитной системы параметров и напряжения короткого замыкания. Механические силы в обмотках.
курсовая работа [658,5 K], добавлен 22.06.2015Выбор схемы и источника электроснабжения карьера. Определение необходимого количества светильников, их мощности и типа. Расчет электрических нагрузок. Выбор рода тока и величины напряжения. Расчет электрических сетей карьера и защитного заземления.
курсовая работа [1,2 M], добавлен 18.04.2016Определение мощности батареи конденсаторов, необходимой для регулирования напряжения на шинах. Относительное изменение напряжения в режиме максимальных нагрузок. Расчет рабочих ответвлений трансформатора в режиме максимальных и минимальных нагрузок.
контрольная работа [38,3 K], добавлен 19.02.2011Расчет электрических нагрузок по ремонтно-механическому цеху и предприятию в целом. Выбор числа, мощности и типа трансформатора цеховых трансформаторных подстанций предприятия. Выбор величины напряжения и схемы внутреннего электроснабжения предприятия.
дипломная работа [746,7 K], добавлен 06.04.2014