Оценка надёжности в статическом режиме
Особенности повреждения элементов типа "обрыв цепи". Анализ ошибок обслуживающего персонала при различных ремонтных переключениях. Основные аспекты оценки надёжности электроснабжения узлов нагрузки в статическом, динамическом и ремонтном режимах работы.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 02.12.2014 |
Размер файла | 220,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Введение
Аварийные перерывы в электроснабжении потребителей, которые получают электроэнергию от соответствующих секций шин подстанций происходят как из-за повреждения электрооборудования, отказов средств защиты, так и по вине обслуживающего и эксплуатирующего электрооборудование подстанции персонала.
Оценку надёжности электроснабжения узлов нагрузки будем определять в следующих режимах работы: статическом, динамическом и ремонтном [1].
В статическом режиме учитываются повреждения элементов типа «обрыв цепи». К повреждениям такого типа будем относить отказы во вторичных цепях релейной защиты и автоматики, которые приводят к автоматическому отключению выключателей, ложное и излишнее срабатывание защиты. Зная число аварийных отключений выключателей за время наблюдения, число однотипных выключателей, эксплуатирующихся на данной подстанции, определяется параметр потока его отказов типа «обрыв цепи».
В этом режиме работы подстанции производится диагностика состояния (с постоянным интервалом времени И) защитных коммутационных аппаратов и выявляются те отказы в системе автоматического отключения, которые могли бы привести к отказу их в срабатывании при появлении короткого замыкания (КЗ) в зоне действия их токовых защит. При этом проверяются уставки релейной защиты, целостность и пригодность к использованию контактов реле, работоспособность катушки отключения, осматривается привод выключателя, дугогасительные камеры, контактная система, изоляция, оценивается возможность перекрытия изоляции при внешних и внутренних перенапряжениях, проверяется система автоматического ввода резерва (АВР) на секционном выключателе, работоспособность защит минимального напряжения и т. д.
Зная число повреждений выявленных в системе отключения выключателей в течение времени наблюдения t, число выключателей на подстанции одного класса напряжения определяется параметр потока «отказов в срабатывании» системы отключения i-того защитного коммутационного аппарата.
Под защитным коммутационным аппаратом будем понимать, такое устройство, которое позволяет защитить (отключить) потребитель от аномальных режимов его работы (КЗ, перегрузка, и т. д.).
Диагностике подвергаются так же сборные шины и разъединители: осматриваются крепления опорных изоляторов, их состояние (трещины, пыль на поверхности), контактная система, измерительные приборы, выявляются и устраняются все видимые внешние и внутренние повреждения. Диагностика состояния сборных шин и разъединителей позволяет увеличивать интервалы времени между появлениями КЗ на шинах подстанции либо на элементах разъединителя, через которые протекают рабочие токи.
В динамическом режиме учитываются: отказы типа «короткое замыкание» (КЗ) и отказ системы отключения выключателя в срабатывании при появлении КЗ в зоне действия его токовой защиты.
Повреждение типа «КЗ» может происходить в элементах сети, через которые проходит первичный рабочий и аварийный ток (отходящие от коммутационного аппарата линии, шины, разъединители, обмотки силовых трансформаторов и др.)
Под живучестью узла нагрузки будем понимать способность потребителей и их автоматических средств защиты противостоять возмущениям, которые могут привести к аварийному его отключению. Живучесть узла нагрузки определяется в динамическом режиме, т.е. когда в системе случайно происходят КЗ.
В ремонтном режиме учитываются ошибки обслуживающего персонала при различных ремонтных переключениях, которые могут приводить к обесточиванию узла нагрузки.
Фиксируется, число аварийных случаев отключения секции шин подстанции за время наблюдения Т из-за ошибок эксплуатирующего и обслуживающего персонала. Полученная информация позволяет определить параметр потока аварийных отключений секции шин из-за ошибок человека.
Цель исследования
Оценить надёжность электроснабжения потребителей, которые получают электроэнергию от одной из секций шин подстанции в статическом, динамическом и ремонтном режиме работы.
ремонтный электроснабжение обслуживающий
1. Результаты исследования
Оценка надёжности электроснабжения в статическом и ремонтном режиме не вызывает затруднения. В динамическом режиме необходимо учитывать два параметра - параметр потока КЗ в элементе сети и отказ в срабатывании защитного коммутационного аппарата через сквозной аварийный ток.
