Гармонические колебания методом вращающегося вектора амплитуды, или методом векторных диаграмм
Колебательный контур. Отличия гармонических и вынужденных колебаний Резонанс, автоколебания. Графический метод сложения колебаний. Векторная диаграмма. Метод вращающегося вектора амплитуды. Различные формы траектории суммы колебаний. Фигуры Лиссажу.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 06.12.2014 |
Размер файла | 220,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство Образования и Науки
Республики Казахстан
ВКГТУ им. Д. Серикбаева
Курсовая работа
по дисциплине: Физика
на тему: «Гармонические колебания методом вращающегося вектора амплитуды, или методом векторных диаграмм»
Выполнил: студент группы14- ГРК-1
Сері??анов ?.Е
Проверил(а): Нуркенова Б.Д
Усть- Каменогорск - 2014 г.
Содержание
- Колебательный контур
- Гармонические колебания
- Вынужденные колебания
- Резонанс
- Автоколебания
- Определение колебаний.
- Графический метод сложения колебаний. Векторная диаграмма
- Методом вращающегося вектора амплитуды.
- Сложение взаимно перпендикулярных колебаний
- Сложение колебаниё одного направления и одинаковой частоты.
- Различные формы траектории суммы колебаний. Фигуры Лиссажу
- Список литературы
Колебательный контур
Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например, качания маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата его центра масс, в случае переменного тока колеблются напряжение и ток в цепи. Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и другие. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями. Отсюда следует целесообразность единого подхода к изучению колебаний различной физической природы. Например, единый подход к изучению механических и электромагнитных колебаний применялся английским физиком Д. У. Релеем (1842-1919), а А.Г. Столетовым, русским инженером-экспериментатором П.Н. Лебедевым (1866-1912). Большой вклад в развитие теории колебаний внесли: Л.И. Мандельштам (1879-1944) и его ученики.
Колебания называются свободными (или собственными), если они совершаются за счет первоначально совершенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам:
Колебания встречающиеся в природе и технике, часто имеют характер, близкий к гармоническому;
Различные периодические процессы (процессы, повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.
Гармонические колебания
колебание резонанс вектор амплитуда
Гармонические колебания величины s описываются уравнением типа
s =A cos (0 t +), (1)
где
a) А - максимальное значение колеблющейся величины, называемое амплитудой колебания,
b) 0 - круговая (циклическая) частота,
- начальная фаза колебания в момент времени t=0,
c) (0 t +) - фаза колебания в момент времени t.
Фаза колебания определяет значения колеблющейся величины в данный момент времени. Так как косинус изменяется в пределах от 1 до -1, то s может принимать значения от +А до -А.
Определенные состояния системы, совершающей гармонические колебания, повторяются через промежуток времени Т, называемый периодом колебания, за который фаза колебания получает приращение равное 2, т.е.
0(t+T)+ =(0t+ )+2,
откуда
T=2/0 (2)
Величина, обратная периоду колебаний,
=1/T (3)
т. е. число полных колебаний, совершаемых в единицу времени, называется частотой колебаний. Сравнивая (2) и (3), получим
0=2 .
Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, при которой за 1 секунду совершается 1 цикл процесса.
Запишем первую и вторую производные по времени от гармонически колеблющейся величины s:
(4)
(5)
т. е. имеем гармонические колебания с той же циклической частотой. Амплитуды величин (5) и (4) соответственно равны и .Фаза величины (4) отличается от фазы величины (1) на /2, а фаза величины (5) отличается от фазы величины (1) на . Следовательно, в моменты времени, когда s=0, приобретает наибольшие значения; когда же s достигает максимального отрицательного значения, то приобретает наибольшее положительное значение.
Из выражения (5) следует дифференциальное уравнение гармонических колебаний
(6)
где s =A cos (0 t +). Решением этого уравнения является выражение (1).
Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм.
Для этого из произвольной точки О, выбранной на оси x под углом , равным начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания.
Если этот вектор привести во вращение с угловой скоростью 0, равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси x и принимать значения от -А до +А, а колеблющаяся величина будет изменяться со временем по закону s =A cos (0 t +). Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом , равным начальной фазе, и вращающегося с угловой скоростью 0 вокруг этой точки.
Вынужденные колебания
Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными.
Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.
Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой щ, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте щ0.
