Определение коэффициента вязкости жидкости

Использование закона Ньютона для расчета внутреннего трения и коэффициента динамической вязкости. Определение силы тяжести, силы Архимеда и сопротивления для шарика. Расчет точного коэффициента вязкости жидкости методом Стокса на примере глицерина.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 17.11.2014
Размер файла 24,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки

республики Казахстан

Карагандинский государственный

Технический университет

Лабораторная работа

Тема: Определение коэффициента вязкости жидкости методом Стокса

Выполнил:

студент гр. АиУ-06-2

Голобородько Артём

Принял(а): преподаватель

Орлова Елена Федоровна

Караганда 2006

Цель: Определить коэффициент вязкости жидкости методом Стокса

Задачи:

· овладение одной из методик эксперимента

· приобретение опыта решения учебно-исследовательских и реальных практических задач на основе изученного теоретического материала

· приобретение опыта проведения эксперимента

· формирование навыков обработки результатов проведенных исследований

· формирование умений оформления и представления результатов проведенных исследований

· анализ, обсуждение полученных результатов и формулирование выводов.

Методика работы:

Принадлежности: стеклянный цилиндр с исследуемой жидкостью (глицерином), линейка, секундомер, шарики, микрометр.

Размещено на http://www.allbest.ru/

Теория:

F=

закон Ньютона для внутреннего трения

где з - к-т внутреннего трения или к-т динамической вязкости.

На шарик действуют следующие силы:

FT=mg=сgV - сила тяжести

FAжgV - сила Архимеда

FC=6рзrх - сила сопротивления для шарика

r - радиус шарика

х - скорость падения шарика

Тогда по 2 закону Ньютона:

V=рr3 х0=

Введём поправочный к-т:

Данные и расчеты занесем в таблицу:

R м

L м

R м

T с

Х м/с

З Па*с

Па*с

Sз Па*с

Дз Па*с

з= Дз Па*с

1

0.25

0.68

1,60

8,30

0,08

0,46

0,73

0,04

0,11

0,730,11

2

1,50

7,72

0,09

0,36

3

1,40

8,17

0,08

0,35

4

1,50

8,98

0,07

0,46

5

1,40

8,75

0,08

0,35

6

1,70

7,12

0,1

0,42

7

1,70

8,40

0,08

0,52

8

1,90

7,83

0,09

0,58

9

2,00

8,05

0,08

0,72

10

1,90

8,60

0,08

0,65

Вывод: На данном этапе опыта, было практически освоено содержание теоретического материала и методы измерений в лабораториях кафедры физики при использовании специальных технических средств.

В результате данного опыта были достигнуты цели лабораторной работы и получены следующие результаты в виде:

з= (Дз)

Коэффициент вязкости жидкости методом Стокса был определён, он равен: з= (0,730,11) Па*с ;

Анализ:

Данный опыт был проведён с погрешностями, так как измерения производились человеком - присутствовал человеческий фактор, так же имелась инструментальная погрешность в приборах измерения.

Из-за всех этих погрешностей результат опыта не совпадает с табличным значением коэффициента вязкости глицерина При 200C он равен 0,90 Па*с. глицерин вязкость жидкость тяжесть

Размещено на Allbest.ru

...

Подобные документы

  • Сущность метода Стокса по определению коэффициента вязкости. Определение сил, действующих на шарик при его движении в жидкости. Оценка зависимости коэффициента внутреннего трения жидкостей от температуры. Изучение ламинарных и турбулентных течений.

    лабораторная работа [1001,4 K], добавлен 15.10.2010

  • Экспериментальная проверка формулы Стокса и условий ее применимости. Измерение динамического коэффициента вязкости жидкости; число Рейнольдса. Определение сопротивления жидкости, текущей под действием внешних сил, и сопротивления движущемуся в ней телу.

    лабораторная работа [339,1 K], добавлен 29.11.2014

  • Расчет кинематического коэффициента вязкости масла при разной температуре. Применение формулы Убеллоде для перехода от условий вязкости к кинематическому коэффициенту вязкости. Единицы измерения динамического и кинематического коэффициентов вязкости.

