Волновая и геометрическая оптика
Свет как электромагнитные волны. Открытие явления интерференции. Особенности дифракционных явлений в распространения световой волны в различных средах, учёт амплитуд и фаз. Закон отражения и преломления геометрического действия видимого излучения.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.12.2014 |
Размер файла | 344,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Государственное бюджетное образовательное учреждение среднего профессионального образования города Москвы
Техникум Малого Бизнеса № 67
Реферат
на тему: Волновая и геометрическая оптика
Выполнил:
Богданов М.П.
1. Волновая оптика
1.1 Свет как электромагнитные волны
Оптика - это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10-5 - 10-7 м. Значение именно этой области спектра электромагнитных волн связанно с тем, что внутри неё в узком интервале длин волн от 0,4 до 0,76 мкм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. С точки зрения физики происходящих процессов выделение столь узкой области видимого света не имеет особого смысла, поэтому в понятие ,,оптический диапазон” включают обычно ещё и инфракрасное и ультрафиолетовое излучение. Но и для них принятые границы спектра достаточно условны. По существу, эти границы определяются используемыми способами получения и регистрации электромагнитных волн. свет волна интерференция дифракция
Излучение электромагнитных волн происходит при ускоренном движении электрических зарядов. Электромагнитные волны радиодиапазона излучаются антеннами радиопередатчиков при вынужденных колебаниях электронов в антеннах. Все электроны в антенне совершают колебания в одинаковой фазе. Поскольку эти колебания могут поддерживаться очень долго и с высоким постоянством частоты, то излучаемые при этом радиоволны с огромной степенью точности можно считать монохроматическими.
В оптике всё иначе. Любой источник света - это скопление множества возбуждённых или непрерывно возбуждаемых атомов. Генератор световой волны - это каждый отдельный атом вещества. Возбуждённый атом излучает цуг почти монохроматических волн конечной протяжённости. Характерной особенностью каждого элементарного источника является его самостоятельность, независимость от других атомов. Поэтому даже в том случае, когда отдельные цуги можно характеризовать одной и той же длиной волны л, соотношение фаз между цугами волн, излученных разными атомами, имеют совершенно случайный характер и непрерывно меняются. Только в лазере, где используется вынужденное излучение, удаётся заставить все возбуждённые атомы излучать электромагнитные волны согласованно, подобно тому как это происходит в антенне радиопередатчика. В результате образуется световая волна, близкая по своим свойствам к идеальной монохроматической, - когерентная электромагнитная волна. Излучение обычных источников света, таких, как раскаленные твёрдые или жидкие тела, возбуждённые электрическим разрядом газы и т. д., представляет собой наложение огромного числа не согласованных между собой цугов волн, т. е. фактически ,,световой шум” - беспорядочные, некогерентные колебания электромагнитного поля.
Наблюдать интерференцию света от таких некогерентных источников можно, только используя специальные приёмы - разделяя исходный пучок на два. Хотя в каждом из этих пучков, как и в исходном, фазовые соотношения между различными цугами непрерывно хаотически меняются, эти изменения будут одинаковыми для обоих пучков. Если эти пучки снова свести вместе, то можно наблюдать устойчивую интерференционную картину при условии, что разность хода между пучками не превышает длины отдельного цуга. Если же разность хода окажется больше длины цуга, то устойчивой интерференционной картины не будет, так как в этом случае будет происходит наложение цугов, излученных разными атомами.
1.2 Интерференция
Явление интерференции света впервые было объяснено на основе волновых представлений Юнгом в 1802 году. В произведённом им опыте малое отверстие А в непрозрачном экране освещалось интенсивным источником света.
Принцип Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн даёт положение волнового фронта в следующий момент времени. На основании принципа Гюйгенса это отверстие можно считать новым точечным источником полусферических волн. Эти волны падают на два малых отверстия S1 и S2 в следующем экране, которые в свою очередь становятся новыми точечными источниками волн.
Таким способом в опыте Юнга достигается разделение исходной волны на две. Эти волны налагаются друг на друга в области за отверстиями и могут интерферировать, так как источники S1 иS2 когерентны. На экране В образуется интерференционная картина.
Разделение волны от первичного некогерентного источника на две когерентные волны, т. е. получение двух вторичных когерентных источников, может осуществляться разными способами. Но расчёт интерференционной картины во всех таких случаях производится одинаково, так же, как и в схеме Юнга. Если в излучении первичного источника все независимые цуги волн характеризуются одной и той же длиной волны л, то для излучения вторичных источников S1 и S2 можно использовать монохроматическую идеализацию, несмотря на то, что их излучение также представляет собой ту же хаотическую последовательность отдельных цугов. Замена такой последовательности цугов бесконечной синусоидальной волной возможна здесь потому, что точечные вторичные источники когерентны, а разность хода излучаемых ими волн в любой точке экрана В меньше протяжённости отдельного цуга. Для этого разумеется, экран В должен быть удалён от источников S1 и S2 на значительное расстояние L, а расстояние d между источниками S1 и S2 должно быть достаточно мало.
