Принцип работы гидроаккумулирующих электростанций
Проблема покрытия пиковых нагрузок и прохождения периодов сниженного электропотребления. Схема гидроаккумулирующей электростанции. История развития. Ряд преимуществ электростанций. Основные характеристики и вид деятельности Кубанской электростанции.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.11.2014 |
Размер файла | 89,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
Цель выполнения работы - описать принцип работы гидроаккумулирующих электростанций (ГАЭС), проанализировать их роль в оптимизации режимов работы электроэнергетических систем; рассмотреть перспективы развития.
Из всех видов потребляемой в современном мире энергии наибольшее распространение имеет электроэнергия. Это объясняется следующими причинами:
электроэнергия легко превращается в любых количествах во многие другие используемые формы энергии в механическую, химическую, тепловую, световую;
электроэнергия с приемлемыми потерями практически мгновенно может быть передана на любое расстояние;
производство электроэнергии можно легко концентрировать на электростанциях любой мощности;
при распределении электроэнергию можно дробить на произвольные сколь угодно большие или малые порции (от мегаватт в электрометаллургии до микроватт в электронике);
электроэнергия обладает высокой экологической чистотой, процесс ее использования не сопровождается выбросами в природную среду.
Но главный минус электроэнергии заключается в том, что ее нельзя накопить, так как в электроэнергетике цикл производства, распределения и потребления электроэнергии осуществляется одновременно. Поэтому при планировании производства (выработки) электроэнергии необходимо учитывать и режим потребления электроэнергии во времени, то есть график электрической нагрузки.
Момент производства электрической энергии должен совпадать с моментом ее потребления. Как только это равновесие нарушается, в сети возникают неполадки, а у генератора и потребителя -- неприятности. Если производимый объем электроэнергии превосходит потребляемый, то параметры сетевого электрического тока начинают прыгать: повышается частота, растут уровни напряжения. На роторе машины уменьшается тормозной момент, и турбогенератор идет вразнос, заставляя срабатывать автоматику, которая уменьшает мощность, выдаваемую машиной, и при худшем варианте развития событий -- к счастью, такое случается нечасто -- останавливает ее, сажая весь энергоблок «на ноль», а потребителя оставляя и вовсе ни с чем.
Когда, наоборот, потребляется электроэнергии больше, чем генерация может обеспечить, проблем также хватает: частота и напряжение падают, что в условиях дефицита производства электроэнергии и плохого регулирования баланса между производством и потреблением случается нередко.
Для согласования этих процессов возможно использование следующего способа управления - накопление излишков энергии в период минимального потребления (провал графика нагрузок) и ее выдача в период максимального потребления, то есть аккумулирование энергии.
Аккумулирование энергии представляет собой ее накопление при возникновении в энергосистеме излишков генерирующей мощности для перераспределения во времени и использования в соответствии с потребностями энергосистемы. Потребность в аккумулировании вызывается не только неравномерностью электропотребления, но технической сложностью и неэкономичностью быстрого изменения рабочей мощности крупных тепловых и атомных электростанций в соответствии с колебаниями суточной и недельной нагрузки, а также необходимостью наличия высокоманевренной мощности при аварийных и нештатных ситуациях в энергосистеме.
Практически во всем мире в современных энергообъединениях почти исключительное распространение получило гидроаккумулирование - благодаря соизмеримости мощности и количества перераспределяемой энергии ГАЭС с потребностями энергосистем.
Проблема покрытия пиковых нагрузок и прохождения периодов сниженного электропотребления в последние десятилетия во всем мире становится все более актуальной в связи с разуплотнением графиков нагрузок современных энергосистем, увеличением количества маломаневренных турбоагрегатов повышенной мощности ТЭС и АЭС, а также значительной степенью освоения экономически выгодных для использования гидроресурсов.
Одним из возможных и наиболее эффективных способов решения этой проблемы является строительство и использование мощных ГАЭС, которые характеризуются уникальным сочетанием функций пиковой станции и потребителя-регулятора, способного в период ночного провала суточного графика нагрузок обеспечить потребление избыточной электрической мощности теплофикационного оборудования ТЭС и АЭС.
1. Принцип действия ГАЭС
Принцип действия ГАЭС заключается в преобразовании электрической энергии, получаемой от других электростанций, в потенциальную энергию воды. При обратном преобразовании накопленная энергия отдаётся в энергосистему главным образом для покрытия пиков нагрузки.
