Физический смысл центрального абсолютно упругого и неупругого соударения шаров

Физические закономерности, возникающие при ударе двух тел. Закон сохранения импульса в проекции на горизонтальную ось в идеальном эксперименте. Принцип работы лабораторной установки для определения центрального абсолютно упругого соударения шаров.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык русский
Дата добавления 17.12.2014
Размер файла 115,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

1. Исследование упругого соударения шаров

Физические закономерности, возникающие при ударе двух тел, широко используются в науке и технике, например, при ковке металлических изделий, забивании свай под фундаменты сооружений, расчете механизмов копра, испытании различных материалов и конструкций на прочность, изучении расхода и потерь энергии в этих и других процессах. Поэтому для понимания и в дальнейшем целенаправленного использования на практике явления удара необходимо изучить его закономерности.

Под ударом понимается явление изменения скоростей изучаемых тел за очень короткий промежуток времени их столкновения.

При соударении тел друг с другом они претерпевают деформации. При этом кинетическая энергия, которой обладают тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации или внутреннюю энергию тел.

Существует два предельных вила удара: абсолютно неупругий и абсолютно упругий.

Абсолютно неупругий удар характеризуется тем, что механическая энергия тел (сумма кинетической и потенциальной) полностью или частично превращается во внутреннюю энергию и энергию неупругой деформации тел.

При абсолютно упругом ударе механическая энергия тел не переходит в другие, немеханические виды энергии. Абсолютно упругий удар в природе не происходит. Следовательно, часть механической энергии всегда превращается во внутреннюю энергию - теплоту, и удар называется просто упругим.

В настоящей работе изучаются центральный упругий и неупругий удары металлических шаров. В этом случае скорости шаров перед ударом направлены вдоль прямой, соединяющей их геометрические центры.

Процесс соударения протекает следующим образом. За первую половину времени удара (при сближении центров шаров) происходит переход кинетической энергии ударяющего шара в общую потенциальную энергию упругой деформации, а за вторую половину времени удара (при удалении центров шаров) потенциальная энергия упругой деформации целиком переходит опять в кинетическую. Время, в течение которого происходит превращение кинетической энергии шара в потенциальную энергию упругой деформации, и наоборот, потенциальной энергии в кинетическую, называется временем соударения шаров.

Время соударения шаров мало. Тогда систему соударяющихся шаров можно считать изолированной, в которой выполняются законы сохранения импульса и энергии.

До столкновения ударяющий шар имел скорость V0. а ударяемый покоился, и его скорость V=0. После упругого соударения шаров скорость первого шара будет Vх, а второго V2

Запишем закон сохранения импульса:

где - импульс первого шара до удара, - импульсы шаров после удара.

Отсюда:

(1)

где - массы шаров.

Закон сохранения энергии в процессе удара выразится формулой:

(2)

где: Kо - кинетическая энергия ударяющего шара перед столкновением; и - энергия шаров после столкновения; - теплота, выделяемая в процессе удара.

Решив уравнение (2), можно вычислить теплоту, выделяемую при ударе:

или:

(3)

2. Описание экспериментальной установки

Внешний вид лабораторной установки представлен на рис. 1.

Рис. 1

физический импульс проекция соударение

Лабораторная установка состоит из корпуса 1, на котором закреплен штатив 2. К штативу на тонких нерастяжимых нитях 3 длиной / подвешены металлические шары 4 (т, я?з или я?4) и 5 массами (пь)- На лицевой панели корпуса имеются кнопки «ВКЛ» и «ПУСК» для управления электромагнитом. Характеристики установки приведены в табл. 1.

Таблица 1

, кг

, кг

, кг

, кг

0.105

0.105

0,172

0.192

На корпусе установлен электромагнит 6 так, что его ось проходит через центр тяжести шара 5. На штативе 2 закреплен транспортир 7, в котором имеются правая и левая шкалы. Нити 3 выполняют роль указателей при определении их углов отклонения от вертикали. В исходном положении нити обоих шаров строго вертикальны и пересекают шкалы в нулевом делении. При этом шары 4 и 5 касаются друг друга.

3. Подготовка установки к работе

Включить вилку в сеть и нажать кнопку «ВКЛ», загорится индикатор в правой части прибора. Взять шар 5 рукой и поднести его к сердечнику электромагнита 6. Электромагнит захватывает и удерживает шар 5. Нить отклоняется от вертикали на угол а, который отсчитываете» по правой шкале транспортира 7. Если шар 4 при этом качается, следует остановить его рукой.