Если свободные колебания происходят на частоте щ0, которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте щ внешней силы.
После начала воздействия внешней силы на колебательную систему необходимо некоторое время Дt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания ф свободных колебаний в колебательной системе.
В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте щ и свободные колебания на собственной частоте щ0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте щ внешней вынуждающей силы.
Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 1) конец пружины перемещаться по закону
y = ym cos щt.
где ym - амплитуда колебаний, щ - круговая частота.
Такой закон перемещения можно обеспечить с помощью шатунного механизма, не показанного на рис.1.
Рисунок 1.Вынужденные колебания груза на пружине. Свободный конец пружины перемещается по закону y = ym cos щt. l - длина недеформированной пружины, k - жесткость пружины.
Если левый конец пружины смещен на расстояние y, а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Дl равно:
Дl = x - y = x - ym cos щt.
Второй закон Ньютона для тела массой m:
ma = -k(x - y) = -kx + kym cos щt.
В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой.
Амплитуда вынужденных колебаний xm и начальная фаза и зависят от соотношения частот щ0 и щ и от амплитуды ym внешней силы.
На очень низких частотах, когда щ << щ0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x(t) = y(t), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при щ << щ0 стремится к нулю.
Резонанс
Если частота щ внешней силы приближается к собственной частоте щ0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты щ вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис 2).
При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.
У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис 2.
Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.
Рисунок 2.
Резонансные кривые при различных уровнях затухания: 1 - колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 - реальные резонансные кривые для колебательных систем с различной добротностью: Q2 > Q3 > Q4. На низких частотах (щ << щ0) xm ? ym. На высоких частотах (щ >> щ0) xm > 0.
Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными, а процесс незатухающих колебаний в таких системах - автоколебаниями. В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).
Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис 3 изображена схема взаимодействия различных элементов автоколебательной системы.
Рисунок 3. Функциональная схема автоколебательной системы
Автоколебания
Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис 4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.
Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.
Рисунок 4. Часовой механизм с маятником.
Определение колебаний
Колебаниями называются движения или процессы, которые полностью или почти полностью повторяются через равные промежутки времени. Колебания, описываемые уравнением
,
где x - смещение колеблющийся величины от положения равновесия; w - циклическая частота, определяющая число колебаний, совершаемые за время 2 р секунд;t - время называют гармоническими.
Графический метод сложения колебаний. Векторная диаграмма
Метод вращающегося вектора амплитуды заключается в представлении гармонического колебания с помощью вектора, длина которого равна амплитуде колебания, а направление образует с осью x угол, равный начальной фазе колебаний называют методом вращающего вектора амплитуды.
Гармонические колебания одинакового направления и частоты удобно складывать, изобразив колебания в виде векторов на плоскости - графически.
1). Выберем некоторую направленную прямую - ось, вдоль которой будем откладывать колеблющуюся величину x.
2). Из взятой на оси некоторой точки О отложим направленный отрезок - вектор длины A, образующий с осью угол некоторый б.
3). Вращая вектор А вокруг точки О с угловой скоростью щ 0, получим, что проекция конца вектора на ось будет совершать гармонические колебания с амплитудой, равной длине вектора, с круговой частотой, равной угловой скорости вращения вектора, и с начальной фазой, равной углу, образуемому вектором с осью в начальный момент времени: проекция конца вектора будет перемещаться по оси x, принимая значения от - А до + A, а координата этой проекции будет изменяться со временем по закону
Схему, полученную таким методом представления колебаний, называют векторной диаграммой.
Сложение взаимно перпендикулярных колебаний.
Рассмотрим две взаимно перпендикулярные векторные величины x и y, изменяющиеся со временем с одинаковой частотой щ по гармоническому закону:
(1)
Где e x и e у -- орты координатных осей x и y, А и B -- амплитуды колебаний. Величинами x и у может быть, например, смещения материальной точки (частицы) из положения равновесия.
В случае колеблющейся частицы величины x и y можно представить в виде:
, (2)
Они определяют координаты частицы на плоскости xy.
Выражения (2) представляют собой заданное в параметрической форме уравнение траектории, по которой будет двигаться частица. Вид траектории зависит от разности фаз обоих колебаний.