Гидротехнические сооружения ГАЭС состоят из двух бассейнов, расположенных на разных уровнях, и соединительного трубопровода.. Гидроагрегаты, установленные в здании ГАЭС у нижнего конца трубопровода, могут быть трёхмашинными, состоящими из соединённых на одном валу обратимой электрической машины (двигатель-генератор), гидротурбины и насоса, или двухмашинными - обратимая электромашина и обратимая гидромашина, которая в зависимости от направления вращения может работать как насос или как турбина. В конце 60-х гг. 20 в. на вновь вводимых ГАЭС стали устанавливать более экономичные двухмашинные агрегаты.
Рис. 1 - Схема гидроаккумулирующей электростанции: 1-- верхний бассейн, 2 -- напорный трубопровод, 3 -- здание ГЭС, 4 -- нижний бассейн, 5 -- уравнительный резервуар, 6 -- водоприемник
Электроэнергия, вырабатываемая недогруженными электростанциями энергосистемы (в основном в ночные часы суток), используется ГАЭС для перекачивания насосами воды из нижнего водоёма в верхний, аккумулирующий бассейн. В периоды пиков нагрузки вода из верхнего бассейна по трубопроводу подводится к гидроагрегатам ГАЭС, включенным на работу в турбинном режиме; выработанная при этом электроэнергия отдаётся в сеть энергосистемы, а вода накапливается в нижнем водоёме. Количество аккумулированной электроэнергии определяется ёмкостью бассейнов и рабочим напором ГАЭС. Верхний бассейн ГАЭС может быть искусственным или естественным (например, озеро); нижним бассейном нередко служит водоём, образовавшийся вследствие перекрытия реки плотиной. Одно из достоинств ГАЭС состоит в том, что они не подвержены воздействию сезонных колебаний стока. Гидроагрегаты ГАЭС в зависимости от высоты напора оборудуются поворотно-лопастными, диагональными, радиально-осевыми и ковшовыми гидротурбинами. Время пуска и смены режимов работы ГАЭС измеряется несколькими минутами, что предопределяет их высокую эксплуатационную манёвренность. Регулировочный диапазон ГАЭС, из самого принципа её работы, близок двукратной установленной мощности, что является одним из основных её достоинств. ГАЭС целесообразно строить вблизи центров потребления электроэнергии, т.к. сооружение протяжённых линий электропередачи для кратковременного использования экономически не выгодно. Обычный срок сооружения ГАЭС около 3 лет. Средний кпд ГАЭС с учётом потерь в электрических сетях составляет 66 %.
2. История развития
Первые ГАЭС появились в Западной Европе в конце XIX века. Так, в 1882 году в Швейцарии, в окрестностях Цюриха, была построена установка Леттем с двумя насосами общей мощностью в 103 кВт. Спустя 12 лет, подобная установка заработала на одной из итальянских прядильных фабрик.
К 1900 г. в Германии, Австрии и Италии было построено еще несколько ГАЭС мощностью по 50-100 кВт. В 1912 г. в этих странах насчитывалось 7 ГАЭС с единичной мощностью агрегатов до 3 МВт, установленных по раздельной схеме. Это были преимущественно малые установки, назначением которых было повышение суточной выработки ГЭС, не имевших водохранилищ достаточной емкости.
До 1925 г. внедрение насосного аккумулирования шло сравнительно медленными темпами. Тем не менее в период с 1912 по 1930 г. было построено 32 ГАЭС, часть которых оборудована трехмашинными агрегатами. Первые относительно крупные ГАЭС были сооружены в конце 1920-х гг.: высоконапорная ГАЭС Треморджо мощностью 11 МВт в Италии с максимальным напором 905 м и ГЭС - ГАЭС Вегиталь в Швейцарии с мощностью турбинного режима 67 МВт, сезонным регулированием стока и гидроаккумулированием.
К 1940 г. было введено в эксплуатацию более 40 ГАЭС. Преобладающей схемой основного гидроэнергетического оборудования стали трехмашинные агрегаты горизонтального исполнения с единичной мощностью агрегатов в турбинном режиме до 50 МВт. Первая обратимая гидромашина с поворотно-лопастным рабочим колесом диаметром 1,77 м и неподвижным направляющим аппаратом была введена в 1934 г. на ГАЭС Бальденей в Руре (Германия): мощность в турбинном режиме 1,32 МВт при 256 об/мин и в насосном режиме 1,47 МВт при 326 об/мин; напор 8,5-10 м. В этот же период началось строительство ГАЭС в США: в 1928 г. была введена ГЭС-ГАЭС Рокки-Ривер мощностью 25 МВт при максимальном напоре 74 м.
