Основы построения электронных усилителей
Принципы построения усилительных устройств. Построение усилительного каскада на электронной лампе и полевых транзисторах. Работа электронной лампы и полевого транзистора в схеме АЭУ. Особенности построения усилительных каскадов на биполярных транзисторах.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 07.01.2015 |
Размер файла | 469,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Основы построения электронных усилителей
Принципы построения усилительных устройств
Усилительные устройства состоят из отдельных каскадов, представляющих элементарные ячейки. Каждый отдельный каскад электронного усилителя может быть построен с использованием электронных ламп, полевых или биполярных транзисторов. Транзистор или электронная лампа в усилительной схеме работают в активном режиме. Как известно, активный режим соответствует определенному постоянному напряжению на управляющем электроде, обеспечивающему работу усилительного элемента на линейном участке характеристики. Это напряжение называют напряжением смещения.
При построении усилительного каскада составляют входную и выходную цепи. Входная цепь содержит источник сигнала, элемент связи и элементы для подачи напряжения смещения на управляющий электрод. Выходная цепь содержит основной источник питания, за счет которого происходит усиление сигнала, и нагрузочное сопротивление Rн, на котором происходит выделение усиленного напряжения.
Построение усилительного каскада на электронной лампе
Принципиальная схема двухкаскадного усилителя на электронных лампах приведена на рис.1.
Рис.1. Принципиальная схема усилителя на электронной лампе.
Принцип работы электронной лампы основан на термоэлектронной эмиссии электронов накаленным катодом. Ток анода управляется напряжением на управляющей сетке. С целью обеспечения нужного режима работы, необходимо, прежде всего, правильно подать питающие напряжения на электроды усилительного элемента.
В усилителях небольшой мощности все цепи анодов или коллекторов обычно питаются от одного общего источника питания - выпрямителя, сети постоянного тока, аккумуляторной батареи и т. д.
Источник анодного питания для ламповых усилителей имеет напряжение 150300 В. При этом потенциал анода усилительных ламп лежит в пределах 120200 В.
Входная цепь усилителя содержит входные клеммы, элемент связи С1, сопротивление утечки R1 и элемент подачи смещения Rк. Постоянное отрицательное напряжение во входной цепи, которое определяет режим работы усилительного элемента, называют напряжением смещения. Наиболее распространенным способом подачи смещения на управляющую сетку лампы является получение его на резисторе Rк, включенном в цепь катода. Падение напряжения, вызванное прохождением через этот резистор анодного тока и тока экранирующей сетки , равное , определяет потенциал управляющей сетки. Падение напряжения на R1=0, поскольку ток в цепи управляющей сетки отсутствует. Такой способ подачи отрицательного смещения на сетку называют катодным смещением или автоматическим смещением. Элемент связи C1 иначе называют разделительной емкостью, поскольку эта емкость разделяет переменную и постоянную состовляющие напряжения. Сопротивление Rк шунтируется емкостью Cк, которая замыкает переменную составляющую выходного тока.
В многокаскадных усилителях коллекторные или анодные цепи обычно подключают параллельно к общему источнику питания, и для ослабления паразитной связи каскадов через этот источник все анодные цепи ламп, за исключением последней, как и цепи коллекторов транзисторных усилителей, защищают развязывающими фильтрами .
Наиболее простым и экономичным способом подачи положительного потенциала на экранирующую сетку относительно катода является через гасящий резистор Rэ, сопротивление которого рассчитывают по формуле:
. (1)
Питание цепей накала электронных ламп производят как постоянным, так и переменным током. Выходная цепь каждого каскада содержит сопротивление нагрузки Rн, источник питания Eп. В усилительном каскаде источник сигнала Uвх малой мощности управляет током в выходной цепи, создаваемым источником питания.
Таким образом, за счет энергии источника питания Еп на выходных зажимах получаем усиленное напряжение Uвых=Еп-iвыхRн, причем выходное напряжение является функцией усиливаемого сигнала. Схему, приведенную на рис.1., называют однотактной или нессиметричной. В этой схеме входная и выходная цепи нессиметричны относительно общей точки. Другими словами, однотактный усилитель имеет несимметричный вход и выход.
