Эксплуатация энергоблоков
Основные задачи и средства управления энергоблоком. Оборудование и эксплуатация паровых котлов. Пуск и обслуживание турбины, конденсационной установки и вспомогательного оборудования. Обнаружение и устранение аварий и неполадок в паровых котлах.
Рубрика | Физика и энергетика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 27.10.2014 |
Размер файла | 810,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Эксплуатация энергоблоков
ОСНОВНЫЕ ЗАДАЧИ ЭКСПЛУАТАЦИИ
Ведение эксплуатации электрических станций
Как известно, энергосистема производит столько электроэнергии, сколько требуют в данный момент потребители (плюс расход на собственные нужды и потери). Этим определяется и характер работы электростанций, график электрической нагрузки которых определяется условиями работы энергосистемы и распределением нагрузки.
Суточные графики нагрузки электростанций видоизменяются в зависимости от времени года, от дней недели (рабочий и нерабочий день), от снабжения различными видами топлива, от метеорологических факторов. Все это определяет многообразие режимов работы оборудования тепловых электростанций. Основная задача электростанции - выполнение диспетчерского графика электрической нагрузки, а для теплоэлектроцентралей - в первую очередь графика тепловой нагрузки. При покрытии суточного графика электрической нагрузки электростанции основные трудности связаны с обеспечением максимума нагрузки и необходимой скорости набора нагрузки в часы утреннего максимума, а также необходимой разгрузки в часы провала электрической нагрузки.
Выполнение диспетчерского графика электрической и тепловой нагрузки должно сочетаться с обеспечением достаточно высоких технико-экономических показателей, важнейшим из которых является удельный расход топлива на один отпущенный киловатт-час электроэнергии.
В результате успешной работы персонала электростанций, введения в эксплуатацию более совершенного оборудования, развития теплофикации и внедрения на каждой электростанции большого комплекса мероприятий средний годовой удельный расход условного топлива по всем ТЭС СССР систематически снижался. Так, в девятой пятилетке было осуществлено снижение удельного расхода условного топлива с 366 до 340 г/(кВт-ч), что обеспечило экономию 60 млн. руб. В десятой пятилетке запланировано дальнейшее снижение среднего удельного расхода условного топлива до 325…328 г/(кВт. ч).
Снижение удельных расходов топлива на ТЭС в СССР шло параллельно с повышением готовности оборудования. Однако не всегда в СССР отчетные показатели соответствовали реальному положению дел на ТЭС. Например, считалось, что коэффициент готовности на энергоблоков ТЭЦ в СССР был на уровне 99,9%, что конечно, не отражало действительность.
Сегодня в России удельный расход условного топлива составляет около 343 г/кВтч электроэнергии, что даже выше, чем в СССР.
Для того чтобы совершенствовать показатели ТЭС, в часности, удельный расход топлива, в процессе эксплуатации необходимо прежде всего расчитывать их, используя показания многочисленных приборов, затем сопоставлять с нормативными, анализировать результаты, находить источники и причины потерь топлива или износа и повреждаемости оборудования и осуществлять мероприятия по их устарнению.
С учетом сказанного эксплуатация тепловых электрических станций включает в себя:
1) управление оперативным персоналом режимами работы оборудования, а также преодоление возникающих аварийных ситуаций. Сюда же следует отнести исследование, оптимизацию, наладку и отработку режимов работы оборудования (например, пусковых режимов, работы блоков со скользящим давлением и т. п.), которые ведутся как персоналом ТЭС, служб и предприятий энергосистемы, так и ПО Союзтехэнерго (бывший трест ОРГРЭС), научно-исследовательскими институтами (ВТИ, ЦКТИ, ЭНИН) и учебными институтами. Результаты этих работ доводятся до сведения оперативного персонала в виде инструктивных и нормативных материалов, а также публикаций в технических журналах;
2) планирование, нормирование, расчет и анализ технико-экономических показателей. В этой работе также помимо персонала ТЭС участвуют службы эксплуатации теплового оборудования энергосистем и другие организации;
3) планирование, организация и проведение ремонтов оборудования, включая также работы по его модернизации и реконструкции.
Прогнозирование ремонтов требует систематического сбора информации об отказах оборудования, повреждаемости и износа его узлов. Статистическая обработка этих данных позволяет получить оценки целесообразных сроков и объемов ремонтов.
В настоящее время ведутся разработка и внедрение систем автоматического управления электростанциями АСУЭ, АСУТП суть которых состоит в максимальном привлечении ЭВМ к решению задач, перечисленных выше [1…6].
Указанные основные задачи эксплуатации ТЭС взаимосвязаны и должны рассматриваться комплексно. Так, выбор того или иного режима работы блока следует вести с учетом его технико-экономических показателей в годовом разрезе и с учетом надежности. Такой же комплексный подход необходим уже на стадии разработки оборудования и проектирования ТЭС, когда нужно учитывать все многообразие режимов, которое имеет место в процессе эксплуатации.
Ведение эксплуатации электрических станций регламентировано в «Правилах технической эксплуатации электрических станций и сетей» [1…7], а также эксплуатационными инструкциями, в которых даются как общие установки, так и конкретные указания для различных типов оборудования. Остановимся на некоторых особенностях эксплуатации ТЭС, имеющих общий характер.
1. Непрерывность работы. Эта особенность определяется непрерывностью потребления электроэнергии. В соответствии с графиком потребления электроэнергии в принципе возможна остановка отдельных электростанций на нерабочий день, однако это не практикуется, так как последующий пуск электростанций связан с рядом трудностей. Кроме того, на старых ТЭС обычно имеются потребители на генераторном напряжении. Остановка всех агрегатов электростанции случается вследствие наложения отказов оборудования.
Так, например, полный сброс нагрузки неблочной части одной электростанции из-за аварийного отключения линии электропередачи привел к ее остановке. Поскольку эжекторные установки оставшихся в работе трех блоков получали пар от неблочной части, блоки были остановлены защитой из-за срыва вакуума.
2. Работа ТЭС по диспетчерскому графику нагрузки. Это же обязательно и для других типов электростанций, разница лишь в характере суточного графика нагрузки. Выше уже подчеркивалось, что это важнейшая особенность ТЭС, которые, с одной стороны, не могут «выдавать продукцию на склад» и, с другой стороны, не терпят перерыва в топливоснабжении и поэтому должны иметь запас топлива на складе.
Покрытие переменного графика нагрузки создает значительные трудности в эксплуатации ТЭС, требует высокой маневренности оборудования и высокой квалификации персонала. Эффективность работы ТЭС должна оцениваться в первую очередь не по валу, а по выполнению графиков нагрузки и по уровню удельных показателей.
