Вклад У. Томпсона в развитие физики
У. Томпсон - известный британский физик и механик. Основные результаты его научной деятельности. Значение томпсоновских расчётов размеров молекул на основе измерений поверхностной энергии плёнки жидкости для формирования атомистических представлений.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 08.12.2014 |
Размер файла | 10,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
1. Биография
Уильям Томсон, лорд Кельвин (26 июня 1824 г. - 17 декабря 1907 г.) - британский физик и механик. Известен своими работами в области термодинамики, механики, электродинамики.
Предки Томсона были ирландскими фермерами; его отец Джеймс Томсон, известный математик, затем с 1832 года профессором математики в Глазго; известен учебниками по математике, выдержавшими десятки изданий. Уильям Томсон и его старший брат Джеймс учились в колледже в Глазго, а затем в Кембридже, в котором Уильям закончил курс наук в 1845 году.
В 1846 году двадцатидвухлетний Томсон занял кафедру теоретической физики в университете в Глазго. С 1880 по 1882 президент Лондонского общества физиков. Необыкновенные заслуги Томсона в чистой и прикладной науке были вполне оценены его современниками.
В 1866 году Томсон возведён в дворянское достоинство, в 1892 году королева Виктория пожаловала ему пэрство с титулом «барон Кельвин».
У. Томсон обладал большим педагогическим талантом и прекрасно сочетал теоретическое обучение с практическим. Его лекции по физике сопровождались демонстрациями, к проведению которых Томсон широко привлекал студентов, что стимулировало интерес слушателей.
2. Научная деятельность
томпсон научный атомистический
В университете Глазго У. Томсон создал физическую лабораторию, в которой было сделано много оригинальных научных исследований, и которая сыграла большую роль в развитии физической науки. Вначале лаборатория ютилась в бывших лекционных комнатах, старом заброшенном винном подвале и части старого профессорского дома. В 1870 г. университет переехал в новое великолепное здание, в котором были предусмотрены просторные помещения для лаборатории. Кафедра и дом Томсона первыми в Британии осветились электричеством. Между университетом и мастерскими Уайта, в которых изготавливались физические приборы, действовала первая в стране телефонная линия. Мастерские разрослись в фабрику в несколько этажей, по существу ставшую филиалом лаборатории.
В круг научных интересов Томсона входили термодинамика, гидродинамика, электромагнетизм, теория упругости, теплота, математика, техника. Студентом Томсон опубликовал несколько статей по применению рядов Фурье к различным разделам физики. Стажируясь в Париже, разработал метод решения задач электростатики, получивший название метода «зеркальных изображений» (1846). Познакомившись с теоремой Карно, высказал идею абсолютной термодинамической шкалы (1848).
В 1851 г. У. Томсон сформулировал 2-е начало термодинамики. В его работе «О динамической теории теплоты» излагалась новая точка зрения на теплоту, согласно которой «теплота представляет собой не вещество, а динамическую форму механического эффекта». Поэтому «должна существовать некоторая эквивалентность между механической работой и теплотой». Томсон указывает, что этот принцип, «по-видимому, впервые... был открыто провозглашен в работе Ю. Майера «Замечания о силах неживой природы». Далее он упоминает работу Дж. Джоуля, исследовавшего численное соотношение, «связывающее теплоту и механическую силу».
Томсон утверждает, что вся теория движущей силы теплоты основана на двух положениях, из которых первое восходит к Джоулю и формулируется следующим образом: «Во всех случаях, когда равные количества механической работы получаются каким бы то ни было способом исключительно за счёт теплоты или бывают израсходованы исключительно на получение тепловых действий, всегда теряются или приобретаются равные количества теплоты».
Второе положение Томсон формулирует так: «Если какая-либо машина устроена таким образом, что при работе её в противоположном направлении все механические и физические процессы в любой части её движения превращаются в противоположные. То она производит ровно столько механической работы, сколько могла бы произвести за счёт заданного количества тепла любая термодинамическая машина с теми же самыми температурными источниками тепла и холодильника».