Схема расчёта интерференционной картины:
В точке О, расстояния до которой от источников S1 и S2 одинаковы, приходящие волны усиливают друг друга, так как колебания поля в этой точке происходят в одинаковой фазе. Результат сложения колебаний в произвольной точке Р определяется разностью хода l волн, приходящих в Р из S1 и S2. Если l равно целому числу длин волн л, то колебания в Р усиливают друг друга; если l равно нечётному числу полуволн, то колебания взаимно ослабляются.
Выразим разность хода l волн, приходящих в точку Р, через угол и между осью и направлением на точку Р и расстояние d между источниками.
Будем считать, что d<<L. Тогда при малых и разность хода можно найти, опуская из S1 перпендикуляр на прямую S2Р: l=dи.
Эта формула даёт возможность определить угловое положение максимумов и минимумов на экране В. направление на максимумы получим, полагая что
l=nл: иmax=nл/d, n=0, ±1, ±2,…
Полагая, что l=(2n+1)л/2, получим направления на минимумы:
иmin=(n+1/2)л/d, n=0, ±1, ±2,…
Угловое расстояние Ди между соседними максимумами или минимумами, как видно из этих формул, равно л/d, а расстояние h между ними на экране В, как видно из рис., равно
h=LДи=лL/d
1.3 Дифракция
Характерной особенностью дифракционных явлений в оптике оказывается то, что здесь, как правило, длина волны света почти всегда много меньше размеров преград на пути световых волн. Поэтому наблюдать дифракцию света можно только на достаточно больших расстояниях от преграды. Проявление дифракции состоит в том, что распределение освещённости отличается от простой картины, предсказываемой геометрической оптикой на основе прямолинейного распространения света.
Строгий расчёт дифракционной картины представляет собой очень сложную математическую задачу. Но в некоторых практически важных случаях достаточно хорошее приближение даёт упрощённый подход, основанный на использовании принципа Гюйгенса - Френеля.
Согласно этому принципу, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, ,,излучаемых” фиктивными источниками. Такими источниками могут служить физически бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности, выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предложил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии - такая же, как при отсутствии экрана.
Учёт амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т.е. определить закономерности распространения света.
Дифракция Френеля на круглом отверстии:
Сферическая волна, распространяющаяся из точечного источника S, встречает на своём пути экран с круглым отверстием. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром отверстия. Экран параллелен плоскости отверстия и находится от него на расстоянии b. Вид дифракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Для точки В, согласно методу зон Френеля, амплитуда результирующего колебания
A=A1/2±Am/2
где знак плюс соответствует нечётным т и минус - чётным т.
Когда отверстие открывает нечётное число зон Френеля, то амплитуда (интенсивность) в точке В будет больше, чем при свободном распространении волны, если чётное, то амплитуда (интенсивность) будет равна нулю. Если в отверстие укладывается одна зона Френеля, то в точке В амплитуда A=A1, т.е. вдвое больше, чем в отсутствии непрозрачного экрана с отверстием (интенсивность света больше соответственно в четыре раза). Если в отверстие укладывается две зоны Френеля, то их действия в точке В практически уничтожат друг друга из-за интерференции. Таким образом, дифракционная картина от круглого отверстия вблизи точки В будет иметь вид чередующихся тёмных и светлых колец с центрами в точке В (если т чётное, то в центре будет тёмное кольцо, если т нечётное - светлое кольцо), причём интенсивность максимумов убывает с расстоянием от центра картины.
Расчёт амплитуды результирующего колебания на внеосевых участках экрана более сложен, так как соответствующие им зоны Френеля частично перекрываются непрозрачным экраном. Если отверстие освещается не монохроматическим, а белым светом, то кольца окрашены (число зон Френеля, укладывающихся в отверстии, зависит от л).
Дифракция Френеля на диске. Сферическая волна, распространяющаяся от точечного источника S, встречает на своём пути диск. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром диска. В данном случае закрытый диском участок фронта волны надо исключить из рассмотрения и зоны Френеля строить начиная с краёв диска.
