Приборы для измерения электрических величин
Характеристика принципа действия приборов постоянного перепада энергии. Изучение особенностей ремонта приборов для измерения расхода электроэнергии. Техника безопасности при ремонте и обслуживании приборов для измерения и контроля электрических величин.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 13.12.2014 |
Размер файла | 901,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
План
Введение
1. Общие сведения
2. Устройство и принцип действия приборов постоянного перепада
3. Ремонт приборов для измерения расхода
4. Техника безопасности при ремонте и обслуживании приборов для измерения и контроля электрических величин
Заключение
Литература
Введение
Измерение физических величин является одним из способов познания окружающего нас мира и основным средством контроля различных технологических процессов.
Развитие науки и техники ускорило рост роли и объёма измерительной техники. Велико значение измерений при исследовании, производстве, настройки и эксплуатации различных радиоэлектронных приборов, устройств и систем. Измерение параметров элементов электрических цепей относятся к важнейшим измерениям, с которыми часто приходится встречаться на практике.
В настоящее время известен ряд методов измерения этих величин. Выбор метода измерения и измерительной аппаратуры, при конкретном измерении, зависит от многих условий (вида измерения, его значений, требуемой точности измерения.
Теплотехнические измерения служат для определения многих физических величин, связанных с процессами выработки и потребления тепловой энергии. Они включают определение как чисто тепловых величин (температуры, теплопроводимость и пр.), так и некоторых других (давления, расхода и пр.), играющих важную роль в теплоэнергетике.
Теплотехнические измерения широко применяются во многих отраслях народного хозяйства: в энергетике, металлургии и др. В энергетической промышленности они используются для повседневного контроля и наблюдения за работой и состоянием установленного на электростанциях оборудования. Наряду с этим теплотехнические измерения необходимы при изучении и дальнейшем совершенствовании способов производства электрической и тепловой энергии и методов потребления тепла.
Надёжная и экономичная эксплуатация современных атомных электростанций немыслима без применения значительного количества разнообразных по устройству, назначению и принципу действия приборов теплотехнического контроля. На этих электростанциях, оснащённых сложным энергетическим оборудованием, теплотехнический контроль органически связан с его работой и является весьма важным звеном управления.
Большинство современных теплотехнических измерительных приборов основано на применении электрических принципов изменения неэлектрических величин (температуры, расхода и др.). Указанный принцип измерения, построенный на количественных соотношениях между некоторыми электрическими и неэлектрическими величинами, повышает точность и надёжность измерений, упрощает устройство приборов и обеспечивает возможность передачи их показаний на расстояние.
Широкое применение для теплотехнических измерений получили электронные измерительные приборы, отличающиеся простотой устройства, высокой точностью, чувствительностью и быстродействием.
1. Общие сведения
Расходомеры служат для измерения объема (объемный расход) или массы (массовый расход) жидкостей, газов и паров, проходящих через заданное сечение трубопровода в единицу времени. Иногда расходомеры снабжают интеграторами или счетчиками - устройствами для суммирования измеряемых объемов или масс контролируемых сред в течение заданного промежутка времени. Расходомеры разных типов рассчитаны на измерения в определенной области расходов.
Основные показатели, обусловливающие выбор расходометра: значение расхода; тип контролируемой среды, ее температура, давление, вязкость, плотность, электрическая проводимость, рН; перепад давлений на первичном измерительном преобразователе (датчике); диаметр трубопровода; диапазон (отношение максимального расхода к минимальному) и погрешность измерений. В зависимости от физико-химических свойств измеряемой и окружающей сред в расходометре используются различные методы измерений.
В своей работе я рассматриваю наиболее важные типы расходометров и счетчиков, применяемых в химических лабораториях, химических и смежных отраслях промышленности для высокоточных контроля и учета химических веществ при их производстве, выдаче и потреблении, а также в системах автоматизированного управления технологическими процессами.