Исключив из уравнений (2) параметр t, получим уравнение траектории в обычном виде. Из первого уравнения: (3). Соответственно
(4)
По формуле для косинуса суммы:
, тогда
Преобразуем это уравнение
(5)
Получили уравнение эллипса, оси которого повернуты относительно координатных осей х и у. Ориентация эллипса и его полуоси зависят довольно сложным образом от амплитуд A и В и разности фаз б.
Сложение колебание одного направления и одинаковой частоты.
Рассмотрим сложение двух гармонических колебаний х 1 и x 2 одного направления и одинаковой частоты:
, (1)
Оба колебания представим с помощью векторов A 1 и А 2. Используя правила сложения векторов можно найти результирующий вектор А, представляющий собой сумму двух векторов A 1 и А 2.
Вектор A представляет собой результирующее колебание, потому что из рисунка видно, что проекция этого вектора на ось x равна сумме проекций складываемых векторов:
Вектор A вращается с той же угловой скоростью щ 0, как и векторы А 1 и А 2, так что сумма x 1 и х 2 является гармоническим колебанием с частотой (щ 0, амплитудой A и начальной фазой б. Используя теорему косинусов получаем, что
(2)
(3)
Замена сложения функций сложением векторов, которая возможна при Представление гармонических колебаний с помощью векторов, значительно упрощает вычисления.
Различные формы траектории суммы колебаний. Фигуры Лиссажу.
Разность фаз б равна нулю.
При разности фаз, равной нулю, уравнение (5) упрощается следующим образом:
Отсюда:
- уравнение прямой.
Результирующее движение является гармоническим колебанием вдоль этой прямой с частотой щ и амплитудой, равной (рис. 1 а).
Разность фаз б равна ±р.
При разности фаз б равной ±р уравнение (5) имеет вид
- результирующее движение представляет собой гармоническое колебание вдоль прямой
(рис. 1 б)
Рис.1
Разность фаз равна
Случаи и отличаются направлением движения по эллипсу или окружности.
При разности фаз, равной .уравнение (5) переходит в уравнение эллипса, приведенного к координатным осям:
Полуоси эллипса равны соответствующим амплитудам колебаний. Если амплитуды А и В равны, эллипс превращается в окружность.
Равномерное движение по окружности радиуса R с угловой скоростью щ может быть представлено как сумма двух взаимно перпендикулярных колебаний:
,
(знак плюс в выражении для у соответствует движению против часовой стрелки, знак минус -- движению по часовой стрелке).
При разных частотах взаимно перпендикулярных колебаний, траектории результирующего движения будут имеют вид сложных кривых, называемых фигурами Лиссажу.
Фигура Лиссажу для отношения частот 1:2 и разности фаз р/2
Фигура Лиссажу для отношения частот 3:4 и разности фаз р /2
Список литературы
Геворкян Р.Г. Курс физики. -М, 1979, -656 с.
И. В Савельев. Курс общей физики. -М. 1990
Дж.Орир. Физика том 1, - М. 1981
Трофимова Т.И. Курс физики, -М. 2006, -560 с.
Размещено на Allbest.ru
...Подобные документы
Графическое изображение колебаний в виде векторов и в комплексной форме. Построение результирующего вектора по правилам сложения векторов. Биения и периодический закон изменения амплитуды колебаний. Уравнение и построение простейших фигур Лиссажу.
презентация [124,6 K], добавлен 18.04.2013Метод векторной диаграммы. Представление гармонических колебаний в комплексной форме; сложение гармонических колебаний; биения. Сложение взаимно перпендикулярных колебаний: уравнение траектории результирующего колебания; уравнение эллипса; фигуры Лиссажу.
презентация [124,5 K], добавлен 24.09.2013Сложение взаимно перпендикулярных механических гармонических колебаний. Дифференциальное уравнение свободных затухающих колебаний и его решение; автоколебания. Дифференциальное уравнение вынужденных колебаний. Амплитуда и фаза колебаний; резонанс.
презентация [308,2 K], добавлен 28.06.2013Исследование понятия колебательных процессов. Классификация колебаний по физической природе и по характеру взаимодействия с окружающей средой. Определение амплитуды и начальной фазы результирующего колебания. Сложение одинаково направленных колебаний.
контрольная работа [1,6 M], добавлен 24.03.2013Понятие и физическая характеристика значений колебаний, определение их периодического значения. Параметры частоты, фазы и амплитуды свободных и вынужденных колебаний. Гармонический осциллятор и состав дифференциального уравнения гармонических колебаний.