Частоту совпадения в пространстве и времени таких событий как КЗ в защищаемом элементе и отказ в срабатывании коммутационных аппаратов, через которые прошел сквозной аварийный ток, можно определить с помощью формулы [2].
где - параметр потока КЗ в j-том элементе сети;
- параметр потока отказов в срабатывании защитного коммутационного аппарата;
- интервал времени между диагностикой системы отключения защитного коммутационного аппарата;
- число защитных коммутационных аппаратов через которые прошел сквозной аварийный ток и привел в действие их релейные защиты;
- число j-тых элементов, которые получают электроэнергию от i-того защитного коммутационного аппарата.
При исчезновении напряжения, подаваемого на узел нагрузки (секцию шин подстанции), происходит отключение вводного КРУ защитой минимального напряжения («нулевая» защита), блок-контакты отключившегося выключателя запускают АВР на секционном выключателе и обеспечивают бесперебойное электроснабжение шин подстанции.
Аварийное отключение узла нагрузки происходит при совпадении в пространстве и времени двух случайных событий: аварийное отключение ф аппарате;
- интервал времени между диагностиками системы отключения АВР на i-том секционном коммутационном аппарате.
Формулы справедливы при выполнении следующих условий: интервалы времени между появлениями КЗ в элементах сети, интервалы времени между отключениями вводных КРУ защитой минимального напряжения и интервалы времени между отказами в срабатывании защитных коммутационных аппаратов не противоречат экспоненциальной функции распределения вероятностей с параметрами соответственно: и выполняются следующие соотношения:
При выводе первых двух формул формул были приняты следующие допущения: устройства защиты могут выходить из строя только тогда, когда они находятся в режиме ожидания; если к моменту возникновения повреждения в сети, на которое должна реагировать РЗ, она находилась в исправном состоянии, то маловероятен ее выход из строя в режиме тревоги [3].
Под отказом в срабатывании защитного коммутационного аппарата будем понимать такой его отказ, который приводит к отказу в отключении поврежденного элемента сети при КЗ в зоне действия его релейной защиты, либо при исчезновении напряжения на питающей КРУ линии, отказывает в срабатывании «нулевая» защита.
В случае когда первая формула примет вид[6]:
Параметр потока аварийных отключений секции шин подстанции:
где - параметр потока аварийных отключений секции шин в статическом режиме;
- параметр потока аварийных отключений секции шин в динамическом режиме;
- параметр потока аварийных отключений секции шин в ремонтном режиме.
Вероятность бесперебойного электроснабжения секции шин подстанции в течение времени t.
Если [5]
Среднее время между аварийными отключениями секций шин подстанции:
Среднее время восстановления электроснабжения секции шин подстанции, после их аварийного отключения:
где - параметр потока аварийного отключения секции шин подстанции из-за совпадения в пространстве и времени событий соответствующих k-му минимальному сечению;
- среднее время восстановления электроснабжения секции шин подстанции после происшедших отказов в соответствии с k-тым минимальным сечением;
- число минимальных сечений в схеме замещения.
Коэффициент готовности схемы подстанции:
С помощью приведенных формул представляется возможным оценить надёжность подстанции, которая снабжает электроэнергией промышленные предприятия.
Рисунок 1 Принципиальная схема главной понизительной подстанции (ГПП)
Обозначим следующие события: - появление КЗ в j-том элементе схемы; - появление в i-том коммутационном аппарате отказов типа «обрыв цепи»; - отказ в срабатывании i-того коммутационного аппарата из-за отказов «токовых» защит; - аварийное отключение вводного выключателя из-за действия «нулевой» защиты; - отказ в срабатывании коммутационного аппарата под номером 4 из-за отказов в срабатывании «нулевой» защиты при исчезновении напряжения на секции шины I; - обесточивание секции шин I из-за ошибок персонала[4].
Используя принципиальную схему подстанции рис. 1, принятые обозначения аварийных событий, строим «дерево», которое объясняет причины аварийного отключения секции шин I рис. 2 и схему «минимальных сечений» рис. 3.
