Разработка системы климат-контроля на базе микроконтроллера
Описание объекта автоматизации и алгоритма его функционирования. Анализ требований к проектируемой системе. Обзор существующих решений. Разработка базы параметров климат-контроля и регулирования. Описание функциональной схемы электрической автоматизации.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 07.12.2014 |
Размер файла | 216,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Республики Казахстан
НАО "Алматинский университет энергетики и связи"
Кафедра "Инженерной кибернетики"
Курсовая работа
по дисциплине: "Автоматизация объектов теплоэнергостанций"
на тему: "Разработка системы климат-контроля на базе микроконтроллера"
Выполнил: ст. гр. АУТ-11-3
Мухамбетов А.Б.
Проверил: доц. Еренчинов К.К.
Алматы - 2014
Содержание
Введение
1. Техническое задание
2. Описание объекта автоматизации и алгоритма его функционирования
3. Анализ требований к системе
4. Обзор существующих решений и обоснование выбора принятого принципа построения проектируемой системы
5. Описание разработанного решения системы управления, обеспечивающего выполнение требований технического задания
6. Описание видов обеспечения
7. Разработка базы параметров контроля и регулирования
8. Описание схемы функциональной электрической автоматизации
9. Разработка АРМ
Заключение
Список литературы
Введение
С каждым годом в тепличных предприятиях все большее внимание уделяется качественному поддержанию микроклимата. Правильно выбранная технология поддержания микроклимата - одна из важнейших составляющих, позволяющих повысить урожайность. А эффективное использование энергоресурсов - дополнительная возможность существенно уменьшить себестоимость производимой продукции. Современная автоматизированная система управления микроклиматом должна поддерживать не только заданный режим, но и максимально эффективно использовать возможности исполнительных систем.
В настоящее время ведется активная модернизация теплиц, связанная с повышением количества исполнительных систем: разделение контуров, модернизация форточной вентиляции, установка систем зашторивания, установка вентиляторов. И чем больше исполнительных систем имеет теплица, тем важнее для нее выбор критерия, определяющего стратегию поддержания микроклимата. Например, одним из наиболее популярных критериев управления является экономия теплоресурсов. В данном случае целесообразнее активно использовать нижние контура обогрева, т.к. они меньше всего отдают тепла внешней среде. Другой подход к выбору критерия предполагает поддержание температуры у точки роста выше, чем у корней растения и тем самым подразумевает активное использование верхних контуров обогрева. Еще один критерий управления основывается на том, что нижний контур должен поддерживать в корневой зоне постоянную температуру, так называемый оптимум, и лишь при исчерпанных ресурсах других исполнительных систем отклоняться от него.
Опыт внедрения автоматизированных систем управления показывает, что на этапе проектирования системы достаточно сложно выбрать единый критерий управления. Поэтому в системе управления должна существовать возможность оперативно задать критерий во время эксплуатации, причем методы его задания должны в наглядной форме отражать агрономические, экономические и технические требования, предъявляемые к системе. Таким образом, современная система управления должна позволять задать не только один из вышеперечисленных критериев управления или их комбинацию, но и любой другой возникающий в процессе производства, предоставляя агроному-технологу широкие возможности в выборе метода поддержания температурно-влажностного режима в теплице.
Одной из основных характеристик системы управления является ее надежность. Поэтому в качестве аппаратно-технической базы системы был выбран контроллер, который содержит современные средства защиты от сбоев: копию основных параметров работы системы в энергонезависимой памяти, средство защиты от зависаний и т.д. Помимо контроллера автоматизированная система управления микроклиматом включает в себя набор датчиков для измерения параметров внутри теплицы. Для передачи управляющих воздействий на исполнительные механизмы система включает в себя блок релейной коммутации с возможностью ручного управления.
Важным элементом системы управления является диагностика неисправностей и возможностей системы управления. Иногда в процессе эксплуатации случаются непредвиденные ситуации, связанные с нестабильностью температуры подаваемой воды, повышенным износом и люфтом исполнительного механизма или связанные с другого рода ограничениями, накладываемыми на исполнительные системы. Заложенные в систему методы диагностики должны выявлять нестандартные ситуации и своевременно перестраивать алгоритмы управления, поддерживая при этом параметры микроклимата с минимально возможным отклонением. При невозможности разрешения ситуации без участия человека, система выдает соответствующее аварийное сообщение.