Усилители могут быть построены по двухтактной схеме, содержащей два усилительных элемента, работающих на общую нагрузку. Двухтактные каскады представляют собой как бы два одинаковых однотактных каскада, объединенных общим проводом и источником питания, работающими со сдвигом фаз на 180°. Особенности построения этих схем подробнее рассмотрены в разделе "Выходные усилители".
Построение усилительных каскадов на полевых транзисторах
В полевых транзисторах перенос тока осуществляется основными носителями, а управление током происходит за счет воздействия поперечного электрического поля, создаваемого усиливаемым напряжением, приложенным к управляющему электроду - затвору. Полевые транзисторы обладают рядом преимуществ: низкой входной проводимостью, широким диапазоном рабочих температур и простотой изготовления. Принцип действия полевых транзисторов заключается в изменении сопротивления канала, через который перемещаются носители заряда от истока к стоку. По способу образования канала и изменения его ширины эти транзисторы можно разделить на три группы. К первой относятся транзисторы с управляющим р-n-переходом, у которых ширина канала модулируется за счет изменения запирающего напряжения на р-n-переходе канал-затвор. Остальные две группы составляют транзисторы с изолированным затвором, отделенным от канала тонким слоем диэлектрика. Они имеют структуру металл - диэлектрик - полупроводник и называются МДП-транзисторами. Ко второй группе относятся МДП-транзисторы со встроенным каналом, а к третьей - индуцированным каналом.
Полярность смешения на затворе для транзисторов первой группы должна быть отрицательной, для третьей группы - положительной. Транзисторы второй группы могут работать при любом смещении на затворе. Подложку часто замыкают на исток. При использовании транзисторов с каналом n-типа соответственно меняются полярности питающих напряжений.
Рис.2. Характеристики полевого транзистора с управляющим р-n-переходом каналом n-типа: а- выходная; б-проходная.
Ток затвора у всех типов полевых транзисторов очень мал. Значение этого тока в транзисторах с управляющим р-n-переходом не превышает долей микроампера, а в МДП-транзисторах - долей пикоампера.
Усилительные свойства полевого транзистора, как и электронных ламп, характеризуются крутизной тока стока S проходной характеристики (рис.2,б). Выходная характеристика полевого транзистора при малых значениях напряжения стока Uс имеет омический участок. На этом участке характеристики полевые транзисторы могут быть использованы как управляемые резисторы (рис.2,а). При дальнейшем увеличении Uс наступает насыщение тока, сопротивление канала становится очень большим. Ток стока будет зависеть только от U3.
Вывод от подложки в МДП-транзисторах может быть использован как дополнительный управляющий электрод, так как напряжение на подложке влияет на ток стока. Принципиальная схема усилителя на полевом транзисторе с каналом n-типа приведена на рис.3.
Рис.3. Принципиальная схема усилителя на полевом транзисторе
В усилителях на полевых транзисторах используется способ автоматического смещения (элементы Rи, Си). Остальные элементы схемы имеют те же назначения, что и в усилителях на электронной лампе.
Работа электронной лампы и полевого транзистора в схеме АЭУ
Рассмотрим принцип работы усилителей, приведенных на рис.1., 3. В этих схемах напряжение усиливаемого сигнала приложено между управляющим электродом и общим электродом последовательно с постоянным напряжением смещения . В выходную цепь включены нагрузочное сопротивление и источник питания Е. До момента t1 считаем, что Uвх=0. Следовательно, в выходной цепи усилителя протекает только постоянная составляющая тока Iс0 (см. рис.2) Потенциал стока определяется выражением
Uco=E-IcoRн
Под действием переменного напряжения входного сигнала в выходной цепи происходит изменение тока . При положительной полярности Uвх мгновенное значение Uз уменьшается, вследствие чего транзистор приоткрывается, ток выходной цепи увеличивается. Этот ток создает на резисторе падение напряжения URн(t)=iвых(t)Rн, переменная составляющая которого представляет собой усиленное напряжение сигнала.
Практически усиленное выходное напряжение обычно снимается с резистора и источника питания. Это вызывается необходимостью заземления одного из электродов усилительного элемента, а также стремлением использовать общий источник для питания цепей выходных каскадов. В этом случае выходное напряжение определяется следующим выражением
. (2)
При увеличении выходное напряжение уменьшается. Следовательно, переменные напряжения на входе и на выходе в усилителях с общим катодом и истоком оказываются противофазными (рис.4). Действительно, при возрастании мгновенного входного напряжения выходной ток увеличивается, падение напряжения URн возрастает и выходное напряжение уменьшается. Таким образом, рассматриваемые схемы меняют фазу усиливаемого сигнала на 180.