Расходомеры переменного перепада давлений (рис. 1, а). Действие их основано на зависимости перепада давлений на гидравлическом сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Dp = p1 - p2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соответственно до и после гидравлического сопротивления). Расходометры данного типа особенно распространены благодаря следующего достоинствам: простоте конструкции и возможности измерений в широком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более); возможности применения для различных по составу и агрессивности жидкостей и газов при температурах до 350-400 °С и давлениях до 100 МПа; возможности расчетным путем определять расход без натурной градуировки расходометра в случае трубопроводов диаметрами 50-1000 мм. Недостатки: небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3:1); значит, потери давления на гидравлическом сопротивлении и связанные с этим дополнительные затраты энергии. Погрешность 1,5-2,5% от максимального расхода.
Расходомеры постоянного перепада давлений, или ротаметры (рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конической трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от Ч 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м 3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от максимального расхода.
Электромагнитные Расходомеры (рис. 2, в). Действие их основано на прямо пропорциональной зависимости расхода от эдс, индуцированной в потоке электропроводной жидкости (минимальная удельная электрическая проводимость 10-3-10-4 См/м), движущейся во внешнем магнитном поле, которое направлено перпендикулярно оси трубопровода. ЭДС определяется с помощью двух электродов, вводимых в измеряемую среду диаметрально противоположно через электроизоляционное покрытие внутренней поверхности трубопровода. Материалы покрытий - резины, фторопласты, эпоксидные компаунды, керамика и др. Приборы позволяют измерять расход различных пульп, сиропов, агрессивных и радиоактивных жидкостей и т. д. при давлениях обычно до 2,5 МПа (иногда до 20 МПа); диаметр трубопроводов, как правило, 2-3000 мм. Во избежание поляризации электродов измерения проводят в переменном магнитном поле. Допустимые температуры контролируемой среды определяются термостойкостью электроизоляционных покрытий и могут достигать, как правило, 230 °С. При измерении расхода жидких металлов (например, Na, К и их эвтектик) указанные температуры обусловлены термостойкостью используемых конструкционных материалов, в первую очередь магнитов, создающих постоянное магнитное поле (исключает возникновение в металлах вихревых токов) и составляют 400-500 °С; в данном случае трубопроводы не имеют внутренней изоляции, а. электроды привариваются непосредственно к их наружным поверхностям. Достоинства: высокое быстродействие; широкий диапазон измерений (100:1); отсутствие потерь давления (приборы не имеют элементов, выступающих внутрь трубопровода); показания приборов не зависят от вязкости и плотности жидкостей. Погрешность 0,5-1,0% от измеряемой величины.
величина электрический измерение контроль
Рис. 1. Расходомеры: а, б - соответственно переменного и постоянного перепадов давлений; в - электромагнитные; г - турбинные; д - ультразвуковые; е - вихревые; ж - объемные; з -струйные; и- корреляционные; 1 - трубопроводы; 2 - гидравлическое сопротивление; 3 - дифманометр; 4 - коническая трубка; 5 - поплавок; 6 - электроды; 7 - турбинка; 8 - тахометр; 9 - электронное устройство; 10 - твердое тело, обтекаемое потоком жидкости или газа; 11, 13, 14, 17 -преобразователи физических величин в соответствующие электрические импульсы; 12 - счетчик с овальными шестернями; 15, 16 - устройства запоминания и распознавания "образа" материального потока; Q-расход контролируемой среды; Dр = р1 -р2 - перепад давлений до (р 1) и после ( р 2) гидравлического сопротивления; Df=f1 -f2 - разность частот повторения электрических импульсов; fc -частота переброса струи материального потока; h - величина перемещения поплавка; N, S - полюсы магнита; n т - частота вращения турбинки; n в - частота возникновения вихрей; n ц -число циклов хода чувствительногоэлемента; П 1,П 2 -пьезоэлементы; t-время; w-круговая частота.
Тахометрические Расходомеры.
В турбинных Расходомерах (рис. 1, г) используется зависимость измеряемой тахометром частоты вращения турбинки, приводимой в движение потоком среды (нефтепродукты, расходомеры кислот и щелочей, нейтральные или агрессивные газы) от ее расхода. Турбинки могут размещаться аксиально либо тангенциально по отношению к направлению движения потока. Диаметр трубопроводов 4-4000 мм; вязкость среды 0,8-750 мм 2/с; температура от -240 до 550 °С, давление до 70 МПа; диапазон измерений до 100:1; потери давления 0,05 МПа. Погрешность 0,5-1,5% от максимального расхода.