Пусть диск закрывает т первых зон Френеля. Тогда амплитуда результирующего колебания в точке В равна
A=Am+1 - Am+2 + Am+3 -…= Am+1 /2+(Am+1 /2 - Am+2 +Am+3 /2)+, или
A=Am+1 /2,
Так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В всегда наблюдается интерференционный максимум (светлое пятно), соответствующий половине действия первой открытой зоны Френеля. Центральный максимум окружён концентрическими с ним тёмными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины.
Задача. Два груза D и E массами тD =0,25 кг и тЕ =3 кг лежат на гладкой плоскости, наклонной под углом б=30° к горизонту, опираясь на пружину, коэффициент жёсткости которой с=6 Н/см =600 Н/м.
В некоторый момент груз Е убирают; одновременно (t=0) нижний конец пружины В начинает совершать вдоль наклонной плоскости движение по закону о =0,02sin 10t (м). Найти уравнение движения груза D.
Решение. Применим к решению задачи дифференциальные уравнения движения точки. Совместим начало координатной системы с положением покоя груза D, соответствующим статической деформации пружины, при условии, что точка В занимает своё среднее положение (о=0).
Направим ось x вверх вдоль наклонной плоскости (в сторону движения груза D после снятия груза Е). Движение груза D определяется по следующему дифференциальному уравнению:
mDx=?Xi,
где ?Xi - сумма проекций на ось х сил, действующих на груз D (рис. а): GD - веса, N - нормальной реакции наклонной плоскости, Р - силы упругости пружины.
Таким образом
mD x = -GD sin б - P.
Здесь P = c(x - fст D - о)
где fст D - статическая деформация пружины под действием груза D; о - перемещение точки прикрепления нижнего конца пружины, происходящее по закону
о =d sin pt (d =0,02 м, p=10 рад/с).
Статическая деформация пружины fст D найдём из уравнения, соответствующего состоянию покоя груза D на наклонной плоскости
?Xi =0;
-GD sin б +P0 =0,
GD sin б + cfст D =0, откуда
fст D =GD sin б/c.
Дифференциальное уравнение движения груза D имеет вид
mD x = -GD sin б - c(x - fст D - о),
или после преобразования
mD x + cx = cd sin pt.
Разделив все члены уравнения на mD и введя обозначения
c/mD = k2, cd/mD = h,
приведём дифференциальное уравнение к следующему виду:
x + k2x = h sin pt.
Решение этого неоднородного уравнения складывается из общего решения х*, соответствующего однородного уравнения и частного решения х** данного неоднородного уравнения:
x = x*+ x**.
Общее решение однородного уравнения имеет вид
x* = C1 cos kt +C2 sin kt.
Частное решение неоднородного уравнения:
x** = [ h /(k2 - p2)] sin pt.
Общий интеграл
x = C1 cos kt +C2 sin kt + [ h /(k2 - p2)] sin pt.
Для определения постоянных интегрирования С1 и С2 найдём, кроме того, уравнение для х
x = -C1 k sin kt +C2 k cos kt + [ hp/(k2 - p2)] cos pt
и используем начальные условия задачи.
2. Основные законы геометрической оптики
Основные законы геометрической оптики были известны задолго до установления физической природы света.
Закон прямолинейного распространения света: в оптически однородной среде свет распространяется прямолинейно. Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при л > 0. Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.
На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.
Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения г равен углу падения б.
Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения б к синусу угла преломления в есть величина, постоянная для двух данных сред:
Закон преломления был экспериментально установлен голландским ученым В. Снеллиусом в 1621 г.
Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления.
Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:
n = n2 / n1.
Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - это отношение скорости распространения волн в первой среде х1к скорости их распространения во второй среде х2:
Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света х в среде:
Рис 1. Законы отражения и преломления: г = б;n1 sin б = n2 sin в.
Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.
При переходе света из оптически более плотной среды в оптически менее плотную n2 < n1 (например, из стекла в воздух) можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол бпр, который называется предельным углом полного внутреннего отражения (см. рис. 2).
Для угла падения б = бпр sin в = 1; значение sin бпр = n2 / n1 < 1.
Если второй средой является воздух (n2 ? 1), то формулу удобно переписать в виде
sin бпр = 1 / n,
где n = n1 > 1 - абсолютный показатель преломления первой среды.
Для границы раздела стекло-воздух (n = 1,5) критический угол равен бпр = 42°, для границы вода-воздух (n = 1,33) бпр = 48,7°.
Рисунок 2. Полное внутреннее отражение света на границе вода-воздух; S - точечный источник света
Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис. 3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.
Рисунок 3. Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность
Модель. Отражение и преломление света
Размещено на Allbest.ru
...Подобные документы
Свет как электромагнитные волны. Явление интерференции света. Характерные особенности дифракционных явлений в оптике. Демонстрационные эксперименты по волновой оптике. Изучение зависимости показателя преломления воздуха от давления, метод измерений.