Рис.4. Графики напряжений и токов в цепях усилителя: 1 - на управляющем электроде; 2- ток в выходной цепи; 3 - напряжения в выходной цепи.
Особенности построения усилительных каскадов на биполярных транзисторах
Принципиальная схема усилительного каскада на биполярном транзисторе с общей базой приведена на рис.5.
Рис.5. Принципиальная схема усилительного каскада на биполярном транзисторе с общей базой.
Усилительная схема представляет собой линейный четырехполюсник с двумя входными и двумя выходными клеммами. Поскольку транзистор имеет только три вывода, то один из них является общим для входной и выходной цепей усилителя. Обычно этот вывод соединяется с корпусом усилителя. Транзисторные усилители могут быть построены с общим эмиттером, с общим коллектором и с общей базой. Ламповые усилители бывают с общим катодом, с общим анодом и с общей сеткой. Наиболее часто усилительные схемы строятся с общим эмиттером или с общим катодом, что позволяет получить высокий коэффициент усиления и хорошие характеристики усилителя.
Биполярные транзисторы по сравнению с электронными лампами имеют следующие преимущества: малые габариты и вес, небольшую потребляемую мощность, длительный срок службы и др. Однако они имеют и недостатки, к которым относятся: низкие предельные частоты, большая температурная зависимость, малое входное сопротивление и небольшая выходная мощность.
Принципиальное отличие транзисторных усилителей объясняется тем, что из-за малого значения входного сопротивления источник сигнала работает в режиме короткого замыкания
, (3)
т.е. транзисторный усилитель управляется током. Усилители на электронных лампах и полевых транзисторах управляются напряжением
. (4)
Принцип работы и основные процессы в биполярных транзисторах также отличаются от принципов работы и процессов, протекающих в электронной лампе. Инжекция носителей через эмиттерный переход в область базы осуществляется за счет прямого смещения. В области базы дырки движутся по закону диффузии и достигают коллекторного перехода. Только часть дырок успевает рекомбинироваться в области базы, образуя ток в цепи базы. Таким образом, в транзисторе протекает ток эмиттера, ток коллектора и ток базы:
(5)
Соотношение (5) почти не зависит от и , а определяется законами диффузии и конструкцией транзистора. Основным усилительным параметром биполярного транзистора является коэффициент усиления по току с общей базой (рис. 5). В этой схеме входным током является Iэ, а выходным током - Iк.
. (3.6)
При включении транзистора с общим эмиттером (рис.6.) током входной цепи является ток базы .
Рис.6.Усилительный каскад с общим эмиттером
Источник сигнала меняет потенциальный барьер эмиттерного перехода, что приведет к изменению инжекции, т. е. к изменению и . При этом на нагрузочном сопротивлении в цепи коллектора выделяется усиленное напряжение. Коэффициент усиления по току транзистора с общим эмиттером
. (7)
В качестве основного источника питания в транзисторных усилителях используются аккумуляторы или выпрямители. По аналогии с ламповыми схемами коллекторные цепи всех каскадов подключаются к источнику питания параллельно. При этом в цепях питания каждого каскада включают развязывающие фильтры.
Для установления необходимого рабочего режима на базу р-n-р транзистора относительно эмиттера нужно подать небольшое отрицательное смещение (0,05 - 0,5 В). Это смещение желательно получить от источника , чтобы исключить второй источник питания Есм.
Работа биполярного транзистора в усилительном каскаде
До момента t1 на входных клеммах имеется только напряжение смещения, Uвх =0. Поэтому в выходной цепи протекает только постоянная составляющая I0к. Потенциал коллектора Uк0 определяется выражением Uк0=Е- I0кRн. В момент t1 во входную цепь поданы Uвх(t) и Ecм парралельно, которые показаны на рис. 7. (график 1). Потенциональный барьер эмиттерного прямосмещенного перехода будет меняться по закону Uвх(t), что приведет к изменению тока инжекции Iэ, следовательно, Iк (график 2).