После Второй мировой войны гидроаккумулирование широко начало применяться также в Великобритании, Испании, США, Японии и других странах. В 1945-1960 гг. построено 27 ГАЭС мощностью 35-240 МВт. В этот период получили широкое распространение обратимые гидромашины, особенно в США и Японии, где все ГАЭС, за исключением самых ранних, оборудованы такими машинами.
Достоинства ГАЭС как источника маневренной мощности предопределили их быстрое развитие во всем мире. Темп строительства и ввода ГАЭС резко возрос в 1960-е гг. в связи с широким распространением АЭС и ТЭС с турбоблоками большой единичной мощности и ограниченными возможностями регулирования, а также вследствие исчерпания гидроресурсов в некоторых странах.
В Советском Союзе понимание необходимости создания маневренных мощностей в виде ГАЭС формировалось по мере изменения структуры генерирующих мощностей, увеличения доли ТЭС и АЭС, обладающих малой маневренностью. Несмотря на интенсивное строительство ГЭС во второй половине прошлого века, их удельный вес в общем балансе неуклонно падал. Этот процесс усугублялся сокращением доли тепловых кондесационных электростанций, а также абсолютной величины их суммарной мощности в связи с выводом из эксплуатации физически и морально устаревшего низкоэффективного оборудования. В этих условиях в 1960-х гг. проблема создания маневренных мощностей выдвинулась на первый план.
В рамках решения этой проблемы советскими научно-исследовательскими, проектными, конструкторскими и другими организациями была проведена большая работа по анализу ситуации.
Ряд существенных преимуществ ГАЭС, несмотря на их большую первоначальную стоимость:
- многофункциональность ГАЭС, используемых как для покрытия пиковых или полупиковых зон графиков нагрузок, так и для заполнения провалов; кроме того, ГАЭС могут использоваться для регулирования частоты и напряжения в энергосистеме;
- высокая степень быстродействия, что позволяет использовать оборудование ГАЭС в качестве резерва быстрого ввода. Время набора гидроагрегатом полной нагрузки от состояния покоя в генераторном режиме составляет 1,5-2 мин, в насосном режиме 6-9 мин;
- сравнительно небольшие удельные затраты труда и эксплуатационные издержки, так как сооружения и оборудование ГАЭС более просты, надежны и долговечны;
- экологическая нейтральность, минимальное воздействие на окружающую среду.
Наиболее реальным и экономически обоснованным путем дальнейшего наращивания маневренных мощностей в Европейской части страны, учитывая большую степень использования имеющихся гидроресурсов центрального региона России, было признано строительство ГАЭС и энергетических комплексов, включающих мощные ТЭС или АЭС и ГАЭС.
В настоящее время в мире существует более 460 ГАЭС. Диапазон установленных мощностей современных ГАЭС колеблется в широких пределах. Из числа ГАЭС суммарной установленной мощностью более 100 МВт около 50 % имеют установленную мощность до 500 МВт, 31 % - от 500 до 1000 МВт и лишь 5 % - 1500 МВт и более. Наиболее крупными по установленной мощности (в МВт) являются ГАЭС: Ладингтон (1800), Рэккун-Маунтин (1600), Бленхейм Джильбао (1200), Кастейк (1200), Эдисон (3000) и Бас Каунти (2100) в США; Альто Гессе (1200) и Лаго-Делио (1000) - в Италии; Динорвик (1800) - в Великобритании и др.
В России мощность ГАЭС составляет 0,5% от всей установленной мощности, а во Франции и Германии -- около 4%, в Японии, к примеру, почти 8%, а в Австрии и вовсе 20%. Китай всего за одно десятилетие ввел более 6 млн кВт гидроаккумулирующих мощностей.
3. ГАЭС в России и перспективы их развития
Кубанская ГАЭС.
Расположена у посёлка Водораздельный Прикубанского района, на 47-м километре Большого Ставропольского канала. Первая гидроаккумулирующая электростанция в России и одна из трёх гидроаккумулирующих схем, действующих на её территории на 2010 год. Начало строительства ГАЭС -- 1963 год, ввод в эксплуатацию -- 1968 -- 1969 годы. Использует перепад высот между Большим Ставропольским каналом и Кубанским водохранилищем. Предназначена для подачи воды в магистральный канал из водохранилища в период работы агрегатов в насосном режиме и наполнения водохранилища в период работы агрегатов в генераторном режиме. По режиму работы, не является «классической» ГАЭС, предназначенной для работы в пиковой части графика нагрузок, поскольку работает в сезонном режиме -- в мае-августе ГАЭС работает в насосном режиме, заполняя водохранилище (затрачивая до 46 млн кВт·ч. в год), а в сентябре -- апреле ГАЭС, работая в турбинном режиме, опорожняет водохранилище (вырабатывая до 12 млн кВт·ч. в год).