    лабораторная работа [404,7 K], добавлен 02.02.2022

  • Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.

    лабораторная работа [61,1 K], добавлен 19.07.2007

  • Вязкость - свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одного слоя вещества относительно другого. Определение коэффициента вязкости жидкости методом Стокса. Законы и соотношения, использованные при расчете формулы.

    лабораторная работа [531,3 K], добавлен 02.03.2013

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Определение вязкости глицерина и касторового масла, знакомство с методом Стокса. Виды движения твердого тела. Определение экспериментально величины углового ускорения, момента сил при фиксированных значениях момента инерции вращающейся системы установки.

    лабораторная работа [780,2 K], добавлен 30.01.2011

  • Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.

    презентация [571,8 K], добавлен 06.04.2015

  • Характеристика приближенных методов определения коэффициента трения скольжения, особенности его расчета для различных материалов. Значение и расчет силы трения по закону Кулона. Устройство и принцип действия установки для определения коэффициента трения.

    лабораторная работа [18,0 K], добавлен 12.01.2010

  • Изучение особенностей капиллярного, вибрационного, ротационного и ультразвукового метода вискозиметрии. Метод падающего шарика вискозиметрии. Классификация вискозиметров. Вискозиметр Брукфильда - высокоточный прибор для поточного измерения вязкости сред.

    презентация [992,7 K], добавлен 20.05.2014

  • Механизм внутреннего трения в жидкостях. Динамическая, кинематическая и условная вязкость. Типы ее модификаторов. Методы вискозиметрии: капиллярный вибрационный, ротационный, ультразвуковой и падающего шарика. Классификация и применение вискозиметров.

    курсовая работа [739,1 K], добавлен 21.03.2015

  • Сущность ньютоновской жидкости, ее относительная, удельная, приведённая и характеристическая вязкость. Движение жидкости по трубам. Уравнение, описывающее силы вязкости. Способность реальных жидкостей оказывать сопротивление собственному течению.

    презентация [445,9 K], добавлен 25.11.2013

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Определение импульса, полной и кинетической энергии электрона. Расчет плотности и молярной массы смеси. Уравнение состояния Менделеева-Клапейрона, описывающее поведение идеального газа. Коэффициент внутреннего трения воздуха (динамической вязкости).

    контрольная работа [405,8 K], добавлен 22.07.2012

  • Изучение "Закона Архимеда", проведение опытов по определению архимедовой силы. Вывод формул для нахождения массы вытесненной жидкости и расчета плотности. Применение "Закона Архимеда" для жидкостей и газов. Методическая разработка урока по данной теме.

    конспект урока [645,5 K], добавлен 27.09.2010

  • Изучение влияния силы тяжести и силы Архимеда на положение тела в воде. Взаимосвязь плотности жидкости и уровня погружения объекта. Определение расположения керосина и воды в одном сосуде. Понятие водоизмещения судна, обозначение предельных ватерлиний.

    презентация [645,1 K], добавлен 05.03.2012

  • Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.

    презентация [204,4 K], добавлен 24.01.2012

  • Основное уравнение гидростатики, его формирование и анализ. Давление жидкости на криволинейные поверхности. Закон Архимеда. Режимы движения жидкости и гидравлические сопротивления. Расчет длинных трубопроводов и порядок определения силы удара в трубах.

    контрольная работа [137,3 K], добавлен 17.11.2014

  • Определение силы гидростатического давления жидкости на плоские и криволинейные поверхности, в закрытом резервуаре. Специфические черты гидравлического расчета трубопроводов. Определение необходимого давления рабочей жидкости в цилиндре и ее подачу.

    контрольная работа [11,4 M], добавлен 26.10.2011

  • Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока несжимаемой жидкости. Определение средневзвешенного пластового давления жидкости. Построение депрессионной кривой давления. Определение коэффициента продуктивности.

    контрольная работа [548,3 K], добавлен 26.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.