В шариковых расходометрах контролируемая жидкая среда закручивается с помощью неподвижного винтового направляющего аппарата и увлекает за собой металлический шарик, заставляя его вращаться внутри трубопровода (перемещению вдоль оси препятствуют ограничительные кольца). Мера расхода - частота вращения шарика, измеряемая, например, тахометром. Диаметр трубопроводов 5-150 мм; температура среды от -30 до 250 °С, давление до 6,4 МПа; диапазон измерений 10:1; потери давления до 0,05 МПа. В этих приборах в отличие от турбинных отсутствуют опорные подшипники, что позволяет измерять расход жидкостей с механическими включениями и увеличивает ресурс работы. Погрешность не более 1,5% от максимального расхода.
Ультразвуковые Расходомеры (рис. 1, д). В основу их работы положено использование разницы во времени прохождения ультразвуковых колебаний (более 20 кГц) в направлении потока контролируемой среды и против него. Электронное устройство формирует электрический импульс, поступающий на пьезоэлемент П 1, который излучает электромеханический колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П 2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П 1 и т. д. Контур П 1 -П 2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды. Аналогично электронное устройство подает импульсы в обратном направлении, т. е. от пьезоэлемента П 2 к пьезоэлементу П 1. Контур П 2 -П 1 характеризуется частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды. Далее электронное устройство определяет разность Df указанных частот, которая пропорциональна скорости (расходу) среды.
Эти приборы не вызывают потерь давления, обладают высоким быстродействием и обеспечивают измерение пульсирующих расходов (частота 5-10 кГц) любых не содержащих газовых включений жидкостей (в т. ч. вязких и агрессивных), а также газов и паров. Диаметр трубопроводов 10-3000 мм и более; температура среды от Ч40 до 200°С (реже-от Ч250 до 250 °C), давление до 4 МПа; диапазон измерений 100:1. Погрешность 1,0-2,5% от максимального расхода.
Вихревые Расходомеры (рис. 1, е). Действие их основано на зависимости между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа. Образованию вихрей способствует поочередное изменение давления па гранях этого тела. Диапазон частот образования вихрей определяется размером и конфигурацией тела и диаметром трубопроводов (25-300 мм). Температура среды обычно от - 50 до 400 °С, реже от -270 до 450 °С; давление до 4 МПа, иногда до - 6,3 МПа; диапазон измерений: для жидкостей 12:1, для газов 40:1. Градуировка приборов не зависит от плотности и вязкости контролируемой среды, а также от ее температуры и давления. Погрешность 0,5-1,0% от измеряемой величины при числах Рейнольдса Re > 30000; при Re < 10000 определение расхода практически невозможно из-за отсутствия вихрей.
Объемные Расходомеры (рис. 2, ж). В качестве измерителей объема служат счетчики с цилиндрическими или овальными шестернями, поршневые, с плавающей шайбой, лопастные, винтовые и др. Они снабжены устройствами выдачи сигналов, пропорциональных объемному расходу вещества. Эти приборы пропускают определенный объем жидкости за один цикл хода чувствительного элемента. Мера расхода - число таких циклов. Диаметр трубопроводов 15-300 мм; температура среды до 150°С, давление до 10 МПа; диапазон измерений до 20:1. Основное достоинство - стабильность показаний. Недостатки: необходимость установки фильтров, задерживающих твердые частицы (чувствительный элемент при их проникновении может выйти из строя); износ движущихся деталей, приводящий к увеличению погрешности показаний, которая обычно составляет 0,5-1,0 от измеряемой величины.