Успешное покрытие суточного графика невозможно без высокой готовности оборудования. Весьма отрицательное явление - частичные отказы, при которых оборудование работает, но не дает установленной мощности. При работе блоков частичный отказ какого-либо последовательного звена приводит к снижению максимальной рабочей мощности блока. Ограничения мощности часто принимают хронический характер, и службы режимов энергосистемы вынуждены учитывать их при распределении электрической нагрузки между ТЭС.
3. Участие ТЭС в регулировании частоты в электрической сети. Непрерывное изменение потребления электроэнергии сопровождается соответствующими колебаниями частоты и нагрузки ТЭС. Это предопределяет некоторую незначительную пульсацию параметров оборудования. При системных авариях возможны толчки частоты, приводящие к сбросам или набросам электрической нагрузки на ТЭС. Паротурбинные ТЭС обладают способностью мгновенно подхватывать электрическую нагрузку при резком снижении частоты в энергосистеме, реализуя при этом вращающийся резерв по клапанам цилиндра высокого давления (ЦВД). Подхват электрической нагрузки на ТЭС вместе с автоматической разгрузкой по частоте позволяет предотвратить возможное развитие крупных системных аварий, которые при потере управления могут заканчиваться развалом энергосистемы.
4. Зависимость режимов работы, и достижимых показателей от метеорологических факторов. Метеорологические факторы влияют на уровни максимальной электрической и тепловой нагрузок, температуры охлаждающей воды, холодного воздуха, обратной сетевой воды. Низкие наружные температуры воздуха существенно затрудняют топливоснабжение, создают перегрузки систем теплоснабжения.
5. Приоритет надежности оборудования перед другими показателями. Обеспечению надежности ТЭС (при высокой экономичности), т.е. безотказной работе оборудования, всегда придавалось первостепенное значение. Количественно надежность характеризуется рядом показателей, к которым относится поток отказов, время наработки до отказа, коэффициент готовности, коэффициент технического использования. На ТЭС и в энергосистемах ведется тщательный учет отказов оборудования и их причин, времени восстановления.
Статистическая обработка накапливаемого материала по отказам позволяет получить статистические оценки показателей надежности, которые затем используются при планировании ремонтов, при планировании режимов работы ТЭС, при сопоставлении различных технических решений на стадии проектирования. Обеспечение высоких показателей надежности тесно связано с организацией и проведением всех видов ремонтов оборудования ТЭС.
От уровня надежности оборудования ТЭС зависит надежность электроснабжения, обеспечиваемого энергосистемой.
Возникновение аварийных ситуаций на ТЭС часто имеет внешние причины, связанные с неправильным переключением и неполадками в распределительных устройствах, авариями на линиях электропередачи.
При отказе защит и неправильных действиях персонала авария развивается. Так, в распредустройстве одной ГРЭС произошло отключение шин, что привело к сбросу нагрузки на трех блоках. Сработала защита на остановку блоков, а питание их собственных нужд было переведено на резервный трансформатор. После остановки еще трех блоков из-за несрабатывания автоматической разгрузки по частоте авария в системе развивалась и произошло ее разделение. Часть энергосистемы вместе с ГРЭС, на которой были остановлены три блока, оказалась в условиях дефицита мощности с пониженной частотой. Из-за снижения частоты сработала защита на отключение еще одного блока, собственные нужды которого также перешли на питание от резервного трансформатора. Последний перегрузился, и из-за снижения напряжения защита отключила мазутные насосы, что привело к срабатыванию защиты на остановку еще трех блоков, работавших на мазуте. В результате из девяти блоков в работе сохранились лишь два, работавших на газе.
6. Непрерывное повышение квалификации оперативного персонала. От оперативного персонала требуется широкий круг знаний, опыт самостоятельной работы, добросовестное отношение к работе. Особенно важны умелые действия при возникновении аварийных ситуаций.
Для повышения квалификации персонала проводится техническая учеба, периодическая проверка знаний, противоаварийные тренировки.
Система подготовки и повышения квалификации оперативного персонала ТЭС является важным элементом эксплуатации.
7. Автоматизация управления ТЭС. Работа современных ТЭС без автоматизации управления технологическим процессом, без автоматических защит и блокировки практически невозможна. Объем автоматизации все время увеличивается, что не только позволяет сократить численность оперативного персонала и облегчить работу, но и повышает надежность ТЭС. Создаются автоматизированные системы технологического и экономического управления.
8. Наличие высокотемпературных процессов. Наличие высоких температур теплоносителей и металла, который соприкасается с ними, требует осуществления контроля за состоянием металла, за температурным режимом котлов, паропроводов, турбин, за перекосами температур в параллельных элементах. Все элементы, имеющие высокие температуры, испытывают температурные удлинения, которые компенсируются за счет их гибкой конфигурации. Ведется контроль за температурными удлинениями трубопроводов, элементов турбин и котлов, который особенно важен при их пуске и нагружении. При пуске оборудования его температурный режим меняется, так как осуществляется прогрев барабанов и коллекторов, паропроводов, турбин. При этом необходим контроль за скоростью повышения температуры, за разностью температур по толщине стенки (барабана котла, фланцев), которая приводит к появлению дополнительных термических напряжений в металле.
9. Необходимость наличия собственных нужд ТЭС. Часть электроэнергии и тепла, выработанных ТЭС, идет на покрытие собственного потребления, основными из которых являются привод электродвигателей, вспомогательного оборудования, освещение, отопление, вентиляция и пр.
Для электропривода вспомогательного оборудования требуется надежная система электропитания, обеспечивающая и в аварийных условиях номинальный уровень напряжения и частоты электрического тока.
Собственные нужды блока обеспечиваются трансформатором собственных нужд, связанным с генератором блока. В процессе пуска, в аварийных ситуациях собственные нужды блока получают электропитание от резервного трансформатора ТЭС.
10. Необходимость систематического контроля за состоянием оборудования. Для контроля за состоянием действующего оборудования используется большой объем измерений параметров. Оперативный персонал наблюдает за отклонениями параметров от номинальных значений, которые автоматически даются им световым табло. Необходим также контроль за элементами оборудования, находящимися в состоянии готовности. Это относится к клапанам, блокировкам, защитным устройствам, резервному вспомогательному оборудованию. При проведении пуска оборудования необходимо предварительное опробование отдельных элементов: защит, блокировок, вспомогательного оборудования, маслосистем.
11. Необходимость строжайшего соблюдения техники безопасности и охраны труда. Наличие оборудования, находящегося под электрическим напряжением, под высоким внутренним давлением, вращающихся частей, горячих поверхностей, грузоподъемных механизмов создает ситуацию повышенной опасности для персонала. Поэтому требуется неукоснительное соблюдение правил безопасности. Осуществляется систематическая проверка знаний правил техники безопасности (ПТБ) персоналом. При проведении ремонтов и ревизий оборудования осуществляется система допусков на проведение работ.