Если напряжение на эмиттерном переходе уменьшается, то уменьшаются Iэ, Iк и наоборот. Таким образом, источник сигнала Uвх(t) небольшой мощности управляет током выходной цепи. В выходную цепь, кроме основного источника питания, включено нагрузочное сопротивление, следовательно, на этом сопротивлении из-за протекания тока будут происходить падения напряжения постоянной Uк0 и переменной Uвых(t) составляющих. В схеме с общим эмиттером Uвых(t) снимается через разделительную емкость С с коллектора, которое равно Uвых(t) =E-iвых(t)Rн (график 3).
Анализируя графики 1 и 3, приходим к выводу, что усилительный каскад с общим эмиттером меняет фазу усиленного сигнала Uвых(t) на 180о
Рис.7. Графики напряжений и токов в усилителях: а - с p-n-p-транзистором; б - с n-p-n-транзистором
Схемы межкаскадной связи
Для передачи сигнала от одного каскада к другому применяют различные схемы, называемые схемами межкаскадной связи. Эти схемы одновременно служат для подачи питающих напряжений на электроды усилительных элементов, а также для придания усилителю определенных свойств. Существует три вида схем межкаскадной связи: непосредственная, резисторная и трансформаторная. Название усилительного каскада определяется примененной в нем схемой межкаскадной связи.
В каскадах со схемами непосредственной межкаскадной связи называют такие схемы, в которых выходной электрод предыдущего каскада соединяется с входным электродом последующего непосредственно (рис.8). Основным достоинством каскадов с непосредственной связью является их способность усиливать сигналы с постоянной составляющей. Недостатком, нарушающим нормальную работу усилителей, является дрейф нуля. К дополнительным недостаткам каскада с непосредственной связью относится трудность согласования потенциальных уровней выходных и входных цепей. Непосредственную связь используют в усилителях постоянного тока и в интегральных микросхемах.
Рис.8. Схема с непосредственной связи между каскадами
При резисторной (резисторно-емкостной) связи применяется разделительный конденсатор С1, который преграждает путь постоянной составляющей напряжения из выходной цепи на вход следующего каскада (рис.З.3). Резисторные каскады свободны от недостатков каскадов с непосредственной связью: они не обладают дрейфом нуля, передаваемым на следующий каскад, и без затруднения позволяют обеспечить необходимые напряжения на усилительных элементах при питании многокаскадного усилителя от одного источника. Резисторные каскады обладают хорошей частотной характеристикой, имеют небольшие нелинейные искажения и находят широкое применение.
Рис.9. Схема трансформаторной связи
транзистор электронный каскад биполярный
При трансформаторной межкаскадной связи используется трансформатор (рис.9). Через первичную обмотку трансформатора, включаемую в выходную цепь усилительного элемента, на выходной электрод подается напряжение питания, а ко вторичной присоединяют входную цепь следующего каскада. Переменная составляющая выходного тока, проходя через первичную обмотку, создает на ней напряжение сигнала, трансформирующееся во вторичную обмотку и подающееся на вход следующего каскада.
Размещено на Allbest.ru
...Подобные документы
Усилители, построенные на полупроводниковых усилительных элементах (биполярных и полевых транзисторах). Выбор принципиальной схемы. Расчет выходного, предоконечного и входного каскадов. Параметры схемы и расчет обратной связи. Расчет элементов связи.
курсовая работа [203,3 K], добавлен 27.11.2009Общие технические характеристики используемого транзистора, схема цепи питания и стабилизации режима работы. Построение нагрузочной прямой по постоянному току. Расчет параметров элементов схемы замещения. Анализ и оценка нелинейных искажений каскада.
курсовая работа [1,0 M], добавлен 27.12.2013Данные для расчёта усилителя напряжения низкой частоты на транзисторах. Расчёт усилительного каскада на транзисторе с общим эмиттером. Расчёт выходного усилительного каскада - эмиттерного повторителя. Амплитудно-частотная характеристика усилителя.
курсовая работа [382,1 K], добавлен 19.12.2015Разработка методических указаний для студентов всех форм обучения по специальности радиотехника. Принципы проектирования аналоговых электронных устройств, правила выполнения электрического расчета схем, каскадов на транзисторах и интегральных микросхемах.