1. Техническое задание
Общие сведения. Техническое задание на создание "автоматизированной системы".
Наименование системы. Автоматизированная система управления и контроля климата в тепличных хозяйствах. Условное обозначение - АСУ ККТХ.
Организации - участники разработки:
Заказчик - АУЭС, ТЭФ, кафедра ИК.
Разработчик: ст. гр. АУТ-11-3, Мухамбетов А.Б.
Основание для разработки:
Основаниями для разработки АСУ ККТХ являются:
- учебный план специальности "Автоматизация управления";
- рабочая программа по курсу "АОТэс";
- задание на курсовое проектирование, выданное руководителем.
Сроки начала и окончания разработки АСУ ККТХ:
Начало работ - 01.09.11 г.
Окончание работ - 30.01.11 г.
Примечание: В случае изменения технологической схемы объекта срок окончания работ подлежит корректировке.
Назначение АСУ ККТХ. АСУ ККТХ предназначена для выполнения комплекса информационных и управляющих функций, обеспечивающих:
- задание суточного цикла влажности и поддержание необходимого климатического режима (при изменении задания система обеспечивает плавный переход из одного состояния в другое);
- контроль расхода воды в канале распыления;
- сбор, обработку и хранение архивных данных;
- представление технологической информации в удобном для оперативного персонала виде;
- регистрация событий и ведение журнала тревог (например, при выходе значения влажности за пределы установленного диапазона);
- обеспечение возможности калибровки измерительных датчиков;
- повышение производительности теплицы за счёт жесткого автоматического поддержания требуемых параметров;
- обеспечение возможности постепенной модернизации и усложнения системы за счёт введения новых аппаратных и программных модулей.
Цели создания АСУ ККТХ. Целями создания АСУ ККТХ являются:
- внедрение высокоэффективной, современной автоматизированной системы управления, которая обеспечивает поддержание необходимого климатического режима за счет использования оптимальных контуров ПИД-регулирования;
- обеспечение плавности перехода из одного состояния в другое при отклонении климатических условий от нормы или при возникновении такой необходимости;
- обеспечение достоверности и достаточности информации о технологическом процессе и состоянии технологического оборудования;
- сокращение затрат на обслуживание и ремонт;
- обеспечение высокой надежности и ремонтопригодности систем управления и защиты;
- оперативная отчетность об экономических показателях работы водозаборного узла;
- накопление информации о технологическом процессе и о работе технологического оборудования.
Общая характеристика объекта управления. Проект управления и контроля климата в тепличных хозяйствах является типовым. В помещении площадью 80 на 60 метров с хорошей термоизоляцией выращиваются цветы, которые требуют некоторых постоянных климатических условий или плавное их изменение. Температура, влажность и уровень CO измеряются с помощью датчиков и с помощью контура ПИД-регулирования вычисляются и формируются корректирующие управляющие воздействия, которые реализуются с помощью отопительной системы, кондиционера, системы подачи газа CO. В помещении также находится пульт управления оператора и системы сбора информации. При отклонении значений климатических условий от нормы, автоматически принимаются управляющие воздействия. При изменении нормальных условий с помощью пульта оператора принимаются управляющие воздействия, которые возвращают систему в нормальный режим.
В состав водозаборного узла входят следующие основные технологические установки и системы:
- кондиционер;
- система отопления помещения;
- системы мониторинга климатических условий в помещении;
- блоки питания для систем мониторинга и контроля;
- датчики температуры, влажности, уровня СО;
- пульт управления оператора;
- фильтр;
- насос;
- управляющий;
Сведения об условиях эксплуатации объекта автоматизация и характеристиках окружающей среды.
В отношении электробезопасности все блоки и отсеки блочного оборудования теплицы, согласно ПУЭ, относятся к взрывобезопасным помещениям с нормальной средой категории Д.
Операторная комната и помещение для микропроцессорных контроллеров также относятся к взрывобезопасным помещениям с нормальной средой категории Д.
