Бестрансформаторные двухтактные усилители мощности

Общие сведения о транзисторном бестрансформаторном усилителе мощности и принцип его построения. Усилитель мощности с дополнительной симметрией и на составных транзисторах. Осуществление стабилизации положения точек покоя транзисторов оконечного каскада.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 07.01.2015
Размер файла 300,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Бестрансформаторные двухтактные усилители мощности

1. Общие сведения

Непосредственное включение внешней нагрузки в выходную цепь усилительных элементов позволяет исключить трансформатор. Трансформаторы создают частотные и нелинейные искажения. Трансформаторные каскады не способны пропускать широкую полосу частот, а за счет больших фазовых сдвигов в таких каскадах или становится невозможным применение глубокой обратной связи. Трансформаторы громоздки, обладают большей массой и, в отличие от транзисторов, диодов и резисторов, не могут являться элементами интегральных схем.

Транзисторные бестрансформаторные усилители получили большое распространение из-за своих весьма высоких качественных показателей. Они являются основным звеном современной аппаратуры высококачественного усиления звуковых частот и наиболее перспективны, так как могут быть реализованы в интегральном исполнении.

2. Принцип построения бестрансформаторного усилителя мощности

Бестрансформаторный усилитель представляет собой двухтактный каскад с последовательным питанием и параллельным возбуждением однофазным несимметричным напряжением, рис.11.1.

Рис.11.1. Бестрансформаторный усилитель мощности.

По постоянному току транзисторы V2 и V3 включены последовательно, а по переменному - параллельно. Поэтому выходное сопротивление каскада уменьшается, что снижает оптимальное сопротивление нагрузки, приближая его к сопротивлению электродинамических громкоговорителей (4 или 8 Ом). Внешняя нагрузка подключается к общей точке эмиттеров через разделительный конденсатор С1, сопротивление которого на низшей рабочей частоте должно быть невелико по сравнению с . Поэтому эта емкость С1 выбирается с большим номиналом.

Использование транзисторов с одинаковыми параметрами, но разной структурой позволяет объединить входные цепи плеч и исключить фазоинверсный каскад, так как сигнал, открывающий транзистор типа р-n-р, будет закрывать транзистор n-р-n. Плечи работают в противофазе и поочередно. Отрицательная полярность сигнала открывает V2 и закрывает V3. Выходной ток, протекая через С1, заряжает ее до 0,5Е. При положительной полярности транзистор V2 закрывается и открывается V3 . Источником питания в этот период является заряд емкости С1. Следовательно, такой каскад может возбуждаться однофазным напряжением от обычного резисторного каскада с непосредственной связью.

Бестрансформаторные каскады могут работать как в режиме А, так и в режиме В, но более часто используется экономичный режим В. Транзисторы в режиме В могут работать и без смещения, однако в этом случае появляются искажения типа "ступеньки", характерные для режима В.

Для обеспечения начального смещения и выходных транзисторов V2 и V3 используют терморезистор или диод, включенный в коллекторную цепь транзистора V1 последовательно с резистором нагрузки . Ток покоя транзистора V1 предоконечного каскада, проходя через , создает на нем небольшое падение напряжения, которое равно суммарному напряжению смещения . Так как транзисторы оконечного каскада включаются последовательно по постоянному току, кроме того, их коллекторные напряжения должны быть одинаковыми, то общая точка эмиттеров транзисторов V2 и V3 будет иметь потенциал относительно общего провода, равный 0,5Е0.

Терморезистор осуществляет стабилизацию тока покоя оконечных транзисторов, так как его сопротивление, а, следовательно, и падение напряжения смещения на нем уменьшаются при повышении температуры. Терморезистор или диод устанавливается на радиаторе одного из оконечных транзисторов в непосредственной близости от него, так что их температуры будут примерно одинаковыми. В первом каскаде используется эмиттерная стабилизация точки покоя транзистора V1.

Для стабилизации потенциала общей точки эмиттеров (0,5Ео) используется отрицательная обратная связь (ООС), охватывающая оба каскада. Ее элементами являются резисторы R1 и R2, одновременно образующие делитель смещения в цепи базы транзистора V1. OOC не только стабилизирует напряжение 0,5Е0, но и улучшает качественные показатели усилителя, так как она введена по постоянному и переменному токам.

Однако эта схема бестрансформаторного усилителя обладает существенным недостатком, заключающимся в том, что обычный резисторный каскад не может обеспечить необходимой амплитуды возбуждения для полного использования выходных транзисторов, а это значительно снижает КПД усилителя. Так как выходные транзисторы оказываются включенными с общим коллектором (ОК), то напряжение возбуждения, подводимое к их входной цепи должно превышать выходное.

3. Бестрансформаторный усилитель мощности с дополнительной симметрией

Максимальная амплитуда напряжения сигнала на выходе оконечного каскада Uвыхт близка к 0.5Е, а входное напряжение должно быть равно Uвхт= Uвыхт+Uб>0.5Е. Такое напряжение резисторный каскад при источнике питания с напряжением E отдать не в состоянии. Этот недостаток устраняют введением положительной обратной связи (ПОС), для чего верхний вывод резистора присоединяют через емкость к сопротивлению нагрузки , рис.11.2.