Нижним бьефом ГАЭС является наливное Кубанское водохранилище площадью 59,8 кв.км, полным объёмом 0,574 куб.км. Водохранилище создано в 1968 году, в настоящее время сильно заилено, планируются работы по его расчистке.
Основные характеристики ГАЭС:
Количество гидроагрегатов - 6
Установленная мощность ГАЭС, МВт генераторный режим - 15,9
Установленная мощность ГАЭС, МВт насосный режим - 19,2
Среднегодовая выработка, млрд. кВт·ч - 11,27 млрд.кВт.час
Загорская ГАЭС-1.
Загорская гидроаккумулирующая электростанция (ГАЭС) сооружена на реке Кунья и располагается в северной части Московской области, в Сергиево-Посадском районе, в поселке Богородское. Решение о строительстве первой в стране гидроаккумулирующей электростанции в Сергиево - Посадском районе было принято в 1974 году. Два первых обратимых гидроагрегата Загорской ГАЭС были введены в эксплуатацию в декабре 1987 г. С 2000 года и по настоящее время Загорская ГАЭС работает на полную проектную мощность.
Основные характеристики ГАЭС:
Количество гидроагрегатов - 6
Установленная мощность ГАЭС, МВт генераторный режим - 1200
Установленная мощность ГАЭС, МВт насосный режим - 1320
Среднегодовая выработка, млрд. кВт·ч - 1,9 млрд.кВт.час
Основной вид деятельности:
- выработка и продажа электроэнергии на оптовом рынке в период пиковых нагрузок.
Являясь важным узлом в объединенной энергосистеме Центральной России, Загорская ГАЭС участвует в автоматическом регулировании частоты и перетоков мощности в данном регионе и покрывает суточные пиковые нагрузки в Московской и Центральной энергосистеме.
Наличие в России практически единственной привлекаемой для регулирования электрических режимов энергообъединения Загорской ГАЭС мощностью в турбинном режиме 1200 МВт совершенно не соответствует реальным потребностям энергообъединений Европейской части России, где суммарный дефицит маневренной мощности по состоянию на 2007 г. составляет около 6 млн кВт. Стратегией развития электроэнергетики в России на ближайшие 15 лет предусмотрен ввод новых энергетических мощностей в объеме 19,4 млн кВт.
Если учесть, что, во-первых, в соответствии с мировым опытом, доля маневренных мощностей должна составлять около 25 % от общей установленной мощности и, во-вторых, планируемая к вводу мощность располагается преимущественно в Европейской части России, где гидроэнергетические ресурсы практически исчерпаны, то можно прогнозировать необходимость ежегодного ввода в Европейской части России не менее 1 млн. кВт гидроаккумулирующих мощностей.
Выбор площадок для возможного строительства ГАЭС, а также выбор их параметров должны быть согласованы со стратегической программой развития генерирующих мощностей, в том числе мощностей АЭС.
Независимо от планируемого ввода новых мощностей на АЭС и ТЭС уже существующий дефицит маневренных мощностей определяет необходимость строительства таких ГАЭС, как Загорская ГАЭС-2, Ленинградская ГАЭС, Центральная (Тверская) ГАЭС, Курская ГАЭС, Волоколамская ГАЭС, Зеленчукская ГЭС-ГАЭС, проектная документация по которым требует существенной переработки.
Загорская ГАЭС-2.
Возможность строительства второй очереди Загорской ГАЭС с целью дальнейшего сокращения дефицита регулирующей маневренной мощности обсуждалась ещё в 1980-е годы, но решение о реализации проекта было принято лишь весной 2006 года, после произошедшей 25 мая 2005 года масштабной аварии энергосистемы Московского региона. Для строительства объекта было образовано ОАО «Загорская ГАЭС-2» (100 % дочернее общество ОАО «РусГидро»), зарегистрированное 26 апреля 2006 года.