Требования к структуре системы. Автоматизированная система управления и контроля климата в тепличных хозяйствах должна быть распределенной и выполнена на базе микропроцессорной техники.
По иерархическому принципу АСУ ККТХ должна подразделяться на уровни: климат контроль автоматизация алгоритм
нижний уровень:
измерительные преобразователи параметров почвы;
измерительные преобразователи параметров воздушной среды;
измерительные преобразователи параметров сети водоснабжения;
регулирующие и другие исполнительные механизмы;
верхний уровень:
операторская станция (рабочее место оператора);
Автоматизированный контроль и управление климатом теплицы должен осуществляться из центрального пульта управления без постоянного присутствия эксплуатационного персонала в зоне размещения технологического оборудования.
Связь между компонентами системы должна осуществляться по физическим и интерфейсным каналам.
АСУ ККТХ должна быть подключена к гарантированной системе электропитания с использованием агрегатов бесперебойного питания.
Каждая операторская станция должна включать:
ЭВМ стандартной конфигурации:
- ОЗУ 128 Мб, накопитель на гибких дисках, накопитель на жестком диске емкостью 10-20 Гб;
- один цветной монитор;
- технологическую клавиатуру;
- манипулятор типа "мышь".
Технологическая клавиатура предназначена для оперативного управления процессом и должна иметь набор функциональных клавиш, программно привязанных к видеограммам дисплея и позволяющих однозначно выполнять команды управления технологическим процессом. Клавиатура должна быть удобной и простой в использовании.
Требования к функционированию системы. АСУ ККТХ должна:
- обеспечивать эффективную работу технологического оборудования без постоянного присутствия эксплуатационного персонала в зоне размещения оборудования с минимальным количеством ручных операций и безопасными условиями труда;
- обеспечивать высокую надежность автоматического регулирования и управления технологическим процессом за счёт применения современных технических средств и программного обеспечения;
- облегчать работу обслуживающему персоналу за счёт упрощения процедуры пуска оборудования, ведения технологического процесса, перехода с одной скважины на другую и т.д.;
- обеспечивать взаимодействие с:
системами сбора и обработки информации - по сети RS-485;
исполнительными механизмами и агрегатами - по физическим каналам связи;
системой автоматического управления исполнительными устройствами - по сети RS-485.
Операторская станция должна быть оборудована системой экстренного останова для возможности корректного останова агрегатов при отказе каналов связи с микропроцессорной техникой.
2. Описание объекта автоматизации и алгоритма его функционирования
Архитектура разрабатываемой системы имеет два уровня: нижний - подсистема управления (датчики, микроконтроллер, исполнительные механизмы и оборудование) и верхний - пост оператора (персональный компьютер). Связь между уровнями осуществляется по интерфейсу RS-485. Реализация алгоритмов управления осуществляется с помощью автоматизированного модуля верхнего уровня, который также отвечает за интерфейс на посту оператора (рис. 2.1).
Рисунок 2.1 - Мнемосхема АСУТП
В состав тепличного хозяйства входят следующие основные технологические установки и системы:
- кондиционер;
- система отопления помещения;
- системы мониторинга климатических условий в помещении;
- блоки питания для систем мониторинга и контроля;
- датчики температуры, влажности;
- пульт управления оператора;
- фильтр;
- насос;
- управляющий контроллер.
3. Анализ требований к системе
Полный перечень требований к системе управления и контроля климата в тепличных хозяйствах можно разделить на ряд подгрупп. Среди них:
- требования к структуре системы;
- требования к функционированию;
- требования к численности и квалификации персонала;
- требования к показателям назначения;
- требования к надежности;
- требования к эргономике и технической эстетике;
- требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов системы;
- требования к защите информации от несанкционированного доступа;
- требования к защите от влияния внешних воздействий;
- требования по стандартизации и унификации;
Основными являются требования к структуре системы и ее функционированию, которые и будут рассмотрены далее.
Архитектура разрабатываемой системы имеет два уровня: нижний - подсистема управления (датчики, микроконтроллер, исполнительные механизмы и оборудование) и верхний - пост оператора (персональный компьютер). Связь между уровнями осуществляется по интерфейсу RS-485. Реализация алгоритмов управления осуществляется с помощью автоматизированного модуля верхнего уровня, который также отвечает за интерфейс на посту оператора.