Некоторые из перечисленных особенностей присущи и другим видам производства, но их совокупность отражает специфику эксплуатации ТЭС.
Роль энергетики в современной России чрезвычайно велика. Для успешного претворения в жизнь плана развития страны прежде всего необходимо обеспечить рост энергообеспеченности. При этом особое внимание следует уделять энергосбережению, экологичности, надежности в энергетике. Вместе с тем ставится задача увеличения использования углей. Повышение эффективности, улучшение качества работы для ТЭС означает достижение лучших технико-экономических показателей, доведение их до уровня передовых ТЭС. Для этого необходимо повышать квалификацию персонала, находить, изучать, внедрять оптимальные режимы работы оборудования, автоматические системы управления, повышать маневренность оборудования, одновременно обеспечивая его высокую надежность.
Основные задачи и средства управления энергоблоком
энергоблок турбина паровой конденсационный
Управление энергоблоком состоит в настройке и поддержании его режимов работы при постоянной и переменной нагрузках, подготовке к пуску, пуске, а также останове. При этом персонал должен руководствоваться нормативными документами, правилами и инструкциями, предписывающими определенную последовательность действий при различных ситуациях. Правильность действий персонала и поддержание работы энергоблока контролируют по показаниям контрольно-измерительных приборов. При отклонении от установленного режима воздействуют на определенные органы (средства) управления для возвращения энергоблока на заданный режим. Органы управления служат также для перехода на другие режимы пуска и останова блока. Эти операции персонал выполняет, непосредственно воздействуя на регулирующие органы, или через специальные системы автоматизации.
Контрольно-измерительные (показывающие и регистрирующие) приборы и средства воздействия на регулирующие органы (ключи управления) располагаются на щитах и пультах, которые подразделяют на центральные и местные.
Для правильного управления энергоблоком обслуживающий персонал должен хорошо знать устройство его элементов, их взаимосвязь и взаимозависимость, протекающие процессы, средства воздействия и управления ими, влияние изменения положения регулирующих органов на работу блока. Кроме того, необходимо ясно представлять последствия неправильных действий и неблагоприятных условий работы оборудования, аварий, неполадок, накапливая практический навык их предупреждения и ликвидации. Эксплуатация энергетического оборудования должна давать экономический эффект при максимальных топливо-, энерго- и материалосбережениях. При этом обязательно следует соблюдать безопасные условия работы обслуживающего персонала при минимальных отрицательных воздействиях на окружающую среду и человека.
На тепловых электростанциях блочного типа применяется бесцеховая структура административно-технического управления (рис. 144). Основная часть информации сосредоточена на блочных щитах управления (БЩУ), где находится оператор блока, связанный через старших операторов с дежурным инженером станции. Обслуживаемые обходчиками местные щиты управления (МЩУ) удовлетворяют общестанционные нужды: систему топливоподачи, химводоочистку, мазутонасосную, компрессорную, электролизерную и т. д.
Сведения о работе блоков и общестанционных устройств пере даются на центральный щит управления (ЦЩУ), с которого осуществляется связь с вышестоящими организациями энергообъединения. ЦЩУ обслуживается дежурным инженером станции (ДИС) и оборудуется информационно-вычислительными комплексами. Блочный щит представляет собой совокупность вертикальных приборных панелей, на которых размещена вся необходимая контрольно-измерительная и пускорегулирующая аппаратура, и предназначен для эффективного управления энергоблоком. Напротив панелей расположен пульт с местом для оператора. Одна из наиболее распространенных компоновок БЩУ для двух энергоблоков показана на рис. 145.
Управление энергоблоком в установившемся режиме сводится к наблюдению за работой основного (котел, турбина, генератор) и вспомогательного оборудования и поддержанию необходимых параметров. При отсутствии возмущающих факторов машинист блока лишь наблюдает за работой оборудования и записывает показания контрольно-измерительных приборов. Однако, как уже отмечалось, условия работы элементов блока изменяются (например, появляются отложения в котле, турбине, возможно шлакование и др.), выходит из строя некоторое оборудование, появляются перебои в подаче топлива (особенно при сжигании твердого топлива) по отдельным топливосистемам или возникает необходимость перехода с одного топлива на другое, либо с одного оборудования на другое и т. д. В этих условиях персонал должен принять соответствующие меры (например, провести обдувку, расшлаковку, временно изменить положение регулирующих органов) и обеспечить возврат энергоблока на заданный режим.
Более сложной является работа энергоблоков при переменном режиме, их пусках из различного состояния и остановах.
Пуск энергоблока состоит в подготовке к работе и выполнении ряда операций, обеспечивающих последовательный ввод в действие основного и вспомогательного оборудования, постепенное доведение параметров до номинальных и установление заданного режима. Технология пуска может быть различной и в основном зависит от предшествующего останова энергоблока и степени охлаждения его отдельных элементов. Изменения температуры элементов (парового котла и турбины) после останова энергоблока мощностью 300 МВт показаны на рис. 146.
В зависимости от степени охлаждения блока при простое различают пуски из холодного, горячего и неостывшего состояний, каждый из которых имеет свою технологию.
Условиями проведения пуска блока из холодного состояния считают полное охлаждение, потерю давления в паровом котле при температурах паровпускных участков ЦВД и ЦСД соответственно менее 150 и 100°С. Этому состоянию соответствует простой более 3--4 сут., если при останове не проводилось усиленное расхолаживание. Пуски из горячего состояния проводят при сохранении давления пара в котле и температуре металла паровпускных участков ЦВД и ЦСД соответственно выше 420 и 440°С. При промежуточных состояниях парового котла и турбины пуск выполняют так же как из неостывшего состояния, принимая во внимание степень oxлаждения и продолжительность простоя (15--20; 35--40 и 60--70 ч).
Типовые пусковые схемы энергоблоков
До 50-х годов в СССР турбинные установки работали с одним общим коллектором, в который перегретый пар поступал от всех котлов электростанций. Подача в котлы питательной воды также осуществлялась из общей магистрали. Таким образом, все котлы и турбинные установки электростанции были связаны по пару и питательной воде, т. е. имели так называемые поперечные связи по рабочему телу (рис.147, а). При этом рост выработки электроэнергии вызывает необходимость увеличения единичной мощности котлов и турбин, а следовательно, электростанции в целом, что требует упрощения схем соединительных общестанционных коммуникаций. Одновременно ставится вопрос об увеличении экономичности электростанций повышением основных параметров вырабатываемого пара (давления и температуры). Повышение давления пара влечет за собой рост его влажности в последних ступенях турбины, что снижает экономичность и надежность ее работы.