Основные характеристики ГАЭС:
Количество гидроагрегатов - 4
Установленная мощность ГАЭС, МВт генераторный режим - 840
Установленная мощность ГАЭС, МВт -насосный режим - 1000
Среднегодовая выработка, млрд. кВт·ч -1,1 млрд.кВт.час
Испытательный пуск первых двух гидроагрегатов Загорской ГАЭС-2 в режиме синхронного компенсатора был произвёден в декабре 2012 года, пуск третьего гидроагрегата намечен на 2013 год, пуск четвёртого гидроагрегата и завершение строительства всего комплекса сооружений планируется осуществить в 2014 году.
В ночь с 17 на 18 сентября 2013 в результате аварии машинный зал Загорской ГАЭС-2 и прилегающие территории были подтоплены.
Зеленчукская ГАЭС
Строящаяся гидроаккумулирующая электростанция мощностью в насосном/турбинном режимах 160/140 МВт.
В здании ГАЭС должны быть установлены 2 обратимых радиально-осевых гидроагрегата мощностью по 80/70 МВт, работающих при расчетном напоре 234 м. ГАЭС предназначена для работы в пиковой части графика нагрузок совместно с Верхне-Красногорской ГЭС, образуя с ней единый комплекс. При строительстве ГАЭС планируется широкое использование частично построенных сооружений Зеленчукской ГЭС, оставшихся без назначения после корректировки проекта.
Ленинградская ГАЭС
Ленинградская ГАЭС была спроектирована в начале 1980-х годов. В конце 1980-х годов начались подготовительные работы к строительству станции, вскоре прекращенные в связи с ухудшением экономического состояния страны. К середине 2000-х годов, в связи с экономическим подъемом, сопровождающимся ростом энергопотребления, строительство новых ГАЭС вновь стало актуальным. Начало строительства ГАЭС планируется на конец 2008 -- начало 2009 года, пуск первого агрегата намечен на 2014 год, вывод ГАЭС на полную мощность -- на 2017 год.
Планируемая мощность ГАЭС -- 1560/1760 МВт (в генераторном/насосном режимах), среднегодовая выработка -- 2,34 млрд кВт·ч. В здании ГАЭС должны быть размещены 8 радиально-осевых обратимых гидроагрегатов мощностью по 195/220 МВт (в генераторном/насосном режиме), работающих при расчётном напоре 87 м.
Ленинградская ГАЭС предназначена для работы в пиковой части графика нагрузок энергосистемы Северо-Запада, испытывающей дефицит высокоманевренных мощностей (в регионе располагаются три крупные АЭС -- Ленинградская, Кольская и Калининская, а также ряд мощных тепловых электростанций, работающих в основном в базовой части нагрузок; в пиковой части графика работает ряд небольших ГЭС). По планам, во время ночного провала энергопотребления ГАЭС должна закупать дешёвую электроэнергию, закачивая воду в верхний бьеф. Во время утреннего и вечернего пика энергопотребления ГАЭС продаёт дорогую пиковую электроэнергию, сбрасывая воду из верхнего бьефа в нижний.
Заключение
гидроаккумулирующий электростанция преимущество нагрузка
Проделав данную работу, можно сделать вывод, гидроаккумулирующая станция - уникальный объект, который является самым простым эффективным способом хранения энергии.
Опыт эксплуатации ГАЭС и её использования в целях регулирования электрических режимов показал, что она является не обычным генерирующим источником, а скорее многофункциональным источником оказания системных услуг, способствующих не только оптимизации суточного графика нагрузок, но и повышению надёжности и качества электроснабжения.
С каждым годом растет дефицит мощности, что может привести к системным авариям. Использование ГАЭС в качестве аварийного и частотного резерва энергосистемы становится одной из ее важнейших функций.
Таким образом, техническая необходимость развития сравнительно нового вида гидроэнергетики - гидроаккумулирующих станций, не вызывает сомнения.
Список используемой литературы
1. Гидроаккумулирующие электростанции в современной электроэнергетике. / В. Ю. Синюгин, В. И. Магрук, В. Г. Родионов. - М.: ЭНАС, 2008. - 352 с.
2. http://ru.wikipedia.org/wiki/Гидроаккумулирующая_электростанция
Размещено на Allbest.ru
...Подобные документы
Схема работы атомных электростанций. Типы и конструкции реакторов. Проблема утилизации ядерных отходов. Принцип действия термоядерной установки. История создания и разработка проекта строительства первой океанской электростанции, перспективы применения.
реферат [27,0 K], добавлен 22.01.2011Понятие приливной электростанции, особенности принципов действия. Анализ работы российской приливной электростанции на примере Кислогубской электростанции. Характеристика экологических и экономических эффектов эксплуатации приливных электростанций.