Требования к структуре системы. Автоматизированная система управления и контроля климата в тепличных хозяйствах выполнена на базе микропроцессорной техники.
По иерархическому принципу АСУ ККТХ должна подразделяться на уровни:
нижний уровень:
- регуляторами форсунок увлажнения, открытия клапана подачи воды, включения и выключения отопительной системы, и кондиционера;
- датчики температуры воздуха, влажности;
- устройства световой и звуковой сигнализации несанкционированного проникновения на территорию теплицы;
- регулирующие и другие исполнительные механизмы;
- микропроцессорные контроллеры мониторинга и управления регуляторами форсунок увлажнения, открытия клапана подачи воды, включения и выключения отопительной системы и кондиционера.
верхний уровень:
- операторская станция (рабочее место оператора).
Автоматизированный контроль и управление оборудованием контроля климата в тепличных хозяйствах может осуществляться без постоянного присутствия эксплуатационного персонала в зоне размещения технологического оборудования.
Связь между компонентами системы должна осуществляться по физическим и интерфейсным каналам.
АСУ ККТХ должна быть подключена к гарантированной системе электропитания с использованием агрегатов бесперебойного питания.
Каждая операторская станция должна включать:
ЭВМ стандартной конфигурации:
- ОЗУ 128 Мб, накопитель на гибких дисках, накопитель на жестком диске емкостью 10-20 Гб;
- один цветной монитор;
- технологическую клавиатуру;
- манипулятор типа "мышь".
Технологическая клавиатура предназначена для оперативного управления процессом и должна иметь набор функциональных клавиш, программно привязанных к видеограммам дисплея и позволяющих однозначно выполнять команды управления технологическим процессом. Клавиатура должна быть удобной и простой в использовании.
Требования к функционированию системы. АСУ ККТХ должна:
- обеспечивать эффективную работу технологического оборудования без постоянного присутствия эксплуатационного персонала в зоне размещения оборудования с минимальным количеством ручных операций и безопасными условиями труда;
- повышение производительности теплицы за счет жесткого автоматического поддержания требуемых параметров микроклимата;
- обеспечивать высокую надежность автоматического регулирования и управления технологическим процессом за счёт применения современных технических средств и программного обеспечения;
- обеспечивать обслуживающий персонал своевременной и достоверной информацией о ходе технологического процесса;
- обеспечение персонала достоверной и своевременной технологической информацией;
- обеспечивать снижение энергопотребления;
- обеспечивать световую и звуковую аварийную сигнализацию при несанкционированном проникновении на территорию ВЗУ, в павильоны скважин, а также снятии люков с резервуара.
АСУ ККТХ также должна обеспечивать взаимодействие с:
- системами сбора и обработки информации - по физическим каналам связи.
- исполнительными механизмами и агрегатами - по физическим каналам связи;
- пультом управления оператора - по сети RS-485.
4. Обзор существующих решений и обоснование выбора принятого принципа построения проектируемой системы
Практически все тепличные хозяйства строятся по единой схеме: теплоизолированное помещение, в котором к нужным значениям с помощью системы обогрева, системы опрыскивания растений, датчиков температуры воздуха и воды (для полива), влажности почвы, и воздуха.
Тепличные хозяйства различаются лишь в зависимости от объекта культивирования. Т.е. различие системе технического обогрева помещения, системе увлажнения и пр. Сбор информации будет проходить по всем основным ОУ, необходимым для успешного выполнения поставленных задач. По этим параметрам оператор будет принимать решения по управлению.
Эффективность работы АСУ ККТХ в большей степени будет зависеть от того как она будет спроектирована. Тепличное хозяйство будет полностью автоматизировано за исключением случаев либо слишком сильного не предусмотренного воздействия на данную систему, либо при случаях несанкционированного вмешательства в работу системы.
Системы управления ККТХ могут отличаться между собой лишь уровнем автоматизации, т.е. количеством и качеством регулируемых параметров объекта. Схема же систем в большинстве случаев остается постоянной. Это в значительной степени обусловлено радом требований к АСУ ВЗУ со стороны ГОСТов и СПИНов.