Для решения этой задачи был применен промежуточный перегрев пара: из ЦВД турбины пар подается на дополнительный перегрев в промежуточный пароперегреватель, откуда поступает в ЦСД. Промежуточный перегрев пара сделал невозможным применение поперечных связей, так как наряду с общими паропроводами свежего пара и магистралями питательной воды появляются общие паропроводы «холодного» и «горячего» промежуточного пара, что чрезвычайно усложняет тепловую схему, затрудняет регулирование работы котлов и турбин, не позволяет применять схемы автоматического регулирования.
В результате были предложены блочные энергоустановки (рис. 147, б), в которых паровой котел, турбина, генератор и трансформатор технологически связаны между собой. Необходимость тесной взаимосвязанной работы элементов блочной энергоустановки выдвинула проблему разработки режимов ее эксплуатации в различных условиях, особенно при пуске, останове, сбросе нагрузки и переменных режимах.
Развитие электрификации увеличило неравномерность загрузки электростанций в течение суток. Так, графики нагрузки имеют характерные провалы мощности в ночные и обеденные часы и интенсивный рост в утренние, что вынуждает повышать нагрузку блоков со скоростью до 0,5--0,65% в минуту от номинальной. Еще с большей скоростью приходится снижать мощность блока в условиях разгрузки. Необходимость обеспечения маневренности и мобильности блоков, сохранение их высокой надежности и экономичности при различных режимах работы требуют большого внимания к разработке тепловых и пусковых схем.
Структурную схему пароводяного тракта энергоблока, предназначенного для производства теплоты и выработки электроэнергии, называют принципиальной тепловой схемой.
Схему оборудования, обеспечивающего проведение пусковых и остановочных операций, поддержание режима холостого хода и защиту при переменных режимах называют пусковой. Специфическими элементами пусковых схем являются пусковые сеператоры редукционно-охладительные (РОУ), быстродействующие редукционно-охладительные (БРОУ) или пускосбросные быстродействующие (ПСБУ) установки, соединительные трубопроводы с арматурой. На пусковых схемах обычно показывают эти элементы, а также значительную часть основного и вспомогательного оборудования блока и связи между ними. Пусковые схемы должны обеспечивать надежный пуск блоков из любого теплового состояния при минимальных продолжительности, затратах теплоты и электроэнергии, а также Удерживать их в работе при сбросе нагрузки до холостого хода или До нагрузки собственных нужд. В связи с проведением при этих режимах множества операций в относительно короткие сроки необходимо стремиться к унификации и упрощению пусковых схем и программ автоматического регулирования.
Разнообразие пусковых схем объясняется применением различных типов котлов, турбин, растопочных и пускосбросных устройств, методов регулирования температуры основного и промежуточного пара, а также конструкций и способов охлаждения промежуточного пароперегревателя. В зависимости от типа котла различают пусковые схемы моноблоков и дубль-блоков с прямоточными и барабанными котлами, одно- и многопоточные схемы и т. д. По способу регулирования турбин различают пусковые схемы с дроссельным и с сопловым регулированием. По месту установки растопочных устройств пусковые схемы бывают с встроенными и выносными сепараторами, а по типу пускосбросных устройств и способу охлаждения промежуточного пароперегревателя--одно- и двухбайпасные.
Рассматривая пусковые схемы, уделим основное внимание блокам с прямоточными паровыми котлами сверхкритического давления как наиболее распространенным и перспективным.
При разработке пусковой схемы основное внимание уделяют надежности работы поверхностей нагрева котла, паропроводов и турбин. Надежность блока в пусковых режимах сводится:
к поддержанию работы испарительных поверхностей при отсутствии значительных выбегов температур и расходов по отдельным змеевикам;
плавному прогреву перегревательных поверхностей, паропроводов и турбин паром постепенно повышающихся параметров (давления и температуры);
обеспечению сопоставимых (по условиям возникновения температурных напряжений) начальных температур греющего пара и стенок прогреваемого оборудования;
прогреву или охлаждению оборудования с допустимыми скоростями при исключении резких бросков;
поддержанию температуры наиболее напряженной. поверхности в допустимых пределах.
Наиболее полно условия надежного пуска блока удовлетворяются при режиме скользящего изменения параметров свежего и промежуточного пара. Для обеспечения температурной и гидравлической устойчивости потоков в испарительных поверхностях прямоточного котла целесообразно стремиться к повышению давления. В то же время прогрев пароперегревателя, паропроводов и турбин желательно вести паром невысоких начальных параметров. Удовлетворение этих двух условий возможно, если в тракте котла имеются встроенные задвижки. Тогда перед задвижкой давление поддерживается близким к рабочему, а за ней снижается до требуемого уровня (в зависимости .от условий прогрева последующих поверхностей и турбины).
Чтобы обеспечить режим работы на скользящих параметрах, наряду с встроенными задвижками предусматривают растопочные сепараторы, которые могут располагаться за паровым котлом или у задвижки. В соответствии с этим схемы получили названия: с выносными и встроенными сепараторами.
Наиболее часто используют схему с встроенными сепараторами 4 (рис. 148), которые через трубопроводы с дроссельными клапанами 5 присоединяют к тракту 2 котла перед встроенной задвижкой 6. Сепараторы устанавливают на каждый поток рабочего тела.
Отсепарированная влага через систему трубопроводов и дроссельный клапан 3 сбрасывается в конденсатор 14 турбины, а пар поступает в перегревательный тракт 8 за .встроенной задвижкой. Расход пара регулируется открытием редукционно-охладительной установки 9 (РОУ) или пускосбросного устройства 10 (ПСБУ).
При расчете пусковых схем важное значение имеет выбор начальных расходов топлива и рабочего тела, особенно в зоне максимального тепловыделения - в топочных экранах. По условиям охлаждения топочных экранов при пуске целесообразно поддерживать расход рабочего тела около 30% номинального. Максимальный расход топлива при пуске определяется температурными условиями работы первого пакета пароперегревателя за встроенной задвижкой. По результатам исследований температуры стенки этого пакета на обеспаренном режиме стартовый расход топлива при пуске из холодного состояния должен быть не более 10--12% (иногда до 20%) номинального. Контрольным параметром является температура газов перед этой поверхностью или за ней, которая зависит от расхода топлива.
Кроме того, важное значение придается обеспечению равномерности обогрева (и охлаждения) участков и деталей паропроводов и паровых турбин. Наибольшая разность температур может возникать в толстостенных деталях. В связи с этим предусматривается обогрев по всему периметру паровпускных клапанов, фланцев и шпилек турбины. В начальные моменты пуска для обогрева используют пар от постороннего источника (общественной магистрали) или из растопочного узла котла.