реферат [4,1 M], добавлен 21.03.2012Приливная энергия, ее использование. Принцип действия приливных электростанций. Основные преимущества использования приливных электростанций. Экологическая характеристика и социальное значение приливных электростанций. ПЭС в энергосистеме Европы.
реферат [225,0 K], добавлен 30.11.2010История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.
реферат [299,9 K], добавлен 27.03.2015Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.
презентация [11,2 M], добавлен 23.03.2015Роль гидроаккумулирующих электростанций в работе энергосистем. Типичный суточный график нагрузки системы. Принцип действия ГАЭС. Сравнение технико-экономических показателей ГАЭС с показателями ГТУ и ППТЭС. Реальные потребности энергообъединений России.
реферат [554,4 K], добавлен 18.05.2012Принцип действия и схема гидроаккумулирующей электростанции. Потребление электроэнергии в Калининградской области. Схема выдачи мощности электростанции в энергосистему. Определение отходящих линий. Выбор трансформаторов и расчет токов короткого замыкания.
курсовая работа [2,4 M], добавлен 27.07.2015Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.
курсовая работа [82,0 K], добавлен 23.04.2016Существующие источники электроэнергии, типы электростанций. Современные проблемы развития энергетики. Альтернативные источники энергии и их типология. Устройство и принцип работы морской волновой электростанции, расчет ее производительности и мощности.
курсовая работа [862,7 K], добавлен 28.03.2016Описание крупнейших приливных электростанций в мире. Ознакомление с историей создания Кислогубской приливной электростанции, "Ля Ранс" и Сихвинской. Экологическая безопасность приливной электростанции. Создание в России ортогонального гидроагрегата.
реферат [271,4 K], добавлен 29.04.2015Расчёт абсолютных вложений капитала в строительство блочных электростанций. Расчет энергетических показателей работы электростанции, себестоимости электроэнергии, отпущенной с ее шин. Определение технико-экономических показателей работы электростанции.
курсовая работа [37,9 K], добавлен 04.05.2014Определение суточных и диспетчерских графиков нагрузок электростанций. Режим работы блока без останова в провалы нагрузки. Горячий вращающийся резерв. Применение комбинированного пуско-остановочного режима и режима горячего вращающегося резерва.
курсовая работа [194,5 K], добавлен 07.08.2012Основные особенности принципа действия конденсационной электростанции, принцип работы. Характеристика Ириклинской ГРЭС, общие сведения. Анализ структурной схемы проектируемой электростанции. Этапы расчета технико-экономического обоснования проекта.
курсовая работа [1,7 M], добавлен 18.11.2012Понятие и принцип работы волновых электростанций, оценка их достоинств и недостатков. Методика расчета механической энергии волны. Значение и этапы сооружения блоков ограниченной мощности, без больших начальных затрат на капитальное строительство.
презентация [613,4 K], добавлен 02.12.2014Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.
курсовая работа [7,5 M], добавлен 24.06.2009Технологическая схема электростанции. Показатели ее тепловой экономичности. Выбор начальных и конечных параметров пара. Регенеративный подогрев питательной воды. Системы технического водоснабжения. Тепловые схемы и генеральный план электростанции.
реферат [387,0 K], добавлен 21.02.2011Водоподготовка и организация водно-химического режима электростанции. Электростанции и предприятия тепловых сетей. Использование воды в теплоэнергетике. Оборудование современных электростанций. Методы обработки воды. Водно-химический режим котлов.
реферат [754,8 K], добавлен 16.03.2009Сведения об приливах и отливах. Описание работы приливных электростанций, их экологические особенности. Технико-экономические обоснования необходимости и экономической эффективности внедрения приливных электростанций, их место в энергетической системе.
курсовая работа [864,2 K], добавлен 01.02.2012Области применения и показатели надежности газовых турбин малой и средней мощности. Принцип работы газотурбинных установок, их устройство и описание термодинамическим циклом Брайтона/Джоуля. Типы и основные преимущества газотурбинных электростанций.
реферат [1,4 M], добавлен 14.08.2012Принцип работы атомной электростанции. Упрощённая принципиальная тепловая схема AЭС с реактором типа РБМК-1000. Необходимость конденсатора в тепловой схеме. Теплообмен в активной зоне реактора. Анализ контура многократной принудительной циркуляции.
реферат [733,0 K], добавлен 01.02.2012