Общие положения. Теплицы следует проектировать однопролетными или многопролетными. Тип теплиц для каждой зоны определяется технико-экономическим обоснованием. Парники следует проектировать с односкатным или двускатным покрытием.
Вспомогательные помещения для работающих в теплицах и парниках следует проектировать в соответствии с требованиями СНиП II-92-76. Геометрические параметры теплиц и парников должны назначаться в соответствии с технологической частью проекта. Теплицы следует проектировать с деревянным или металлическим каркасом в соответствии с требованиями ТП 101-81. Парники необходимо проектировать с деревянным или железобетонным каркасом.
Светопрозрачные ограждения зимних теплиц следует проектировать из стекла или пленки, как правило, двухслойными или однослойными с дополнительной трансформирующейся шторой или теплозащитным экраном, а весенних теплиц - из пленки, снимаемой на зимний период. В стенах теплиц, предназначенных для выращивания рассады, высаживаемой в открытый ґрунт, необходимо предусматривать вентиляционные проемы.
5. Описание разработанного решения системы управления, обеспечивающего выполнение требований технического задания
Оснащение тепличного хозяйства. Для обеспечения выполнения требований технического задания, предлагается обеспечить надежное централизованное управление при помощи датчиков, которые связаны напрямую с промышленным контроллером и элементы регулирования.
Измерение температуры воздуха будет осуществляться с помощью датчиков KTY-81-210. Датчики помещаются в специальный освинцованный пластиковый корпус. Данные датчики имеют небольшой уровень погрешности и подходят для данного проекта. Измерение температуры воды в резервуаре будет осуществляться с помощью датчиков numerix ETF-01. Погружные датчики температуры устанавливаются непосредственно в трубопровод для измерения температуры воды (или другого теплоносителя) в системах отопления, вентиляции и кондиционирования воздуха.
Сигналы с датчиков уровня воды, температур воздуха и воды, влажности почвы и воздуха, расхода воды, а также уровня воды резервуаре поступают на промышленный микроконтроллер Modicon 984-685 модуль. Питание датчиков обеспечивается дополнительным блоком питания.
Измерение влажности воздуха будет осуществляться с помощью датчиков Honeywell HIH-3602. Датчики осуществляют непрерывные круглосуточные измерения относительной влажности воздуха и поддержание заданных режимов.
Измерение влажности почвы будет осуществляться с помощью датчиков Gardena. Требуемая влажность задается с помощью вращающегося регулятора. Индикация актуального значения влажности почвы. Укомплектован соединительным кабелем 5 м со штекером.
Для регулирования влажности воздуха и почвы используются спринклеры. Для поддержания нормального температурного режима используется центральное водное отопление.
6. Описание видов обеспечения
Исходя из технического задания можно выделить следующие основные виды обеспечения разрабатываемой АСУ:
- математическое;
- информационное;
- обеспечение сохранности информации;
- программное;
- техническое;
Далее будут рассмотрены математическое и информационное, т.к. в проекте они практически явно не выражены.
Математическое обеспечение. Математическое обеспечение микропроцессорного контроллера должно обеспечивать выполнение следующих функций первичной обработки аналоговых сигналов:
- расчет действительных значений;
- фильтрация сигналов (усреднение);
- сравнение с уставками (технологические границы);
- формирование дискретных сигналов нарушений;
- формирование массива текущих значений параметров.
Первые два пункта обеспечиваются модулями аналоговых входов управляющих контроллеров. Последние - самими контроллерами, в соответствии с записанной рабочей программой.
Математическое обеспечение микропроцессорных контроллеров, кроме функций по обработке текущей информации, выполняет также управляющие и противоаварийные функции, в состав которых входят:
- автоматический программный пуск оборудования;
- автоматическое регулирование технологических параметров;
- дистанционное управление регулирующим оборудованием.
Настройка систем регулирования производится заданием соответствующих коэффициентов.