При сбросе нагрузки, особенно в аварийных режимах, необходимо быстро перевести котел на растопочную нагрузку, а турбину -- на холостой ход или нагрузку собственных нужд. Появившиеся значительные избытки пара необходимо быстро сбросить в конденсатор (или деаэратор), для чего используют пускосбросные устройства (ПСБУ, БРОУ), имеющие электрический или электрогидравлический привод. При сбросе нагрузки, несмотря на прекращение поступления основного пара из сепаратора 4, необходимо обеспечить охлаждение промежуточного пароперегревателя, для чего используют пар от постороннего источника или сбрасываемый из паропровода свежего пара. В зависимости от схемы сброса пара и охлаждения в этот момент промежуточного пароперегревателя различают одно- и двухбайпасные пусковые схемы блоков.
При однобайпасной схеме (рис. 149, а) избыток свежего пара из паропровода через пускосбросное устройство 6 сбрасывается в конденсатор 7. Промежуточный пароперегреватель 1 либо не охлаждается, либо охлаждается паром из коллектора собственных нужд или растопочного узла котла.
В двухбайпасной схеме (рис. 149, б) предусмотрен сброс пара из паропровода свежего пара в «холодный» паропровод промперегрева, а затем после прохождения промежуточного пароперегревателя из «горячего» паропровода промперегрева в конденсатор 7. Для этой цели устанавливают два пускосбросных устройства 8 и 9 (БРОУ-1 и БРОУ-2), которые должны работать синхронно. Двухбайпасную схему применяют, когда промежуточный пароперегреватель располагается в зоне высоких температур газа (около 1000°С) и его необходимо обязательно охлаждать.
По сравнению с однобайпасной схемой двухбайпасная более сложна в эксплуатации и требует больших затрат. Кроме того, синхронное регулирование работы двух БРОУ затруднено, что обусловливает появление значительных выбегов температур. В двухбайпасной схеме при пуске на прямоточном режиме температуры свежего и промежуточного пара близки. Это, с одной стороны, ведет к появлению значительной разности температур пара и стенок труб в высокотемпературной части промежуточного пароперегревателя, а с другой - требует дополнительного снижения температуры промежуточного пара с использованием пусковых впрысков, что повышает расход теплоты и увеличивает время пуска блока.
Для работы промежуточного пароперегревателя в зоне высоких, температур вместо труб из перлитных сталей необходимы аустенитные, что снижает экономичность, а следовательно, целесообразность применения двухбайпасных схем.
Исходя из этого в качестве типового решения для блоков 300-- 800 МВт, рассчитанных на длительное удержание нагрузки холостого хода (до 10--15 мин), рекомендуются однобайпасные схемы с встроенными задвижками и сепараторами и сбросом пара от ПСБУ в пароприемное устройство конденсатора, а также из горячих паропроводов промежуточного перегрева в верхнюю часть конденсатора через быстровключающийся клапан (БВК) с гидравлическим приводом, связанным с системой регулирования турбины. Промежуточный пароперегреватель размещают в зоне умеренных температур (700--800°С). На рис.150 в качестве примера приведена пусковая схема моноблока СКД мощностью 300 МВт.
Основные элементы типовых пусковых схем энергоблоков
На пусковых схемах наряду с основным оборудованием - паровым котлом, турбиной, конденсатором и связывающими их паропроводами - изображают конденсатный тракт, тракт подготовки питательной воды, а также оборудование промежуточного перегрева и устройство его охлаждения, пусковые (растопочные) и пускосбросные узлы и их коммуникационные связи с основным оборудованием и общестанционными трубопроводами.
В конденсатную группу оборудования, или конденсатный тракт блока, входят: конденсатные электронасосы 20 и 24 (КЭН-1 и КЭН-2) первой и второй ступеней; блочная обессоливающая установка 21 (БОУ или КОУ); подогреватели, использующие теплоту пара сальниковых уплотнений и эжектора уплотнения 22 (ЭУ); основной эжектор 23 (ОЭ); подогреватели низкого давления 25. Кроме того, к конденсатному тракту относятся трубопроводы рециркуляции от КЭН-1 или КЭН-2 к конденсатору и линии подачи конденсата во впрыскивающие пароохладители пускосбросных устройств 36 и редукционно-охладительную установку. При подготовке блока к пуску линию рециркуляции используют для промывки конденсатного тракта. Подачу конденсата к пароохладителям пуско-сбросных устройств 36 и ПСБУ собственных нужд, а также в РОУ применяют для охлаждения и регулирования температуры пара, сбрасываемого в конденсатор 19 или коллектор собственных нужд 10.
В тракт подготовки питательной воды, или питательную группу (IV), входят: деаэратор 35 с присоединенными к нему паропроводами подачи пара от отборов турбин, магистрали собственных нужд блока и выпара растопочного узла; бустерный насос 26 и питательные электро- и турбонасосы 28 и 27 (ПЭН и ПТН); подогреватели высокого давления 31 (ПВД) и их обводные трубопроводы - байпасы; линия рециркуляции от питательных насосов к деаэратору и трубопроводы от питательных насосов к пусковым впрыскивающим пароохладителям промперегрева, используемым в пусковые периоды для поддержания требуемой температуры пара перед ЦСД.
Линия рециркуляции питательной группы служит для предпусковой деаэрации воды, производимой до получения требуемого содержания растворенных газов (О2, CO2). Движение среды по трубопроводам в этот период обеспечивают бустерные насосы. Подогрев питательной воды осуществляется в ПВД паром из отборов турбины. Слив образующегося конденсата производится каскадно: из подогревателя в подогреватель (пунктирная линия) и далее - в деаэратор, в ПНД или конденсатор. Из питательной группы вода поступает в котел и на впрыски до встроенной задвижки ВЗ, а также в перегревательный тракт свежего пара. В пусковой период вода на впрыски подается по байпасной линии с установленным в ней набором дроссельных шайб. Расход воды на котел регулируется питательным клапаном Г (РПК.). Перед пуском встроенная задвижка закрыта, а рабочая среда сбрасывается в пусковой узел.
Основными элементами пускового узла (V) являются: встроенный сепаратор 4 (ВС) и растопочный расширитель 2 (Р-20), рассчитанный на давление 2 МПа (20 кгс/см2), с подводящими и отводящими трубопроводами и арматурой. Встроенный сапаратор имеет относительно небольшое сопротивление, что.позволяет использовать его при переходе на прямоточный режим, когда вся среда из тракта до встроенной задвижки направляется в перегревательный тракт без ее открытия. На подводе смеси от котла к встроенному сепаратору установлен дроссельный клапан 5 (Др-1), позволяющий поддерживать номинальное давление в тракте до встроенной задвижки на протяжении всего периода пуска блока.