Струйные Расходомеры (рис. 1, з). В них используется принцип действия генератора автоколебаний. В приборе часть струи потока жидкости или газа ответвляется и через так называемый канал обратной связи поступает на вход устройства, создавая поперечное давление на струю. Последняя перебрасывается к противоположной стенке трубопровода, где от нее снова ответвляется часть потока, подаваемая через канал на вход прибора; в результате струя переходит в первоначальное положение и т. д. Такой переброс происходит с частотой, пропорциональной расходу контролируемой среды, и сопровождается изменением давления в каналах аи б, что позволяет датчику давления воспринимать автоколебания. Диаметр трубопроводов 2-25 мм; температура среды от Ч263 до 500 °С, давление до 4 МПа; диапазон измерений 10:1. Основное достоинство-отсутствие подвижных элементов. Погрешность-1,5% от максимального расхода.
Корреляционные Расходомеры (рис. 1, и). В этих приборах с помощью сложных ультразвуковых и иных устройств осуществляется запоминание в заданном сечении трубопровода (I) характерного "образа" потока контролируемой среды и его последнее распознавание в другом сечении (II), расположенном на определенном расстоянии от первого. Мера расхода - время прохождения "образом" потока участка трубопровода между сечениями. Диаметр трубопроводов 15-900 мм; температура среды до 100-150°С, давление до 20 МПа; диапазон измерений 10:1. Достоинства: независимость показаний от изменений плотности, вязкости, электропроводности и др. параметров жидкости; отсутствие потерь давления. Погрешность 1 % от измеряемой величины.
2. Устройство и принцип действия приборов постоянного перепада
2.1 Расходомеры постоянного перепада давления
Принцип действия расходомеров данного типа основан на том, что поплавок плавающий (подвешенный) в потоке изменяет свое положение по вертикали в зависимости от величины расхода газа. Для обеспечения линейности такого перемещения, площадь проходного сечения датчика расхода изменяется таким образом, чтобы перепад давления оставался постоянным. Это достигается тем, что трубка, в которой перемещается поплавок, выполнена конической с расширением конуса вверх (ротаметры типа РМ) или трубка выполнена с прорезью и поршень (плавок), поднимаясь вверх открывает для потока большее проходное сечение.
Трубки ротаметров могут быть стеклянными (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от свойств жидкости или газа изготовляют из различных металлов либо пластмасс. Приборы работоспособны при температурах от - 80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства: возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м3/ч); широкий диапазон измерений (10:1); малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода.
Среди расходомеров постоянного перепада давления, или расходомеров обтекания, наибольшее распространение получили ротаметры, которые широко применяются для измерения малых расходов жидкости дисперсными включениями инородных частиц, нейтральных к материалам деталей.
Потеря напора от установки ротаметра в технологическую линию не превышает 0,01 МПа для жидкостей и 0,005 МПа для газов. Шкалы ротаметров условные, поэтому для определения расхода к паспорту прибора прикладывается градуировочная характеристика.
2.2 Поршневые расходомеры
Поршневые расходомеры применяются для измерения расхода воды, нефтепродуктов, вязких и агрессивных жидкостей. Устройство поршневого расходомера показано на рис. 3. В корпусе прибора 1 запрессована цилиндрическая бронзовая втулка 2, имеющая круглое входное отверстие и прямоугольное выходное. Внутри втулки под действием динамического давления потока измеряемой среды перемещается поршень 3 с грузами 8, открывая или перекрывая выходное отверстие. Положение поршня, являющееся мерой расхода вещества, передается с помощью штока 7 и фиксируется индукционной системой 4, 5, 6. Конструктивно корпус, втулка и поршень выполняются таким образом, что в крайнем нижнем положении поршня выходное отверстие остается полностью открытым, а входное полностью закрытым.
Предел измерений прибора регулируется изменением ширины выходного отверстия. Если у измеряемого вещества высокая температура, крышка прибора снабжается ребристым охладителем, если низкая температура и большая вязкость, то крышка обогревается паром или горячей водой. Поршневой расходомер следует устанавливать на горизонтальном участке трубопровода длиной не менее 10D до прибора и не менее 10D после прибора. В случае измерения расхода загрязненных жидкостей перед прибором монтируют фильтр.
Основные недостатки ротаметров (необходимость индивидуальной градуировки и существенное влияние свойств измеряемых сред на точность измерений) сохраняются и у этих расходомеров.