презентация [364,2 K], добавлен 29.09.2013Определения и классификация колебаний. Способы описания гармонических колебаний. Кинематические и динамические характеристики. Определение параметров гармонических колебаний по начальным условиям сопротивления. Энергия и сложение гармонических колебаний.
презентация [801,8 K], добавлен 09.02.2017Векторная диаграмма одночастотных колебаний, происходящих вдоль одной прямой. Нахождение графически амплитуды колебаний, которые возникают при сложении двух колебаний одного направления. Сложение двух гармонических колебаний одного направления.
курсовая работа [565,3 K], добавлен 15.11.2012Резонанс как явление резкого возрастания амплитуды вынужденных колебаний, его физические основы. Вынужденные колебания. Разрушительная роль резонанса и его положительные значения. Частотометр: понятие, общий вид, функции. Резонанс и состояние человека.
презентация [822,2 K], добавлен 27.10.2013Единый подход к изучению колебаний различной физической природы. Характеристика гармонических колебаний. Понятие периода колебаний, за который фаза колебания получает приращение. Механические гармонические колебания. Физический и математический маятники.
презентация [222,7 K], добавлен 28.06.2013Колебания как один из самых распространенных процессов в природе и технике. График затухающих колебаний. Математический и пружинный маятники. Резонанс как резкое возрастание амплитуды колебаний. Вывод формулы для расчета периода пружинного маятника.
презентация [515,1 K], добавлен 19.10.2013Способы представления гармонических колебаний. Сложение взаимно перпендикулярных колебаний. Аналитический, графический и геометрический способы представления гармонических колебаний. Амплитуда результирующего колебания. Понятие некогерентных колебаний.
презентация [4,1 M], добавлен 14.03.2016Определение понятия колебательных процессов. Математическое представление и графическое изображение незатухающих и затухающих колебаний в электрической цепи. Рассмотрение вынужденных колебаний в контуре под действием периодической электродвижущей силы.
курсовая работа [1,5 M], добавлен 30.01.2012Законы изменения параметров свободных затухающих колебаний. Описание линейных систем дифференциальными уравнениями. Уравнение движения пружинного маятника. Графическое представление вынужденных колебаний. Резонанс и уравнение резонансной частоты.
презентация [95,6 K], добавлен 18.04.2013Механизм возникновения электрических колебаний, идеализированный контур. Активное сопротивление реального контура. График свободно затухающих колебаний в контуре. Логарифм декремента затухания. Вынужденные электрические колебания, компенсация потерь.
презентация [326,0 K], добавлен 24.09.2013Изучение сущности механических колебаний. Характерные черты и механизм происхождения гармонических, затухающих и вынужденных колебаний. Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных.
реферат [209,3 K], добавлен 25.02.2011Определение понятия свободных затухающих колебаний. Формулы расчета логарифмического декремента затухания и добротности колебательной системы. Представление дифференциального уравнения вынужденных колебаний пружинного маятника. Сущность явления резонанса.
презентация [95,5 K], добавлен 24.09.2013Одномерные и гармонические колебания. Сложение двух гармонических колебаний с одинаковыми амплитудами, частотами. Распространение колебаний в материальной среде. Электромагнитные волны и рентгеновские лучи. Дифракция и интерференция волн. Атомный фактор.
реферат [2,8 M], добавлен 07.03.2009Особенности вынужденных колебаний. Явление резонанса, создание неразрушающихся конструкций. Использование колебаний в строительстве, технике, для сортировки сыпучих материалов. Вредные действия колебаний. Качка корабля и успокоители; антирезонанс.
курсовая работа [207,5 K], добавлен 21.03.2016Воздействие внешней периодической силы. Возникновение вынужденных колебаний, имеющих незатухающий характер. Колебания, возникающие под действием периодически изменяющейся по гармоническому закону силы. Зависимость амплитуды от частоты вынуждающей силы.
презентация [415,6 K], добавлен 21.03.2014Гармонические колебания и их характеристики. Скорость и ускорение колеблющейся материальной точки, ее кинетическая и потенциальная энергии. Понятие колебательных систем. Примеры гармонических осцилляторов (математический, физический и пружинный маятники).
презентация [185,7 K], добавлен 24.09.2013