Дроссельный клапан 3 (Др-2) регулирует расход смеси, сбрасываемой в растопочный расширитель. Для уменьшения заброса влаги и регулирования охлаждения металла перегревательных трубопроводов служит клапан 7 (Др-3) на выводе пара (на выпаре) из встроенного сепаратора в перегревательную часть котла. Этот клапан позволяет повысить давление в сепараторе и обеспечить требуемые расход, давление и температуру пара в тракте за встроенной задвижкой, перед ЦВД и в пусковом устройстве. Чтобы уменьшить заброс скапливающегося в период закрытия клапана Др-3 конденсата перед ним и за ним, а также в нижней точке тракта за встроенной задвижкой устанавливают дренажи.
Сбросы из растопочных сепараторов, устанавливаемых на каждом потоке среды, поступают в растопочный расширитель Р-20. Обычно на блоке монтируют по одному расширителю с верхним основным подводом смеси. Из расширителя пар направляется в деаэратор, коллектор собственных нужд или через клапан 34 (КР-2) - в конденсатор, а вода поступает в циркуляционный водовод 32, в бак запаса конденсата 29 или нижнюю часть конденсатора. В водовод вода сбрасывается в первые моменты пуска, пока не завершена промывка контура котла до встроенной задвижки. Сброс воды из расширителя Р-20 регулируется по уровню воды в нем клапаном 30 (РК-1). В пусковой период пар из расширителя Р-20 может использоваться в деаэраторе, тракте охлаждения промперегрева, а избыток сбрасываться в верхнюю часть конденсатора через трубопроводы с клапанами 34 (РК-2), которыми поддерживается заданное давление в расширителе. Пускосбросные устройства 36 соединяются сбросными трубопроводами с главным паропроводом свежего пара и горячим паропроводом промперегрева.
В однобайпасной схеме (см. рис. 149, а) от ПСБУ рабочая среда сбрасывается в конденсатор, минуя турбину, т. е. через ПСБУ создается обход турбины. В ПСБУ происходит снижение давления и охлаждение свежего (или промежуточного) пара впрыском воды из конденсатного тракта. Наибольшее распространение в качестве ПСБУ получили быстродействующие редукционно-охладительные установки.
На мощных блоках наряду с ПСБУ применяют ПСБУСН (собственных нужд), позволяющие обеспечить работу турбопривода, деаэратора, сальниковых уплотнений и эжекторов турбин при сбросе нагрузки, когда прекращается поступление пара из отборов турбин. Для снижения температуры пара до требуемой по условиям работы (340--350°С) производят впрыск воды из конденсатного тракта или промежуточной ступени питательных турбонасосов, Сброс пара через ПСБУ собственных нужд может осуществляться непосредственно в устройства собственных нужд либо в коллектор.
В систему промперегрева входят промежуточные пароперегреватели 8, паропроводы с арматурой и устройства, обеспечивающие регулирование температуры промперегрева. В однобайпасной схеме для охлаждения перегревателей и прогрева паропроводов промперегрева используют пар из расширителя Р-20 (при пуске из холодного состояния), свежий пар, подаваемый через редукционно-охладительную установку и пускосбросное устройство собственных нужд, или пар от постороннего источника (преимущественно при пуске из неостывшего или горячего состояния, когда собственный пар из расширителя Р-20 является более холодным, чем стенки паропровода и ЦСД). Прогрев паром от расширителя Р-20 или общестанционной магистрали 9 позволяет параллельно вести растопку котла и прогрев паропроводов промперегрева и ЦВД. На дубль-блоках, чтобы предотвратить попадание холодного пара из подключаемого корпуса в ЦСД и ЦВД, на холодном (ППХ) и горячем (ППГ) паропроводах промперегрева устанавливают отключающие задвижки. При пуске и сбросе нагрузки пар из системы промперегрева выводится через быстровключающийся клапан 18, после которого на сбросном трубопроводе установлен впрыскивающий пароохладитель, обеспечивающий требуемое снижение температуры пара перед конденсатором.
Останов энергоблоков
Способы останова энергоблока зависят от вызывающих их причин и условий последующей работы. При плановом снижении нагрузки в энергосистеме (провалах в потреблении электроэнергии) останов отдельных энергоблоков или их частичная разгрузка, вплоть до перехода на так называемый моторный режим (когда турбогенератор работает как электродвигатель, потребляя электроэнергию из электрической сети), определяется экономической целесообразностью. При любом способе останов должен производиться с наименьшими потерями теплоты, исходя из конечного состояния охлаждения и готовности энергоблока к последующему пуску.
В зависимости от конечного теплового состояния блока различают остановы без расхолаживания оборудования и с расхолаживанием турбины, котла и паропроводов, тракта котла (прямоточного) до встроенной задвижки. Останов без расхолаживания выполняют при выводе блока в горячий резерв и для проведения непродолжительных ремонтных работ, не связанных с тепловым состоянием блока, а с расхолаживанием - для проведения ремонтных работ повышенной продолжительности, причем полнота охлаждения зависит от вида предполагаемого ремонта. Так как охлаждение толстостенных элементов оборудования (барабанов, корпусов турбин и др.) до безопасных температур в естественных условиях протекает медленно (от 2 до 6 сут.), останов с расхолаживанием (см. рис. 146) позволяет значительно сократить простой блока в ремонте.
При останове энергоблока без расхолаживания стремятся максимально сохранить аккумулированную оборудованием теплоту. Для этого после вентиляции топки и газоходов уплотняют газовоздушный тракт, закрывая шиберы и направляющие аппараты дутьевых вентиляторов и дымососов и газовые задвижки. Высокие температуры острого и промежуточного пара стараются сохранить до полного останова блока. Если предполагается кратковременный останов, пароперегреватели можно не обеспаривать. При необходимости обеспаривания основного пароперегревателя и поддержания требуемого давления пар сбрасывают через ПСБУ.
В последнее время все чаще применяют следующую схему останова энергоблока в горячий резерв: разгрузку на рабочем питательном насосе до мощности 0,5Nном; останов котла и после снижения нагрузки турбины до 0,3Nном останов ее при сохранении в тракте ,котла давления, близкого к номинальному. Такая схема позволяет исключить переход с основных насосов на резервные (с питательного турбонасоса на электронасос) и с рабочего топлива -- на резервное.