3. Ремонт приборов для измерения расхода
Неисправности тахиметрических расходомеров прежде всего связаны с наличием подвижных частей, которые вследствие трения изнашиваются, или загрязнением отложениями на элементах расходомера.
Ремонт расходомеров постоянного перепада - ротаметров - заключается в проверке плотности соединений, чистке поплавка и стекла ротаметра. Поплавки и стекла, имеющие трещины и задиры, заменяют на новые. После ремонта определяют расходную характеристику прибора и составляют его паспорт.
Расходомеры переменного перепада ремонтируют в комплекте «датчик - вторичный прибор». Основными неисправностями расходомеров являются:
заниженные или завышенные показания прибора из-за неплотности соответственно на «плюсе» или «минусе» дифманометра;
полное отсутствие чувствительности прибора при изменении перепада на дифманометре;
- неисправность электронного прибора;
- большая погрешность измерений расхода из-за разрегулировки комплекта «дифманометр - вторичный прибор».
Для определения неплотностей и мест утечек комплект проверяют на специальном стенде. При подаче избыточного давления воздуха (в зависимости от рабочего предела дифманометра) методом обмыливания находят утечки в плюсовом, минусовом и уравнительном вентилях. Более эффективным методом поиска негерметичностей прибора является использование течеискателей. При обнаружении утечек сальники вентилей подтягивают накидной гайкой; если утечка не ликвидируется, сальник заменяют на новый.
Основными неисправностями деформационных дифманометров с дифференциально-трансформаторным преобразователем типа ДМ являются: вытекание жидкости из мембранных блоков, забивка отверстий для отбора давления к камерам прибора, неплотность запорных вентилей, «затирание» сердечника относительно внутренней полости разделительной трубки.
Вытекание жидкости из мембранного блока приводит к потере чувствительности прибора к измеряемому перепаду давления. Для замены мембранного блока необходимо выполнить следующие работы (см. рис. 4): вывернуть крепеж и снять колпак 10 с индукционной катушкой 5, отпаять выводы с разъема, снять индукционную катушку, вывернуть штуцер крепления разделительной трубки 11, вынуть разделительную трубку, специальным профильным ключом вывернуть гайку крепления сердечника дифтрансформатора, вывернуть накидные штуцера крепления импульсных трубок «+» и «-», снять стяжные болты верхней и нижней крышек датчика, разобрать корпус и вынуть мембранный блок.
Сборку дифманометра производят в обратной последовательности. После сборки дифманометр испытывают на герметичность и механическую прочность. Герметичность проверяют при подаче на вход прибора максимального рабочего перепада давления. Затем давление отсекают запорной арматурой на 5 мин и по показанию образцового манометра проверяют отсутствие падения давления. Прибор выдерживает испытание на герметичность, если показания образцового манометра за указанное время не изменяются.
Испытания на механическую прочность проводят при подаче на прибор в течение 10 мин полуторакратного максимального рабочего давления, указанного в паспорте на прибор.
Если при исправном дифманометре возникает большая погрешность измерений расхода, то требуется отрегулировать комплект «дифманометр - вторичный прибор»: регулировкой нуля дифманометра, регулировкой нуля шкалы вторичного прибора, коррекцией нуля дифманометра, регулировкой предела шкалы вторичного прибора.
4. Техника безопасности при ремонте и обслуживании приборов для измерения и контроля электрических величин
1.1. Слесарь КИПиА должен знать и выполнять требования настоящей инструкции. За несоблюдение и невыполнение их он несёт ответственность в установленном законом порядке, в зависимости от характера нарушений и их последствий.
1.2. К работе слесарем КИПиА допускаются лица не моложе 18 лет, прошедшие специальное обучение, изучившие и освоившие правила ТБ, сдавшие экзамен квалификационной комиссии.
1.3. Перед началом работы слесарь по КИПиА должен получить инструктаж по ТБ по предстоящей работе. Без инструктажа приступать к работе не разрешается.
1.4. Запрещается выполнять работу, не входящую в круг обязанностей слесаря КИПиА без дополнительного инструктажа по данной работе.