Рисунок 2 Дерево, объясняющее причины аварийного отключения секции шин І
Рисунок 3 Cхема минимальных сечений
Схемы рис. 2 и 3 получены при следующих принятых допущениях: учитываются только двойные совпадения в пространстве и времени аварийных событий; при повреждении обмоток силового трансформатора 5, защита на коммутационном аппарате 6 надежно его отключит; отказы в системе отключения выключателя и средств защиты выявляются в результате диагностики, которая проводится с интервалом времени ; появление одновременно двух КЗ в различных элементах системы маловероятное событие и в расчетах не учитываются.
Используя полученную схему «минимальных сечений» и исходные данные примера, находим параметр потока аварийных отключений секции шин I:
Установлено, что из-за ошибок персонала в обслуживании электрооборудования происходит 47,3 % аварийных отключений секции шин подстанции, а остальные 52,7% по вине ненадежного электрооборудования и средств защиты.
Выводы
Для обеспечения бесперебойного электроснабжения потребителей элек-троэнергии особое внимание следует обращать на подбор и обучение кадров, которые занимаются обслуживанием и ремонтом электрооборудования подстанций. Для получения более достоверной и объективной оценки надежности электроснабжения потребителей целесообразно вести наблюдение не за группой однотипного электрооборудования нескольких подстанций, а наблюдать за отдельными образцами оборудования конкретно взятой подстанции (КРУ, шины, разъединители, трансформаторы и т.д.), начиная с момента ввода подстанции в эксплуатацию и до ее утилизации.
Список литературы
1. Руденко Ю. Н., Ушаков И. А. Надежность систем энергетики.-- М.: Наука, 1986--320 с.
2. Ковалев А. П., Якимишина В. В. О живучести объектов энергетики. Промышленная энергетика.--2006. №1.-- С. 25-29.
3. Фабрикант В. П. О применении теории надежности к оценке устройств релейной защиты --Электричество. --1965. №9. -- С. 15-19.
4. Китушин В.Г. Надежность энергетических систем. М: Высш.шк., 1984. -- 256 с.
5. Надежность систем энергетики. Терминология.М.: Наука, 1980.--Вып.95.--44с.
6. Китушин В.Г. Определение характеристик отказов системы при цепочечном развитииаварий. -- Изв. АНСССР. Энергетика и транспорт, 1977, №3. С. 20-30.
7. Гук Ю.Б. Анализ надежности электроэнергетических установок -- Л.: Энергоатомиздат.Ленинградское отделение, 1988.--224 с.
Размещено на Allbest.ru
...Подобные документы
Методика расчета надёжности схемы внутреннего электроснабжения насосной станции несколькими способами. Показатели надёжности элементов сети. Нахождение вероятности отказа для различных элементов. Порядок составления системы дифференциальных уравнений.
контрольная работа [621,4 K], добавлен 22.08.2009Оценка категории надёжности электроснабжения, чертеж варианта цеховой схемы электроснабжения. Чертеж схемы питающей сети переменного тока. Способы прокладки кабельных линий для подключения оборудования. Расчет электрической нагрузки для работы цеха.
контрольная работа [1015,5 K], добавлен 06.06.2011Требования к надёжности электроснабжения. Выбор напряжения, типа трансформаторов, цеховых трансформаторных подстанций и схемы электроснабжения предприятия. Автоматизированное проектирование внутризаводской электрической сети. Проверка силовой аппаратуры.
дипломная работа [483,7 K], добавлен 24.06.2015Категория надёжности электроснабжения и выбор схемы электроснабжения цеха. Выбор источника света. Размещение осветительных приборов. Расчет нагрузки освещения штамповочного участка, выбор числа и мощности трансформатора. Расчет токов короткого замыкания.
курсовая работа [360,3 K], добавлен 26.05.2016Реконструкция ПС "Северная", модернизация и замена устаревшего электрооборудования и автоматики. Установка вакуумных и электрогазовых выключателей. Схема электрической сети трансформаторной подстанции "Северная", работающей в автоматическом режиме.
дипломная работа [1,0 M], добавлен 03.09.2010Характеристика категорий надёжности электроснабжения предприятия: расчёт нагрузок цеха. Обоснование выбора напряжения и схемы внутрицеховых, внутризаводских сетей, внешнего электроснабжения. Особенности расчёта токов короткого замыкания, кабельных линий.