Математическое обеспечение, кроме указанных задач, обеспечивает выполнение основных функций АСУ ККТХ, функций хранения и представления информации. Для этого реализуются алгоритмы:
- функционирования АСУ ККТХ;
- автоматического пуска оборудования ТХ;
- автоматического управления спринклерами;
- автоматического управления подачей воды в резервуар;
- создания базы данных о технологическом процессе;
- сбора и первичной обработки аналоговой информации;
- усреднения и интегрирования параметров;
- технологического контроля;
- учета состояния оборудования;
- отображения информации оператору-технологу;
- опроса микропроцессорных контроллеров;
- выдачи заданий микропроцессорному контроллеру;
- диагностики микропроцессорных контроллеров.
Информационное обеспечение. База данных АСУ ККТХ формируется путем заполнения стандартных форм на экране видеотерминала на основании перечня каналов контроля и регулирования. Вызов форм осуществляется при помощи системы вложенных меню. Меню обеспечивает:
- описание системы;
- описание контроллера;
- описание системы отображения;
- описание аналоговых сигналов;
- описание протоколирования;
- описание подсистемы оповещения и сигнализации.
Описание аналоговых сигналов должно определять подключение сигнала в системе, параметры обработки сигнала, признаки усреднения, включения значений параметра в рапорт-отчет, формирования истории параметров контура на указываемом временном интервале, контроля на достоверность. Описание протоколирования и печати должно содержать описание таблицы нарушений, описание рапорта-отчета, описание архивного тренда, описание протоколирования значений параметров, заносимых оператором в оперативную память контроллера.
Также предусматривается протоколирование действий оператора по изменению задания, режима работы контуров управления, выдаче дискретных управляющих воздействий (пуск, останов, открытие, закрытие) и запись протокола на носители ПЭВМ.
Используемые мнемосхемы могут строиться из следующих элементов:
- алфавитно-цифровые символы;
- стандартные технологические символы (клапаны, насосы, емкости и т.д.);
- графические символы;
- векторы, дуги, окружности;
- заштрихованные участки.
Для конфигурирования системы и формирования базы данных предусмотрены режимы корректировки базы данных. Корректировка базы данных выполняется в автономном режиме работы ПЭВМ или на инструментальной ПЭВМ.
7. Разработка базы параметров контроля и регулирования
Все основные и вспомогательные параметры, используемые при управлении АСУ ККТХ, сведены в таблице 7.1. В таблице указаны верхние и нижние границы их предельных значений, единицы измерения, контроллеры, используемые для первичного преобразования и фильтрации параметров, их количество.
Таблица 7.1 - Измеряемые физические величины АСУ ККТХ
Параметр регулирования |
Ед. изм. |
Мин. |
Макс. |
Контроллер |
Количество |
|
Влажность воздуха |
% |
0 |
100 |
HIH-3602 |
1 |
|
Влажность почвы |
% |
0 |
40 |
GARDENA |
8 |
|
Температура воздуха |
t° |
0 |
70 |
KTY-81-210 |
1 |
|
Температура воды в резервуаре |
t° |
0 |
60 |
ETF01 |
1 |
|
Уровень воды в резервуаре |
м |
0 |
3 |
SML-PS1 |
1 |
|
Расход воды |
м 3 |
0 |
20 |
ДРК-4-ОП |
1 |
8. Описание схемы функциональной электрической автоматизации
Автоматическую систему мониторинга и управления водозаборным узлом можно условно разбить на три составляющих:
- система управления ТХ;
- рабочее место оператора.
Первая подсистема изображена на функциональной схеме автоматизации в явном виде, последняя - в виде табличного обозначения ЭВМ. Оборудование включает в себя датчики, устанавливаемые по месту, исполнительные устройства, приборы, устанавливаемые на щите.
Все условные обозначения приборов и средств автоматизации исполнены в соответствии с ГОСТ 21.404-85.
9. Разработка АРМ
Требования к компьютеру связаны с большим объемом обрабатываемой информации и необходимостью представления информации графически. LAN связывает АРМ операторов и АРМ главных специалистов (Главный инженер, агроном, начальник службы).
Выбрав нужное отделение, оператор или другой пользователь системы имеет возможность переключиться на режим контроля. Оператор переключается на него после выбора необходимого ему отделения.
Журнал системных сообщений необходим при проведении повторных запусков системы, при ее настройке и наладке. Он позволяет отслеживать в режиме реального времени включение датчиков и других устройств системы, производить анализ отказов устройств и их диагностику.