1.5. Заметив нарушение правил безопасности другим рабочим или какую-либо опасность для окружающих, не оставайтесь безучастным, а предупредите рабочих (мастера) о необходимости соблюдения требований, обеспечивающих безопасность труда.
1.6. При получении травмы немедленно обратитесь в медпункт и сообщите о случившемся своему руководителю, а при его отсутствии, попросите товарищей по работе проинформировать о случившемся руководителя.
1.7. Содержите в чистоте и порядке рабочее место.
1.8. Не допускайте присутствия на рабочем месте посторонних, так как это ослабляет Ваше внимание, что может привести к травмированию, и представляет потенциальную опасность несчастного случая с окружающими.
1.9. Не уходите от работающих станков даже на короткое время без предварительного их отключения.
1.10. Слесарь по контрольно - измерительным приборам и автоматике должен знать и уметь выполнять общие правила по технике безопасности, а также ПТЭ и ПТБ при эксплуатации электроустановок потребителей.
2. Обязанности перед началом работы
2.1. О всех замеченных неисправностях на рабочем месте немедленно сообщите своему руководителю и не приступайте к работе до их устранения.
2.2. Перед началом работы с электроинструментом убедитесь в его исправности, проверьте правильность подключения и наличие заземления.
2.3. Приведите в порядок свою спецодежду: застегните рукава, полы куртки, оденьте головной убор и приберите под него волосы.
2.4. Перед началом работы на наждачном, сверлильном, токарном станках убедитесь в исправности оборудования:
А) осмотрите рабочее место и уберите из под ног, со станка и из проходов то, что мешает работать,
Б) осмотрите пол и деревянную решётку - они должны быть чистыми, сухими и не скользкими,
В) проверьте и обеспечьте достаточную смазку станка,
Г) осмотрите и поставьте на место все ограждения и предохранительные устройства,
Д) убедитесь в наличии защитного заземления станка,
Е) проверьте натяжение приводных ремней,
Ж) проверьте исправность режущего инструмента, принадлежностей и приспособлений, всё неисправное замените,
З) проверьте исправность пускового и остановочного устройств,
И) установите режущий инструмент,
К) проверьте систему охлаждения станка (если есть такая) и наличие охлаждающей жидкости в ванне.
3. Обязанности во время работы:
3.1. Выполняйте порученные производственные задания только в спецодежде, предусмотренной для слесарей КИПиА.
3.2. Не носите в карманах инструменты и предметы с острыми концами, а также едкие и огнеопасные вещества, в противном случае возможны травмы.
Заключение
Применяемые в данный момент измерительные комплексы учета расхода и количества энергоносителей, сырьевых ресурсов основанные на методе переменного перепада давления морально устарели и физически исчерпали свой ресурс. Дальнейшая их эксплуатация может стать причиной неадекватного учета расхода и технических аварий. Ремонт или полная замена составных элементов измерительного комплекса экономически неэффективна, к тому же данные элементы измерительного комплекса уже не соответствуют современным требованиям.
Необходимо внедрение расходомеров нового поколения способных соответствовать вышеперечисленным требованиям, и как следствие - требованиям энергоэффективности и энергосбережения.
Размещено на Allbest.ru
...Подобные документы
Характеристика устройства и принципа действия электроизмерительных приборов электромеханического класса. Строение комбинированных приборов магнитоэлектрической системы. Шунты измерительные. Приборы для измерения сопротивлений. Магнитный поток и индукция.
реферат [1,3 M], добавлен 28.10.2010Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.
курсовая работа [199,1 K], добавлен 17.11.2010Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.
реферат [1,5 M], добавлен 08.01.2015Средства обеспечения единства измерений, исторические аспекты метрологии. Измерения механических величин. Определение вязкости, характеристика и внутреннее устройство приборов для ее измерения. Проведение контроля температуры и ее влияние на вязкость.
курсовая работа [465,3 K], добавлен 12.12.2010Исследование истории развития электрических измерительных приборов. Анализ принципа действия магнитоэлектрических, индукционных, стрелочных и электродинамических измерительных приборов. Характеристика устройства для создания противодействующего момента.