Эта положение Томсон возводит к С. Карно и Р. Клаузиусу и обосновывает следующей аксиомой: «Невозможно при помощи неодушевленного материального деятеля получить от какой-либо массы вещества механическую работу путём охлаждения ее ниже температуры самого холодного из окружающих предметов». К этой формулировке, которую называют томсоновской формулировкой второго начала, Томсон делает следующее примечание: «Если бы мы не признали эту аксиому действительной при всех температурах, нам пришлось бы допустить, что можно ввести в действие автоматическую машину и получать путем охлаждения моря или земли механическую работу в любом количестве, вплоть до исчерпания всей теплоты суши и моря или в конце концов всего материального мира». Описанную в этом примечании «автоматическую машину» стали называть perpetuum mobile 2-го рода.
Кроме работ по термодинамике, Томсон заложил основы теории электромагнитных колебаний и в 1853 г. вывел формулу зависимости периода собственных колебаний контура от его ёмкости и индуктивности (формула Томсона). В 1856 г. открыл третий термоэлектрический эффект - эффект Томсона (первые два - возникновение термо-ЭДС и выделение теплоты Пельтье), состоявший в выделении т.н. «теплоты Томсона» при протекании тока по проводнику при наличии градиента температуры. Большое значение в формировании атомистических представлений имел произведённый Томсоном расчёт размеров молекул на основе измерений поверхностной энергии плёнки жидкости. В 1870 г. он установил зависимость упругости насыщенного пара от формы поверхности жидкости.
Томсон внёс большой вклад в развитие практических применений разных разделов науки. Он был главным научным консультантом при прокладке первых трансатлантических кабелей. Сконструировал целый ряд точных электрометрических приборов: «кабельный» гальванометр, квадрантный и абсолютный электрометры, сифон-отметчик для приема телеграфных сигналов. Предложил использовать многожильные провода из медной проволоки.
Работы по прокладке трансатлантического кабеля пробудили в Томсоне интерес к навигации. Учёный создал усовершенствованный морской компас с компенсацией магнетизма железного корпуса судна, изобрёл эхолот непрерывного действия, мареограф (прибор для регистрации уровня воды в море или реке). Известны исследования Томсона по теплопроводности, работы по теории приливов, распространению волн по поверхности, по теории вихревого движения.
В 1892 г. У. Томсону за его большие научные заслуги был присвоен титул барона Кельвина (по имени речки Кельвин, протекающей вблизи университета в г. Глазго). Томсон написал огромное количество работ по экспериментальной и теоретической физике. Пятидесятилетний юбилей его научной деятельности в 1896 г. отмечали физики всего мира. В чествовании Томсона участвовали представители разных стран, в том числе русский физик Н.А. Умов; в 1896 г. Томсон был избран почётным членом Санкт-Петербургской Академии наук. В честь Уильяма Томсона названа единица измерения абсолютной температуры - кельвин.
3. Критика теории эволюции
Известен как критик теории эволюции в биологии. На основе расчёта возраста Солнца, в котором, по его мнению, протекают химические процессы горения, являющиеся источником энергии, указал на недостаточность исторического времени для того, чтобы эволюция животного мира привела к современному состоянию. Открытие в 1903 году закона, связывающего с радиоактивным распадом высвобождение тепловой энергии, не побудили его изменить собственные оценки возраста Солнца. Возраст Земли им оценивался в 20--40 млн. лет.
Список использованной литературы
1. Большая советская энциклопедия. В 30 тт.
2. Кудрявцев П.С. Курс истории физики. М.: Просвещение, 1982. - 448с.
Размещено на Allbest.ru
...Подобные документы
Открытие сложного строения атома – важнейший этап становления современной физики. Модель Томпсона и ее противоречие с опытами по исследованию распределения положительного заряда в атоме. Определение размеров атомного ядра. Открытие радиоактивности.
презентация [1,7 M], добавлен 09.04.2015Основные годы жизни Шарля Огюстена Кулона. Краткая характеристика научной деятельности ученого, основные заслуги в области военной инженерии и физики, ученые степени и звания, главные его открытия и понятия. Активное участие в жизни Академии наук.
доклад [182,2 K], добавлен 03.05.2009Изучение истории формирования термодинамики как научной дисциплины на основе молекулярно-кинетической теории. Ознакомление с содержанием теоремы сохранения, превращения энергии (Гельмгольц, Майер, Джоуль) и законом возрастания энтропии (Клаузиус, Томсон).
контрольная работа [44,4 K], добавлен 03.05.2010Электромагнитная теория механики, связь материи с зарядом, массы с энергией, квантовая природа элементарных явлений и их революционное влияние на все основные понятия физики. Противоречия между картиной движущегося электрона и квантовыми постулатами.