Из окна журнала сообщений пользователь может распечатать все системные сообщения за указанный период времени.
Режим настройки системы параметров регулирования используется при проведении пусконаладочных работ, а также при проведении профилактической работы специалистами службы. Он позволяет учесть технологические особенности конкретных исполнительных устройств и устанавливать необходимые поправочные коэффициенты для улучшения качества регулирования. Вход в это окно доступен только для специалистов фирмы и для службы Заказчика.
Таким образом, основными достоинствами информационно-управляющего комплекса АСУКК ТХ являются:
уменьшение на 15-20 % расхода тепло- и энергоносителей;
точность поддержания температуры воздуха в теплице ± 0,5°С;
поддержание оптимального микроклимата в теплице и увеличение возможности влияния на урожайность культивируемых культур;
высокая надежность;
возможность проведения замеров температуры и влажности возле контрольных растений.
Рекомендуется проводить поэтапную реконструкцию тепличных хозяйств. Это позволит уменьшить первоначальные затраты на проект. Первый этап - диспетчеризация. На этапе диспетчеризации собирается аналитическая и статистическая информация о работе теплицы. После окончания работ по диспетчеризации и анализа информации, полученной при работе с комплексом, выдаются рекомендации по "термодинамике" и гидродинамике в теплице. Это необходимо для обеспечения равномерного теплового поля в теплице и создания оптимальных условий роста растений. Второй этап - поэтапный переход на автоматический контроль и регулирование. Постепенный переход на автоматический контроль и регулирование позволит более гибко подходить к каждой конкретной теплице.
Заключение
В данном курсовом проекте была представлена двухуровневая АСУТП, которая осуществляет дискретное регулирование влажности воздуха и контроль расхода воды на распыление в теплице.
Целью ее представления являются:
- внедрение высокоэффективной, современной автоматизированной системы управления, которая обеспечивает поддержание необходимого климатического режима;
- обеспечение плавности перехода из одного состояния в другое при отклонении климатических условий от нормы или при возникновении такой необходимости;
- обеспечение достоверности и достаточности информации о технологическом процессе и состоянии технологического оборудования.
Список литературы
1. www.wikepedia.org
2. Угрюмов Е. Цифровая схемотехника. - СПб.: БХВ - Петербург, 2002. - 528 с.
3. Костров Б.В. Микропроцессорные системы и микроконтроллеры. - М.: "ТехБук", 2007. - 320 с.
4. asutp.dugoba.kz.
Размещено на Allbest.ru
...Подобные документы
Технологическая характеристика объекта автоматизации – тельфера. Составление функциональной и технологической схемы системы автоматического управления. Разработка принципиальной электрической схемы. Расчёт и выбор технических средств автоматизации.
курсовая работа [248,1 K], добавлен 13.05.2012Техническая характеристика котлоагрегата ТП-38. Синтез системы управления. Разработка функциональной схемы автоматизации. Производстенная безопасность объекта. Расчет экономической эффективности модернизации системы управления котлоагрегатом ТП-38.
дипломная работа [2,6 M], добавлен 30.09.2012Разработка функциональной схемы автоматизации парового котлоагрегата КЕ-10/14 с выбором средства автоматизации. Выполнение расчета шкалы ротаметра и определение параметров сопротивлений резисторов измерительной схемы автоматического потенциометра.
курсовая работа [2,0 M], добавлен 24.12.2012Технологическая характеристика объекта автоматизации. Разработка принципиальной электрической схемы управления и временной диаграммы работы схемы. Выбор средств автоматизации: датчиков уровня SL1 и SL2, выключателей, реле. Разработка щита управления.
курсовая работа [2,5 M], добавлен 13.01.2011Особенности разработки схемы теплового контроля водяного котла утилизатора КУВ-35/150, способы организации процесса регулирования питания. Этапы расчета узла измерения расхода сетевой воды за котлом. Анализ функциональной схемы теплового контроля.
дипломная работа [1,8 M], добавлен 15.01.2013Анализ применяемых методов и средств контроля, регулирования и сигнализации технологических параметров. Выбор и обоснование микропроцессорного контроллера. Разработка функциональной схемы электропривода. Передаточная функция управляемого выпрямителя.