транзисторный бестрансформаторный устройство усилитель

Рис.11.2. Бестрансформаторный усилитель с вольтдобавкой.

При этом все выходное напряжение Uвыхт вводится во входную цепь оконечного каскада. Каждое плечо оконечного каскада является эмиттерным повторителем, поэтому выходное напряжение совпадает по фазе с напряжением возбуждения и увеличивает его примерно вдвое. Наличие положительной обратной связи позволяет уменьшить ток сигнала через резистор и снизить необходимое напряжение сигнала на нем. При этом сигнал на входе оконечного каскада получается достаточным для полного использования выходных транзисторов по напряжению, и КПД каскада оказывается близким к теоретическому пределу.

Кроме конденсатора в этой схеме необходим еще и резистор , который по переменному току присоединен (через , C1 и источник питания) параллельно внешней нагрузке Rн, поэтому сопротивление не должно быть слишком малой величиной, чтобы не шунтировать Rн. Одновременно приходится считаться с тем, что на теряется часть напряжения питания первого транзистора и, с этой точки зрения, необходимо, чтобы <<. Рассмотренный безтрансформаторный усилитель мощности с положительной обратной связью называют усилителем с вольтдобавкой или с дополнительной симметрией.

4. Бестрансформаторный усилитель мощности на составных транзисторах

При большой выходной мощности подобрать близкие по параметрам и характеристикам пары транзисторов разных структур р-n-р и n-р-n сложнее. Поэтому оконечный каскад строится на составных транзисторах.

Принципиальная схема бестрансформаторного усилителя мощности, имеющего двухтактный каскад с составными транзисторами изображена на рис.11.3.

Рис.11.3. Бестрансформаторный усилитель мощности на составных транзисторах

Оконечный каскад содержит четыре транзистора, причем каждое плечо его представляет составной транзистор. Транзисторы V3 и V5 образуют двойной эмиттерный повторитель, а транзисторы V4 и V6 составляют усилитель со 100% ООС, который обладает примерно теми же параметрами и свойствами, что и двойной эмиттерный повторитель: высокое входное и малое выходное сопротивления, оба плеча схемы выходного каскада не усиливают входное напряжение (К<1) и не меняют его полярность.

Стабилизация положения точек покоя транзисторов оконечного каскада осуществляется диодом V2, на котором создается падение суммарного напряжения смещения. Резисторы и Rc являются вспомогательными элементами, которые улучшают стабильность режима, способствуют снижению частотных искажений и несколько выравнивают параметры плеч двухтактного каскада, что приводит к уменьшению нелинейных искажений, обусловленных асимметрией плеч. Сопротивление Rc обычно меньше 1 Ом, так как на них теряется часть выходной мощности; в 510 раз больше входного сопротивления мощного транзистора. Введение ПОС по цепи увеличивает напряжение возбуждения и тем самым повышает КПД усилителя. Для получения высоких качественных показателей в усилителе вводится глубокая ООС по переменному току через резистор Roc, охватывающая весь усилитель. Стабилизация напряжения 0,5Е0 выходных транзисторов аналогична описанной выше и осуществляется гальванической ООС по постоянному току через резисторы и . Конденсатор служит для устранения ООС по переменному току.

Усилитель с бестрансформаторным выходом обладает весьма высокими качественными показателями. Частотные искажения в области низких частот в данной схеме незначительны благодаря непосредственной связи между каскадами. В области верхних частот искажения определяются в основном мощными транзисторами оконечного каскада.

Достаточно глубокая общая ООС уменьшает нелинейные искажения и улучшает остальные качественные показатели усилителя в целом. Выходное сопротивление такого усилителя становится ничтожно малым. Это весьма благоприятно сказывается на работе акустической системы радиовещательной аппаратуры.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет напряжений питания, потребляемой мощности, мощности на коллекторах оконечных транзисторов. Расчет площади теплоотводов. Расчет и выбор элементов усилителя мощности. Расчёт элементов цепи отрицательной обратной связи. Проектирование блока питания.

    курсовая работа [516,1 K], добавлен 09.12.2012

  • Измерение поглощаемой мощности как наиболее распространенный вид измерения СВЧ мощности. Приемные преобразователи ваттметров проходящей мощности. Обзор основных методов для измерения импульсной мощности, характеристика их преимуществ и недостатков.

    реферат [814,2 K], добавлен 10.12.2013

  • Измерение мощности низкочастотных и высокочастотных колебаний электрических сигналов. Диагностирование мощности колебаний сверхвысокочастотного излучения ваттметрами (поглощающего типа и проходящей мощности). Основные цифровые методы измерения мощности.

    контрольная работа [365,0 K], добавлен 20.09.2015

  • Понятие шумов как флуктуаций напряжения, возникающих в усилителе одновременно с исследуемыми сигналами. Проблема соотношения мощности сигнала и мощности шума. Анализ основных источников и видов шумов, вызванных флуктуациями электрических зарядов.