дипломная работа [95,7 K], добавлен 17.07.2010Принцип работы полевого транзистора. Стоковые характеристики транзистора. Причина насыщения в стоковой характеристике полевого транзистора. Устройство полевого транзистора с управляющим p-n-переходом. Инверсия типа проводимости.
лабораторная работа [37,8 K], добавлен 20.03.2007Схема компенсационного стабилизатора напряжения на транзисторах. Определение коэффициентов пульсации, фильтрации и стабилизации. Построение зависимости выходного напряжения от сопротивления нагрузки. График напряжения на входе и выходе стабилитрона.
лабораторная работа [542,2 K], добавлен 11.01.2015Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.
контрольная работа [2,9 M], добавлен 22.10.2009Назначение полевых транзисторов на основе металлооксидной пленки, напряжение. Вольт-амперная характеристика управляющего транзистора в крутой линейной части. Передаточная характеристика инвертора, время переключения. Вычисление скорости насыщения.
контрольная работа [103,9 K], добавлен 14.12.2013Расчет каскада транзисторного усилителя напряжения, разработка его принципиальной схемы. Коэффициент усиления каскада по напряжению. Определение амплитуды тока коллектора транзистора и значения сопротивления. Выбор типа транзистора и режима его работы.
контрольная работа [843,5 K], добавлен 25.04.2013Графоаналитическое исследование режима работы в классе A. Определение параметров транзисторного усилительного каскада в схеме с общим эмиттером, с одним питанием, с автоматическим смещением и с эмиттерной температурой стабилизацией рабочего режима.
задача [795,6 K], добавлен 18.11.2013Общее представление о мощных БИП-транзисторах Зависимость эффективности эмиттера от концентрации примеси в нем. Характеристика падения коэффициента усиления по току при больших плотностях тока. Сущность монолитного мощного транзистора Дарлингтона.
курсовая работа [676,6 K], добавлен 04.04.2015Понятие электронной микроскопии как совокупности методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава. Содержание телевизионного принципа развертки тонкого пучка электронов или ионов по поверхности образца.
презентация [3,1 M], добавлен 22.08.2015Изучение методов построения зависимости прямого коэффициента усиления по току и анализ зависимости предельной частоты от тока эмиттера для кремниевого биполярного дрейфового транзистора. Этапы расчета частотных свойств биполярного дрейфового транзистора.
лабораторная работа [68,3 K], добавлен 06.02.2010Построения развернутой и радиальной схем обмоток статора, определение вектора тока короткого замыкания. Построение круговой диаграммы асинхронного двигателя. Аналитический расчет по схеме замещения. Построение рабочих характеристик асинхронного двигателя.
контрольная работа [921,2 K], добавлен 20.05.2014Понятие радиоэлектроники, ее сущность и особенности, история возникновения и развития. Развитие электронной техники на современном этапе, характерные черты. Принципы работы и использование резисторов, их разновидности. Устройство и значение конденсаторов.
курс лекций [373,1 K], добавлен 21.02.2009Энергоэффективные источники света. Механизм работы энергосберегающей лампы и лампы накаливания. Преимущества использования электронных пускорегулирующих устройств. Способы экономии электроэнергии на предприятиях. Экономия электроэнергии при отоплении.
реферат [228,4 K], добавлен 28.03.2012Представление об основах литографии. Установки изготовления образцов. Параметры коррекции распределения дозы, чувствительность резиста. Основы электронной литографии при низком ускоряющем напряжении. Оценка эффективного диаметра электронного луча.
курсовая работа [1,1 M], добавлен 18.11.2012Источники вторичного электропитания как неотъемлемая часть любого электронного устройства. Рассмотрение полупроводниковых преобразователей, связывающих системы переменного и постоянного тока. Анализ принципов построения схем импульсных источников.
дипломная работа [973,7 K], добавлен 17.02.2013Расчет районной электрической сети, особенности ее построения и основные режимы работы. Электронно-оптическое оборудование при контроле технического состояния элементов сетей и подстанций на рабочем напряжении. Типы конфигурации электрических сетей.
дипломная работа [2,0 M], добавлен 17.06.2012История возникновения и устройство ламп накаливания и люминесцентной: принцип действия, устройство, условные обозначения и разновидности. Определение срока службы лампы и причин выхода ее из строя. Сравнение электронного и электромагнитного балласта.
курсовая работа [399,5 K], добавлен 22.12.2010