Чтобы освободить шар 5, нужно нажать кнопку «ПУСК», электромагнит отключится. Освободившись, шар 5 двигается вниз и ударяет по шару 4. В результате центрального удара шары расходятся, при этом нити отклоняются на углы и от вертикали. В какой-то момент времени шары останавливаются, в этот момент надо измерить углы и , которые отсчитываются по правой и левой шкалам транспортира 7.

Меняя шары, можно исследовать центральный упругий удар шаров одинаковой и различной массы, а добавляя к шарам пластилиновую проставку, - и неупругий удар шаров. Для повышения точности рекомендуется продублировать каждый опыт не менее 5 раз.

4. Методика эксперимента

Методика эксперимента заключается в организации центрального упругого и неупругого соударения шаров, экспериментальном определении скоростей шаров до и после удара, расчете и сравнении суммарного импульса шаров до и после соударения.

В идеальном эксперименте закон сохранения импульса в проекции на горизонтальную ось имеет следующий вид:

(4)

где - импульс первого шара до удара; - импульс шара 5 после удара; - импульс шара 4 после удара.

В реальном эксперименте за счет погрешностей измерений и потерь энергии равенство не выполняется. Абсолютную погрешность эксперимента найдем по формуле:

(5)

Относительная погрешность вычисляется по формуле

(6)

Рис. 2

Для определения импульса шаров требуется знать их скорости до и после соударения. Экспериментальное определение скоростей связано с некоторыми трудностями метрологического плана. Более просто можно определить скорости шаров расчетным путем на основе закона сохранения энергии. Будем рассматривать систему, состоящую из шара 4 или 5 и Земли, как изолированную, в которой действуют только консервативные силы.

Механическая энергия шара складывается из кинетической К и потенциальной П и в любой точке траектории остается постоянной. В состоянии готовности шар 5, захваченный электромагнитом, поднят на некоторую высоту Л по отношению к исходному положению (рис. 2). Шар массой обладает потенциальной энергией, рассчитываемой по формуле:

(7)

Высота h связана с длиной l нити и углом а ее отклонения от вертикали соотношением:

h = (8)

Под действием силы тяжести шар 5 будет опускаться вниз, двигаясь по дуге окружности радиусом /. При этом его потенциальная энергия уменьшается, а кинетическая - растет. Кинетическая энергия шара

В нижней точке траектории потенциальная энергия переходит в кинетическую:

(9)

Шар 5 ударяет по неподвижному шару 4, имея скорость , которую найдем по формуле:

(10)

В результате соударения шары отскакивают друг от друга, имея начальные скорости , и (рис. 3), и спустя некоторое время останавливаются. При этом нити отклоняются на углы и от вертикали. Начальные скорости шаров и углы отклонения нитей также связаны законом сохранения энергии. Скорость шара 4 после соударения определим по формуле

(11)

Рис. 3

Скорость шара 5 после соударения найдем по формуле:

(12)

Подсчитаем импульс шара 5 до удара по формуле:

(13)

Импульс шара 5 после удара определим по формуле

(14)

Подсчитаем импульс шара 4 после удара по формуле

(15)

Таким образом, измеряя длину нитей и углы отклонения нитей до и после соударения шаров по формулам, можно подсчитать скорости и импульсы шаров, а также абсолютную и относительную погрешности эксперимента. Если относительная погрешность не превышает 5%, можно считать, что закон сохранения импульса выполняется.

Литература

1. Детлаф A.A., Яворский Б.М. Курс физики. - М.: Высшая школа, 1989.

2. Лабораторный практикум по физике: Учебное пособие для студентов втузов /Под ред. К.А. Барсукова и Ю.И.Уханова. - М: Высшая школа, 1988.

3. Трофимова Т.И. Курс физики: Учебное пособие для вузов. - М.: Высшая школа, 2000.

Размещено на Allbest.ru

...

Подобные документы

  • Изучение законов сохранения импульса и механической энергии на примере ударного взаимодействия двух шаров. Определение средней силы удара, коэффициента восстановления скорости и энергии деформации шаров. Абсолютно упругий, неупругий удар, элементы теории.

    контрольная работа [69,4 K], добавлен 18.11.2010

  • Удар абсолютно упругих и неупругих тел. Закон сохранения импульса и сохранения момента импульса. Физический смысл соударения упругих и неупругих тел. Практическое применение физического явления соударения тел. Механический метод разрушения пород.