При останове энергоблока с расхолаживанием турбины на нагрузках, соответствующих пропускной способности растопочного узла прямоточного котла, переходят на сепараторный режим и далее, руководствуясь графиком-заданием, снижают давление, температуру свежего и промежуточного пара и нагрузку блока до предельно устойчивой. При дальнейшем снижении нагрузки переходят на резервное топливо (газ, мазут). На нагрузках 0,5Nном переходят на резервные питательные электронасосы. Температуру острого пара в процессе разгрузки регулируют пусковыми и основными впрысками. При снижении нагрузки от 0,3Nном до минимальных значений (0,05-- 0,07) Nном постепенно прикрывают регулирующие клапаны турбины, включая ПСБУ. Изменяя степень пропуска пара в конденсатор через ПСБУ, поддерживают рекомендуемое инструкцией давление острого пара. После выдержки блока на минимальной нагрузке (до стабилизации теплового состояния турбины) останавливают все оборудование.
При останове энергоблока с расхолаживанием котла и паропроводов разгрузку ведут до расходов, соответствующих пропускной способности ПСБУ, затем отключают турбину с перепуском пара через ПСБУ в конденсатор. Постепенно уменьшая тепловыделение в топке, снижают температуру пара до насыщения (давление сохраняют постоянным), закрывают встроенную задвижку и охлаждают пароперегреватель и паропроводы насыщенным паром, температуру которого снижают, уменьшая давление за задвижкой. При температуре среды за котлом 300--320°С полностью открывают регулирующие клапаны дренажей перед главной паровой задвижкой, увеличивают расход воды, открывают шиберы на газовоздушном тракте и, включив тягодутьевые машины, полностью расхолаживают котел.
При расхолаживании тракта до встроенной задвижки после снижения нагрузки и останова котла закрывают задвижки и дроссельный клапан на линии к пароперегревателю, подают воду, включают регулятор давления перед встроенной задвижкой и, воздействуя на дроссельные задвижки на входе во встроенный сепаратор и на сбросе, постепенно понижают давление в сепараторе. Включением тягодутьевых машин и постоянной прокачкой воды охлаждают тракт до встроенной задвижки.
При останове блоков с барабанными котлами ограничивающими условиями являются разность температур верхней и нижней частей барабана (40°С), скорость охлаждения его стенок (менее 1,5°С/мин) и др. В таких энергоблоках после останова не разрешаются длительная вентиляция газовоздушного тракта (более 5--10 мин), спуск воды из остановленного котла при давлении, большем атмосферного, и интенсификация охлаждения котла подпиткой и дренированием воды, а также расхолаживание газоходов с помощью дымососов ранее, чем через 10 ч при давлении до 14 МПа (140 кгс/см2) и через 18 ч при большем давлении.
Технология аварийного останова определяется видом аварии и моментом установления ее причин. Первоначально, до момента выяснения причины аварии, но не более 10 мин, останов ведут с минимально возможным расхолаживанием оборудования, (сохраняя рабочее давление и уплотнение газовоздушного тракта). Если в течение 10 мин выявлена и устранена причина аварии, производят пуск энергоблока как из горячего резерва. Если за это время причина аварии не выявлена или обнаружена поломка оборудования, производят останов с соответствующим расхолаживанием.
При останове блока в ремонт его отсоединяют от общестанционных магистралей и трубопроводов соседних блоков.
Схемы пусков и остановов блока не являются установившимися и с развитием техники совершенствуются. Учитывая многообразие вариантов пусковых схем блоков, при эксплуатации следует пользоваться инструкциями по пуску и останрву.
УСЛОВИЯ БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ЭНЕРГОБЛОКОВ
Основные положения системы безопасности труда
Основная задача системы безопасности труда - обеспечение таких условий обслуживания, монтажа и ремонта оборудования, при которых жизнь и здоровье персонала не подвергались бы опасности.
Сферы деятельности эксплуатационников, монтажников и. ремонтников различны, поэтому различны требования безопасности, которые они должны соблюдать. Однако эксплуатационному персоналу иногда приходится выполнять ремонтные и некоторые монтажные работы. К самостоятельной работе в качестве машинистов энергоблоков допускаются лица не моложе 18 лет, выдержавшие установленные Госгортехнадзором испытания и имеющие об этом отметку в удостоверении в разделе «Свидетельство на право производства специальных работ».
Каждый работник из числа дежурного персонала до назначения его на самостоятельную работу или при переводе с одной работы (должности) на другую обязан пройти производственное обучение на рабочем месте с последующей работой в качестве дублера. Дублер, как и опытный рабочий, руководящий им и контролирующий его действия, отвечает за соблюдение правил безопасности труда.
Персонал электростанций обеспечивается спецодеждой и спецобувью. Спецодежда не должна иметь развевающихся частей, которые могут быть захвачены движущимися (вращающимися) механизмами. Запрещается засучивать рукава спецодежды. Волосы должны быть убраны под головной убор. Женщины, обслуживающие движущиеся (вращающиеся) механизмы, должны носить брюки, комбинезон или полукомбинезон. При нарушении правил безопасности труда или обнаружении неисправности в работе оборудования о них следует немедленно сообщить непосредственному руководителю, а при его отсутствии - вышестоящему руководителю. Нарушение правил безопасности труда любым работником рассматривается как несоблюдение производственной дисциплины. Каждый такой случай обязательно расследуется администрацией и обсуждается на собраниях работников бригады, участка, цеха в присутствии виновных. Виновные в нарушении правил безопасности труда подвергаются дисциплинарным взысканиям.
Одним из важных условий безопасности при эксплуатации оборудования электростанций является порядок на рабочем месте. Полы и междуэтажные перекрытия всех производственных помещений должны быть полностью исправными; стоки, дренажные и другие каналы, а также люки колодцев перекрыты заподлицо с полом. Все проходы и проезды должны быть хорошо освещены, свободны и безопасны для движения пешеходов и транспорта. В течение рабочего дня, после каждой смены или при перерывах в работе необходимо убирать рабочие места, проходы и проезды беспылевым способом. Нельзя хранить в теплосиловых цехах легковоспламеняющиеся материалы. Суточный запас смазочных масел можно хранить вблизи рабочих мест в специальных металлических бачках, ящиках и масленках. Чистые и грязные обтирочные материалы хранят отдельно в закрытых металлических ящиках. Грязный обтирочный материал ежедневно убирают.
Персонал электростанций должен быть обучен приемам борьбы с пожаром. Необходимые средства пожаротушения (пожарные краны, стволы, рукава, огнетушители, ящики с песком и т. д.) располагают в доступных местах цеха. В определенных местах, отведенных администрацией цеха по согласованию с медпунктом, располагают аптечки с перевязочными материалами и медикаментами. Персонал электростанций должен быть обучен приемам оказания первой помощи пострадавшим от электрического тока и при других несчастных случаях. Работник электростанции, оказавшийся поблизости от пострадавшего, должен остановить оборудование или соответствующий механизм, снять напряжение, отключить подачу пара, оказать первую помощь, вызвать старшего по смене (вахте) и в дальнейшем действовать по его указанию.