курсовая работа [544,9 K], добавлен 18.11.2014Рассмотрение шкалы электромагнитных волн. Закон прямолинейного распространения света, независимости световых пучков, отражения и преломления света. Понятие и свойства линзы, определение оптической силы. Особенности построения изображения в линзах.
презентация [1,2 M], добавлен 28.07.2015Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.
презентация [1,3 M], добавлен 02.10.2014Раскрытие сути понятия "дифракция", обучение основным способам наблюдения дифракции, ее положительные и отрицательные стороны для человека. Демонстрация опыта, который стал основой для открытия нового явления; установка по измерению длины световой волны.
разработка урока [121,9 K], добавлен 01.12.2009Длины световых волн. Закон прямолинейного распространения света. Относительные показатели преломления. Явление полного внутреннего отражения для построения световодов. Вектор плотности потока энергии. Фазовая и групповая скорости монохроматической волны.
реферат [893,5 K], добавлен 20.03.2014Интерференция световых волн. Опыт Юнга. Методы наблюдения интерференции. Интерференция двух волн на поверхности жидкости, возбуждаемых вибрирующими стержнями. Время когерентности. Длина когерентности. Предельный наблюдаемый порядок интерференции.
презентация [8,5 M], добавлен 07.03.2016Теорема Ферма о необходимом условии экстремума. Роль принципа Ферма в оптике. Пример его в объяснении некоторых физических явлений. Вывод законов преломления и отражения лучей света. Прохождение световой волны через однородные и неоднородные среды.
реферат [306,7 K], добавлен 03.08.2014Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.
реферат [31,1 K], добавлен 09.10.2006Законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Ход лучей в сечении треугольной призмы. Рассеивающая линза. Квантовые свойства света. Фотоэффект. Закон отражения. Угол падения равен углу отражения.
реферат [144,9 K], добавлен 29.03.2009Поляризация при отражении и преломлении. Интерференция поляризованного света. Эллиптическая и круговая поляризация электромагнитной волны. Прохождение линейно поляризованного света лазера через вращающийся поляроид. Явление искусственной анизотропии.
презентация [4,0 M], добавлен 07.03.2016Распространение волн в упругой среде. Уравнение плоской и сферической волны. Принцип суперпозиции, разложение Фурье и эффект Доплера. Наложение встречных плоских волн с одинаковой амплитудой. Зависимость длины волны от относительной скорости движения.
презентация [2,5 M], добавлен 14.03.2016Электромагнитные волны, воспринимаемые человеческим глазом. Спектр видимого излучения. Основные спектральные цвета. Открытие ультрафиолетового и инфракрасного излучений. Характеристики границ видимого излучения. Диапазон длин волн спектральных цветов.
презентация [143,3 K], добавлен 05.09.2013Первые представления о природе света и теория зрительных лучей Евклида. Анализ законов геометрической оптики методом Гюйгенса и выведение законов отражения и преломления. Физический смысл показателя преломления и явление полного внутреннего отражения.
презентация [493,3 K], добавлен 07.09.2010Строение и ядерная модель атома. Атомный номер элемента. Волновые свойства электрона. Звуковые волны и их свойства. Строение и анатомия уха человека. Свет и световые явления, процесс образования тени и полутени. Закон преломления света, его сущность.
реферат [1,1 M], добавлен 18.05.2012Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".
лабораторная работа [86,5 K], добавлен 22.03.2015Интерференция двух наклонных плоских монохроматических волн. Построение 3D-изображения дифракционных решеток в плоскости y-z. Определение значения параметров решеток в средах с показателями преломления n2 и n1 для каждого угла падения сигнальных волн.
курсовая работа [1,0 M], добавлен 11.05.2022Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.
реферат [168,2 K], добавлен 25.11.2008Зависимость показателя преломления от частоты падающего света. Разложение сложного излучения в спектр. Уравнение движения электронов атомов вещества под действием поля световой волны. Скорости ее распространения. Суммарный дипольный момент атомов.
презентация [229,6 K], добавлен 17.01.2014Исследование основных свойств монохроматического электромагнитного поля. Поиск комплексных амплитуд при помощи уравнения Максвелла. Графики зависимостей мгновенных значений составляющих полей от координаты. Скорость распространения энергии волны.
курсовая работа [920,3 K], добавлен 01.02.2013Изучение особенностей распространения световой волны с помощью принципа Гюйгенса-Френеля. Характеристика разных видов дифракции Фраунгофера. Структура и методы изготовления дифракционных решеток. Конструкция дифракционных спектрографов и монохроматоров.
курсовая работа [3,0 M], добавлен 24.03.2013