    контрольная работа [240,4 K], добавлен 16.09.2013

  • Исследование механизма упругих и неупругих столкновений, изучение законов сохранения импульса и энергии. Расчет кинетической энергии при абсолютно неупругом ударе и описание механизма её превращения во внутреннюю энергию, параметры сохранения импульса.

    лабораторная работа [129,6 K], добавлен 20.05.2013

  • Проверка основного закона динамики вращательного движения и определение момента инерции динамическим методом. Законы сохранения импульса и механической энергии на примере ударного взаимодействия двух шаров. Вращательное движение на приборе Обербека.

    лабораторная работа [87,7 K], добавлен 25.01.2011

  • Кинематическое предположение Ньютона. Понятие упругого и неупругого удара. Соударение точки с гладкой поверхностью. Изменение кинематического момента и количества движения. Нахождение ударного импульса. Прямой центральный удар двух твердых тел.

    лекция [399,6 K], добавлен 02.10.2013

  • Понятие абсолютно черного тела. Максвелловская теория электромагнетизма. Релятивистский закон сохранения энергии – массы. Теория относительности А. Эйнштейна. Поглощательная способность тела. Закон теплового излучения Г. Кирхгофа, Стефана-Больцмана.

    реферат [748,6 K], добавлен 30.05.2012

  • Сущность понятия "удар"; измерение параметров ударного взаимодействия тел. Применение законов сохранения механической энергии и импульса при столкновении; изменение ударных сил с течением времени. Последовательность механических явлений при ударе.

    презентация [26,4 K], добавлен 04.08.2014

  • Коэффициент восстановления. Кинематическое предположение Ньютона. Соударение точки с гладкой поверхностью. Постановка общей задачи о соударении. Нахождение ударного импульса. Изменение кинетической энергии. Абсолютно упругий и абсолютно неупругий удары.

    презентация [399,7 K], добавлен 30.07.2013

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Анализ скорости звука в металлах методом их соударения, измерения времен соприкосновения и распространения волны. Измерения при соударении стержней одинаковых по размерам и материалу, из одинакового материала и одинакового сечения, но разной длины.

    лабораторная работа [203,1 K], добавлен 06.08.2013

  • Изучение сути законов сохранения (вещества, импульса) - фундаментальных физических законов, согласно которым при определенных условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

    контрольная работа [374,1 K], добавлен 26.08.2011

  • Понятие механической системы; сохраняющиеся величины. Закон сохранения импульса. Взаимосвязь энергии и работы; влияние консервативной и результирующей силы на кинетическую энергию частицы. Момент импульса материальной точки; закон сохранения энергии.

    курсовая работа [111,6 K], добавлен 06.12.2014

  • Экспериментальные закономерности теплового излучения. Спектральная плотность излучения. Поток лучистой энергии. Абсолютно черное тело и Закон Кирхгофа. Экспериментальная зависимость излучательной способности от температуры. Закон смещения или закон Вина.

    презентация [1,8 M], добавлен 23.08.2013

  • Измерение полного импульса замкнутой системы. Строение и свойства лазерного наноманипулятора. Направление момента силы относительно оси. Закон изменения и сохранения момента импульса. Уравнение движения центра масс. Системы отсчета, связанные с Землей.

    презентация [264,6 K], добавлен 29.09.2013

  • Понятие работы и мощности, их измерение. Взаимосвязь между работой и энергией. Кинетическая и потенциальная энергии. Закон сохранения энергии и импульса. Столкновение двух тел. Формулы, связанные с работой и энергией при поступательном движении.

    реферат [75,6 K], добавлен 01.11.2013

  • Закон сохранения импульса, закон сохранения энергии. Основные понятия движения жидкостей и газов, закон Бернулли. Сила тяжести, сила трения, сила упругости. Законы Исаака Ньютона. Закон всемирного тяготения. Основные свойства равномерного движения.

    презентация [1,4 M], добавлен 22.01.2012

  • Изучение процесса разрушения твердых тел при распространении трещины. Возникновение метода конечных элементов. Введение локальной и глобальной нумерации узлов. Рассмотрение модели трещины в виде физического разреза и материального слоя на его продолжении.

    курсовая работа [2,7 M], добавлен 26.12.2014

  • Движение несвободной частицы. Силы реакции и динамика частиц. Движение центра масс, закон сохранения импульса системы. Закон сохранения кинетического момента системы. Закон сохранения и превращения механической энергии системы частиц. Теорема Кёнига.

    доклад [32,7 K], добавлен 30.04.2009

  • Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.

    контрольная работа [151,8 K], добавлен 04.12.2010

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.