реферат [31,4 K], добавлен 20.09.2009Значение физики в современном мире. Общая характеристика научных открытий ХХ века, самые значительные научные открытия. Вклад современной физики в выработку нового стиля планетарного мышления. Выдающиеся физики столетия и характеристика их открытий.
реферат [741,3 K], добавлен 08.02.2014Эрнест Резерфорд — "отец" ядерной физики, создатель планетарной модели атома, лауреат Нобелевской премии по химии 1908 года. Биография ученого, происхождение, образование; научная деятельность, открытия. Эксперимент Гейгера - Марсдена с золотой фольгой.
презентация [51,9 K], добавлен 02.04.2013Краткие биографические сведения о великом физике, внесшем огромный вклад в развитие науки М. Фарадее. Первые самостоятельные исследования, научные публикации. Открытие ученым явления электромагнитной индукции, явления вращения плоскости поляризации света.
реферат [27,0 K], добавлен 18.01.2011Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.
презентация [336,7 K], добавлен 18.05.2011Основные этапы жизни советского физика П. Капицы. Студенческие годы и начало преподавательской работы ученого. Получение Нобелевской премии за фундаментальные изобретения и открытия в области физики низких температур. Роль Капицы в становлении физики.
презентация [3,8 M], добавлен 05.06.2011Изучение научного и жизненного пути Льва Давидовича Ландау - советского физика-теоретика, основателя научной школы и лауреата Нобелевской премии. Личная жизнь и собственная теория счастья. Достижения и награды. Работы в области теоретической физики.
презентация [743,5 K], добавлен 16.10.2013Значение деятельности Э. Ленца в развитии учения об электричестве. Дополнение Ленцем закона об электромагнитной индукции, лежащего в основе современной электротехники. Главнейшие результаты исследований Ленца, которые излагаются во всех учебниках физики.
презентация [461,8 K], добавлен 06.01.2012Краткие сведения о жизненном пути и деятельности Максвелла Джеймса Клерка - британского физика и математика. Кинетическая теория газов и теоретические выводы Максвелла о существовании электромагнитного поля. Основные достижения и изобретения физика.
презентация [141,6 K], добавлен 01.02.2013Происхождение понятия "физика". Развитие науки в России. Основные физические термины. Точность и погрешность измерений. Наблюдения и опыты как источники физических знаний. Значение физики для развития техники. Физические величины и их измерение.
реферат [16,4 K], добавлен 20.06.2009Свойства жидкостей и их поверхностное натяжение. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества. Явления смачивания и несмачивания. Краевой угол. Капиллярный эффект. Капиллярные явления в природе и технике.
контрольная работа [1,5 M], добавлен 06.04.2012Принципы симметрии волновых функций. Использование принципа Паули для распределения электронов в атоме. Атомные орбитали и оболочки. Периодическая система элементов Менделеева. Основные формулы физики атомов и молекул. Источники рентгеновского излучения.
реферат [922,0 K], добавлен 21.03.2014Анализ всеобщего свойства движения веществ и материи. Способы определения квазиклассического магнитного момента электрона. Сущность, особенности и доказательство теории WAZA, ее вклад в развитие физики и естествознания. Парадоксы в теории П. Дирака.
доклад [137,8 K], добавлен 02.03.2010Сущность молекулы как наименьшей частицы вещества, обладающей всеми его химическими свойствами, экспериментальное доказательство их существования. Строение молекул, взаимосвязь атомов и их прочность. Методы измерения размеров молекул, их диаметра.
лабораторная работа [45,2 K], добавлен 11.02.2011Значение А.Г. Столетова как ученого для русской и мировой науки. Детские годы ученого. Учеба в гимназии и Московском университете. Начало научной и преподавательской деятельности. Работа ученого "Исследование о функции намагничивания мягкого железа".
реферат [218,1 K], добавлен 29.04.2016Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.
курсовая работа [846,7 K], добавлен 09.05.2014Теория фотометрического метода. Виды фотометрических измерений. Фотометрия как раздел прикладной физики, занимающийся измерениями света. Определение закона Бугера-Ламберта. Методы фотометрического анализа. Основные приёмы фотометрических измерений.
реферат [55,2 K], добавлен 09.03.2010