курсовая работа [520,6 K], добавлен 20.01.2010Исследование однородной линии без потерь в установившемся и переходном режимах. Распределение значений напряжения и тока вдоль линии, замкнутой на заданную нагрузку в установившемся режиме. Законы изменения тока и напряжения нагрузки в переходном режиме.
контрольная работа [793,3 K], добавлен 04.09.2012Характеристика технологического процесса и требования к надёжности электроснабжения. Определение расчетных электрических нагрузок по методу упорядоченных диаграмм. Выбор кабельных линий автоматических выключателей, мощности силовых трансформаторов.
дипломная работа [558,8 K], добавлен 30.01.2011Проектирование эффективной (с точки зрения надёжности, качества и экономичности) системы электроснабжения авторемонтного завода. Расчёт электрических нагрузок. Место расположения и центр питания мощности предприятия. Внешнее и внутреннее электроснабжение.
курсовая работа [1,5 M], добавлен 24.06.2015Характеристика задач энергетики, которые решаются с помощью методов теории вероятностей. Физический смысл формулы полной вероятности. Сущность основных условий гамма-распределения. Ключевые вопросы требования и учёта надёжности систем электроснабжения.
контрольная работа [244,7 K], добавлен 26.10.2011Исследование режима работы основных элементов электрической цепи: источника (генератора), приемника и линии электропередачи на примере цепи постоянного тока. Влияние тока в цепи или сопротивления нагрузки на параметры режимов работы элементов цепи.
лабораторная работа [290,8 K], добавлен 22.12.2009Расчет и анализ электрических цепей: синусоидального тока в установившемся режиме, трехфазных при различных схемах соединения нагрузки; линейной с несинусоидальным источником. Определение значений токов и баланса мощности методами Рунге-Кутты и Эйлера.
курсовая работа [572,7 K], добавлен 25.04.2015Выбор вида защиты и автоматики для систем электроснабжения, тока срабатывания защиты и срабатывания реле. Расчёт коэффициента чувствительности выбранных защит в основной и резервируемой зоне. Проверка трансформаторов тока для проектируемых защит.
курсовая работа [317,0 K], добавлен 22.03.2014Методика проведения испытаний древесного образца на статический изгиб и разрушение. Вид его излома. Расчет максимальной нагрузки. Определение пределов прочности образцов с поправкой на влажность и относительной точности определения среднего выборочного.
лабораторная работа [884,3 K], добавлен 17.01.2015Изучение метода анализа линейной электрической цепи при различных воздействиях в различных режимах с применением вычислительной техники. Проведение анализа заданной линейной разветвленной электрической цепи численным, операторным, частотным методами.
курсовая работа [1,3 M], добавлен 21.01.2012Характеристика электромеханического цеха, его структура и оборудование. Классификация помещений по взрыво-, пожаро-, электробезопасности. Категория надёжности электроснабжения. Расчёт электрических нагрузок, компенсирующего устройства и трансформаторов.
курсовая работа [319,0 K], добавлен 02.02.2011Анализ соотношения между синусоидальными напряжениями и токами при последовательном и параллельном соединении резистивных, индуктивных и емкостных элементов цепи. Оценка параметров последовательной и параллельной схем замещения реальных элементов цепи.
лабораторная работа [137,0 K], добавлен 24.11.2010Общий анализ линейных электрических цепей постоянного и синусоидального тока в установившемся режиме. Изучение трехфазных цепей при различных схемах соединения нагрузки. Правила расчета мощности и тока для соединения с несинусоидальным источником.
контрольная работа [1,9 M], добавлен 05.07.2014Проектирование и определение надежности трех вариантов схем электроснабжения узлов нагрузки предприятия. Расчет частоты отказов сборных шин и выключателей. Вычисление средней продолжительности вынужденных перерывов электроснабжения и плановых ремонтов.
контрольная работа [1,1 M], добавлен 02.02.2014Характеристика механического цеха тяжелого машиностроения: потребители электроэнергии, технологический процесс. Категория надёжности электроснабжения и выбор схем ЭСН. Расчёт электрических нагрузок, компенсирующего устройства и выбор трансформаторов.
курсовая работа [72,5 K], добавлен 23.05.2014