курсовая работа [1,1 M], добавлен 24.06.2012Судовое электрооборудование в общем случае - это комплекс электрических машин, приборов и аппаратов для производства электроэнергии и передачи ее потребителям. Способы преобразования электрической энергии в тепловую. Виды судовых нагревательных приборов.
реферат [21,5 K], добавлен 17.11.2010Изучение истории развития электроприборостроения и российской метрологии. Общие детали устройства измерения электрических величин. Условные обозначения принципа действия прибора, требования и погрешности. Персональный компьютер в измерительной технике.
отчет по практике [6,2 M], добавлен 13.07.2014Основные характеристики электроизмерительных приборов. Надежное и бесперебойное электроснабжение сельскохозяйственных потребителей в производстве. Графики электрических нагрузок. Предохранители, тепловое реле, их устройство, принцип действия, применение.
контрольная работа [693,2 K], добавлен 19.07.2011Исследование особенностей применения трансформаторов тока и напряжения. Изучение схемы подключения приборов и реле к вторичным обмоткам. Измерение показателей качества электроэнергии. Расчетные счетчики активной и реактивной энергии трехфазного тока.
презентация [2,0 M], добавлен 23.11.2014Виды давления, классификация приборов для его измерения и особенности их назначения. Принцип действия мановакуумметров, характеристика их разновидностей. Многопредельные измерители и преобразователи давления. Датчики-реле давления, виды манометров.
презентация [1,8 M], добавлен 19.12.2012Классификация средств измерений. Понятие о структуре мер-эталонов. Единая общепринятая система единиц. Изучение физических основ электрических измерений. Классификация электроизмерительной аппаратуры. Цифровые и аналоговые измерительные приборы.
реферат [22,1 K], добавлен 28.12.2011Прямые и косвенные виды измерения физических величин. Абсолютная, относительная, систематическая, случайная и средняя арифметическая погрешности, среднеквадратичное отклонение результата. Оценка погрешности при вычислениях, произведенных штангенциркулем.
контрольная работа [86,1 K], добавлен 25.12.2010Измерение электрических величин: мощности, тока, напряжения. Область применения электроизмерительных приборов. Отличие прямых и косвенных измерений. Требования к измерительному прибору. Схема включения амперметра, вольтметра. Расчет сопротивления цепи.
лабораторная работа [48,0 K], добавлен 24.11.2013Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.
контрольная работа [301,1 K], добавлен 18.11.2013История возникновения приборов учёта и измерения электрической энергии. Классификация счётчиков электричества по типу измеряемых величин, типу подключения и конструкции. Схема устройства индукционного счетчика. Будущее учёта электрической энергии.
реферат [268,8 K], добавлен 11.06.2014Применение, устройство и принцип действия приборов для измерения давления: барометр-анероид, жидкостный и металлический манометр. Понятие атмосферного давления. Загадки об атмосферных явлениях. Причины различия в показателях давления с ростом высоты.
презентация [524,5 K], добавлен 08.06.2010Напряжение, ток, мощность, энергия как основные электрические величины. Способы измерения постоянного и переменного напряжения, мощности в трехфазных цепях, активной и реактивной энергии. Общая характеристика электросветоловушек для борьбы с насекомыми.
контрольная работа [2,2 M], добавлен 19.07.2011Общая характеристика и главные отличия периодической системы измерения величин и системы единиц СИ. Примеры, способы и формулы перехода от размерностей международной системы (СИ) к размерностям периодической системы (АС) измерения физических величин.
реферат [66,1 K], добавлен 09.11.2010Назначение электроизмерительных приборов: вольтамперметра, миллиамперметра, амперметров магнитоэлектрической системы, вольтметра. Понятие и регламентация классов точности. Расчет шунта, построение электрических цепей для измерения силы тока и напряжения.
лабораторная работа [214,3 K], добавлен 13.01.2013Положения метрологического обеспечения. Полномочия Комитета по стандартизации, метрологии и сертификации при Совете Министров РБ (Госстандарта). Классификация СИ и их характеристики. Основные характеристики средств измерения электрических величин.
дипломная работа [24,1 K], добавлен 12.11.2008