Запрещается чистить, обтирать и смазывать вращающиеся или движущиеся части механизмов, опираться или становиться на барьеры площадок, предохранительные кожухи муфт, подшипники, трубопроводы, конструкции и перекрытия, не предназначенные для прохода по ним и не имеющие специальных ограждений и поручней. Нельзя находиться на площадках агрегатов, в плоскости фланцевых соединений, вблизи арматуры трубопроводов, предохранительных клапанов, люков и лазов системы пылеприготовления и газоходов котла, если это не вызвано необходимостью обслуживания или ремонта.
При пуске, останове и испытании оборудования вблизи него и на его площадках может находится только персонал, выполняющий эти работы, и лица, имеющие разрешение начальника .цеха.
...Подобные документы
Техническая эксплуатация турбинных установок: подготовка к пуску; обслуживание систем маслоснабжения, регулирования, защиты, конденсационной системы, питательных насосов и вспомогательного оборудования во время работы; плановый и аварийный остановы.
реферат [42,3 K], добавлен 16.10.2011Подготовка парового котла к растопке, осмотр основного и вспомогательного оборудования. Пусковые операции и включение форсунок. Обслуживание работающего котла, контроль за давлением и температурой острого и промежуточного пара, питательной воды.
реферат [2,1 M], добавлен 16.10.2011Особенности отложения примесей в паровых котлах, методы химических очисток и их влияние на надежность эксплуатации оборудования. Технологии некоторых химических очисток котлов и результаты их проведения, выполненных в ОАО "Сибтехэнерго" в разное время.
магистерская работа [1,9 M], добавлен 02.08.2015Назначение и основные типы котлов. Устройство и принцип действия простейшего парового вспомогательного водотрубного котла. Подготовка и пуск котла, его обслуживание во время работы. Вывод парового котла из работы. Основные неисправности паровых котлов.
реферат [643,8 K], добавлен 03.07.2015Характеристика основного и вспомогательного оборудования котельного агрегата БКЗ-160-100. Разработка и реализация реконструкции котлов с переводом на сжигание газа и мазута. Технико-экономические расчеты электробезопасности и экологичности проекта.
курсовая работа [774,7 K], добавлен 14.04.2019Классификация паровых и водогрейных котлов. Достоинства и недостатки различных конструктивных решений. Особенности двухбарабанных и жаротрубных паровых агрегатов. Схема газотурбинной установки с котлом-утилизатором и с утилизационным теплообменником.
презентация [187,9 K], добавлен 07.08.2013Характеристики судовых паровых котлов. Определение объема и энтальпия дымовых газов. Расчет топки котла, теплового баланса, конвективной поверхности нагрева и теплообмена в экономайзере. Эксплуатация судового вспомогательного парового котла КВВА 6.5/7.
курсовая работа [1,1 M], добавлен 31.03.2012История развития паровых турбин и современные достижения в данной области. Типовая конструкция современной паровой турбины, принцип действия, основные компоненты, возможности увеличения мощности. Особенности действия, устройства крупных паровых турбин.
реферат [196,1 K], добавлен 30.04.2010Устройство котельного и турбинного оборудования, паровых и водогрейных котлов. Классификация циркуляционных насосов. Назначение элементов тепловых схем источников и систем теплоснабжения, особенности его эксплуатации. Основные типы теплообменников.
отчет по практике [1,2 M], добавлен 19.10.2014Рассмотрение истории развития способов сжигания мазута и аппаратуры, используемой для этого. Теоретические основы горения топлива. Форсунки для сжигания жидкого топлива. Конструктивные особенности паровых котлов на жидком топливе, их совершенствование.
реферат [971,0 K], добавлен 12.06.2019Главное преимущество теплоэлектроцентрали. Конденсационные турбины с отбором пара. Характеристики паровых котлов. Выбор питательных насосов и деаэраторов, подбор градирен. Коэффициент полезного действия турбоустановки по производству электроэнергии.
курсовая работа [94,3 K], добавлен 24.01.2014Классификации паровых котлов. Основные компоновки котлов и типы топок. Размещение котла с системами в главном корпусе. Размещение поверхностей нагрева в котле барабанного типа. Тепловой, аэродинамический расчет котла. Избытки воздуха по тракту котла.
презентация [4,4 M], добавлен 08.02.2014Охрана труда при эксплуатации электроустановок. Должностные обязанности электромонтеров. Инструменты, оборудование, средства защиты и материалы для выполнения комплексных работ по монтажу и обслуживанию электрического и электромеханического оборудования.
отчет по практике [1,8 M], добавлен 20.02.2010Конструкция корпуса атомной турбины. Методы крепления корпуса к фундаментной плите. Материалы для отливки корпусов паровых турбин. Паровая конденсационная турбина типа К-800-130/3000 и ее назначение. Основные технические характеристики турбоустановки.
реферат [702,3 K], добавлен 24.05.2016Краткая характеристика предприятия ОАО "Куйбышевский нефтеперерабатывающий завод". Назначение и устройство оборудования котельного цеха. Тепловая схема ТЭЦ. Подготовка питательной воды. Характеристика и краткое описание котлоагрегата БКЗ100-39ГМА.
отчет по практике [29,8 K], добавлен 05.12.2013Средства защиты газопроводов от аварийного повышения или понижения давления при неисправностях регуляторов давления. Основные свойства газов. Назначение газорегуляторного пункта, устройство регулятора. Расчет затрат по обслуживанию оборудования.
дипломная работа [139,2 K], добавлен 20.01.2013Характеристика котлов по способу организации движения рабочего тела: паровые с естественной циркуляцией; прямоточные. Схема контура естественной циркуляции. Структура потока пароводяной смеси в трубах. Сепарация как метод очистки пара от примесей.
реферат [221,7 K], добавлен 16.05.2010Конструкция котельной установки, характеристика ее оборудования. Пуск котла, его обслуживание при нормальной эксплуатации. Перечень аварийных случаев и неполадок в котельном цехе. Экономичность работы парового котла. Требования по технике безопасности.
дипломная работа [860,2 K], добавлен 01.03.2014Ознакомление с предприятием по выработке тепловой и электрической энергии. Безопасность труда на энергопредприятиях; средства защиты человека от вредных производственных факторов. Изучение тепловой схемы установки, устройства паровых турбин и котлов.
курсовая работа [7,6 M], добавлен 04.02.2014Технологическая схема ТЭС: система регенерации, основное оборудование, система эвакуации дымовых газов, технического водоснабжения, топливоподачи (газ, мазут). Суть теоретического цикла Карно и Ренкина. Классификации паровых котлов. Основные типы топок.
презентация [13,4 M], добавлен 08.02.2014