дипломная работа [1,7 M], добавлен 31.12.2015Обоснование выбора рода тока и рабочего напряжения электрической станции проекта. Выбор типа, числа и мощности генераторных агрегатов. Выбор устройств автоматизации проектируемой электрической станции. Разработка схемы распределения электроэнергии.
курсовая работа [4,9 M], добавлен 17.02.2015Анализ существующих систем автоматизации процесса регулирования давления пара в барабане котла. Описание технологического процесса котлоагрегата БКЗ-7539. Параметрический синтез системы автоматического регулирования. Приборы для регулирования параметров.
дипломная работа [386,2 K], добавлен 03.12.2012Описание газообразования в котельной установке. Построение формальной математической модели автоматизации. Разработка структурной и функциональной схемы устройства. Программирование контролера системы управления. Текст программы на языке ASSEMBLER.
дипломная работа [3,8 M], добавлен 26.06.2012Анализ вариантов технических решений по силовой части преобразователя. Разработка схемы электрической функциональной системы управления. Способы коммутации тиристоров. Математическое моделирование силовой части. Расчет электромагнитных процессов.
курсовая работа [1,2 M], добавлен 05.06.2013Составление функциональной схемы автоматизации технологической установки. Кривая разгона объекта по каналу регулирования, выбор типа регулятора. Определение пригодности регулятора и параметров его настроек и устойчивости системы по критерию Гурвица.
курсовая работа [175,1 K], добавлен 10.05.2009Реостатные и индуктивные преобразователи. Анализ методов и средств контроля линейных перемещений. Расчет параметров оптической системы. Описание оптико-механической схемы. Расчет интегральной чувствительности. Расчет потерь излучения в оптической системе.
курсовая работа [662,2 K], добавлен 19.05.2013Измерение давления и температуры различных сред, области его применения. Разработка функциональной схемы автоматического контроля и управления паровым котлом. Обоснование выбора приборов и аппаратуры. Описание правил монтажа дифманометра и диафрагмы.
курсовая работа [2,5 M], добавлен 30.12.2014Структурный анализ разрабатываемой схемы. Разработка и расчет электрических схем отдельных структурных блоков. Формирование и анализ оптимальности общей электрической принципиальной схемы. Расчет потребляемой мощности и разработка источника питания.
курсовая работа [3,0 M], добавлен 04.02.2015Определение контролируемых и управляемых параметров. Описание режимов функционирования водогрейного котла. Блок-схема алгоритма его работы. Модель регулирования положения аэрошибера рекуператора. Расчет оптимальных настроек автоматического регулятора.
курсовая работа [420,4 K], добавлен 31.01.2015Разработка схемы судовой электрической станции и главного распределительного щита. Автоматизации судов класса AUT 1. Выбор генераторных агрегатов. Анализ неисправностей при их эксплуатации и способы их устранения. Расчет переходных процессов СЭЭС.
дипломная работа [8,1 M], добавлен 10.12.2013Водоснабжение котельной, принцип работы. Режимная карта парового котла ДКВр-10, процесс сжигания топлива. Характеристика двухбарабанных водотрубных реконструированных котлов. Приборы, входящие в состав системы автоматизации. Описание существующих защит.
курсовая работа [442,0 K], добавлен 18.12.2012Проблема комплексной автоматизации. Структуры автоматизированной системы управления ТЭС. Анализ и выбор современных средств управления и обработки информации. Разработка функциональной схемы системы управления за параметрами. Управления расходом воды.
курсовая работа [424,9 K], добавлен 27.06.2013Регулирование давления перегретого пара и тепловой нагрузки, экономичности процесса горения, разряжения в топке котла, перегрева пара. Выбор логического контроллера и программного обеспечения для него. Разработка функциональной схемы автоматизации.
дипломная работа [1,5 M], добавлен 31.12.2015Анализ существующих типов закладных устройств и способов их обнаружения. Построение модели для расчета теплового поля поверхности земли. Демаскирующие признаки взрывных устройств. Тепловой вид неразрушающего контроля и теплофизическое описание дефектов.
курсовая работа [829,7 K], добавлен 19.06.2014