    контрольная работа [1,8 M], добавлен 12.02.2015

  • Статическая нагрузочная диаграмма электропривода. Определение мощности резания для каждого перехода, коэффициента загрузки, мощности на валу двигателя, мощности потерь в станке при холостом ходе. Расчет машинного (рабочего) времени для каждого перехода.

    контрольная работа [130,5 K], добавлен 30.03.2011

  • Трехполосный усилитель мощности звуковой частоты на основе операционного усилителя, его технологические особенности и предъявляемые требования. Расчет величин усилителя и анализ его оптимальности в программе "Multisim". Средства электробезопасности.

    курсовая работа [615,2 K], добавлен 13.07.2015

  • Изучение принципа работы мостового усилителя мощности звуковой частоты, составление описания модели схемы. Проектирование мостового УМЗЧ с помощью пакета прикладных программ Pspice схемотехнического проектирования и анализ результатов машинных расчетов.

    курсовая работа [78,3 K], добавлен 23.07.2010

  • Данные для расчёта усилителя напряжения низкой частоты на транзисторах. Расчёт усилительного каскада на транзисторе с общим эмиттером. Расчёт выходного усилительного каскада - эмиттерного повторителя. Амплитудно-частотная характеристика усилителя.

    курсовая работа [382,1 K], добавлен 19.12.2015

  • Классификация и основные принципы действия магнитных усилителей. Двухтактные магнитные усилители. Управление величиной переменного тока посредством слабого постоянного тока. Схемы автоматического регулирования электродвигателей переменного тока.

    курсовая работа [1,6 M], добавлен 01.06.2012

  • Усилители как самые распространенные электронные устройства, особенности проектирования. Этапы расчёта оконечного каскада. Низкоомная нагрузка как сравнительно малое активное сопротивление. Способы усиления электрических сигналов, основные преимущества.

    контрольная работа [1,9 M], добавлен 25.01.2013

  • Мгновенная, средняя и полная мощности гармонических колебаний в электрических цепях. Положительное значение мгновенной мощности и потребление электрической энергии. Условия передачи максимума средней мощности от генератора к нагрузке. Режим генератора.

    лекция [136,2 K], добавлен 01.04.2009

  • Система электроснабжения ферросплавного производства. Руднотермические печи как источник реактивной мощности. Компенсация реактивной мощности в ферросплавном производстве. Экранирование короткой сети руднотермической печи, принцип и этапы процесса.

    дипломная работа [186,1 K], добавлен 08.12.2011

  • Характеристики потребителей электроэнергии. Расчет электрических нагрузок. Определение мощности компенсирующего устройства реактивной мощности. Выбор числа и мощности трансформаторов подстанции. Вычисление параметров и избрание распределительной сети.

    курсовая работа [884,2 K], добавлен 19.04.2021

  • Краткие сведения о проектируемом предприятии и о питающей энергосистеме. Расчет электрических нагрузок предприятия, компенсация реактивной мощности с помощью конденсаторных установок. Выбор мощности силовых трансформаторов ГПП, внутризаводских подстанций.

    дипломная работа [536,2 K], добавлен 07.09.2010

  • Подготовка исходных данных для оптимизации режимов энергосистемы. Выбор числа и мощности трансформаторов на подстанциях и электростанциях. Экономичное распределение активной мощности между электростанциями по критерию: "минимум потерь активной мощности".

    курсовая работа [375,4 K], добавлен 30.04.2015

  • Потребители и нормирование использования реактивной мощности. Перечень и краткая характеристика основных источников реактивной мощности. Выработка или потребление реактивной мощности с помощью компенсирующих устройств. Маркировка конденсаторных батарей.

    презентация [269,8 K], добавлен 30.10.2013

  • Источники реактивной мощности. Преимущества использования статических тиристорных компенсаторов - устройств, предназначенных как для выдачи, так и для потребления реактивной мощности. Применение и типы синхронных двигателей, их располагаемая мощность.

    презентация [2,4 M], добавлен 10.07.2015

  • Расчет баланса мощности и выбор компенсирующих устройств. Потери активной мощности в линиях и трансформаторах. Баланс реактивной мощности. Составление вариантов конфигурации сети с анализом каждого варианта. Потеря напряжения до точки потокораздела.

    контрольная работа [4,3 M], добавлен 01.12.2010

  • Анализ принципов регулирования мощности в сетях переменного тока. Построение принципиальной схемы регулятора мощности. Вольт-амперная характеристика симметричного динистора. Выбор резистора, конденсатора, реле-регулятора. Защита от короткого замыкания.

    контрольная работа [710,4 K], добавлен 27.01.2014

  • Характеристика потребителей электроэнергии. Расчет мощности компенсирующих устройств реактивной мощности, выбор распределительной сети. Выбор числа и мощности трансформаторов подстанций. Расчет заземляющего устройства и спецификация электрооборудования.

    курсовая работа [719,7 K], добавлен 15.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.