Усилители постоянного тока
Назначение и особенности построения усилителей постоянного тока. Сдвиг уровня постоянного напряжения. Дрейф нуля и способы его уменьшения. Балансные усилители постоянного тока. Специальные каскады. Дифференциальные усилители, с использованием оптрона.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 07.01.2015 |
Размер файла | 504,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Усилители постоянного тока
Назначение и особенности построения
Усилители постоянного тока (УПТ) предназначены для усиления сигналов с сохранением постоянной составляющей. При уменьшении частоты до нуля коэффициент усиления остается таким же, как и на средних частотах, т.е. . Верхняя граничная частота определяется назначением усилителя.
Усилители постоянного тока находят применение в радиоизмерительной аппаратуре, стабилизаторах напряжения и тока, устройствах автоматической регулировки усиления, аналоговых вычислительных устройствах, следящих системах и т.д. В последнее время УПТ используются и для усиления звуковых сигналов, являясь составной частью усилительного устройства переменного тока. Широкое применение УПТ находят в интегральной схемотехнике.
По принципу действия и схемному выполнению усилители постоянного тока делятся на два основных вида: усилители с непосредственной связью и усилители с преобразованием сигнала. УПТ должен усиливать постоянную составляющую сигнала, вследствие чего в его цепях нельзя применять элементы, сопротивление которых зависит от частоты (конденсаторы, дроссели, трансформаторы). Поэтому при построении УПТ не применимы емкостные и трансформаторные связи между каскадами. Следовательно, в УПТ с непосредственной связью используется простейшая схема прямой связи выхода первого каскада с входом следующего. При этом возникает задача согласования потенциальных уровней выходной цепи предыдущего каскада и входной цепи следующего каскада.
УПТ с непосредственной связью
Рассмотрим принципиальную схему двухкаскадного усилителя с непосредственной связью, приведенную на рис.1.
Рис.1. Двухкаскадный УПТ с непосредственной связью
При использовании низковольтных транзисторов согласование потенциалов коллектора V1 и базы V2 можно осуществить выбором сопротивлений Rэ1 и Rэ2 с условием . В этом случае можно обеспечить требуемое напряжение смещение .
(1)
По цепи возникает отрицательная обратная связь. Следовательно, при повышении глубина ООС увеличивается, поэтому число каскадов не должно превышать трех. Схемы УПТ с непосредственной связью просты по построению. Делитель напряжения R1R2 компенсирует напряжение смещения, поступающее на источник сигнала и сохраняет смещение неизменным при изменении внутреннего сопротивления источника сигнала. Делитель напряжения R5R6 включается для компенсации постоянного напряжения .
Схемы сдвига уровня постоянного напряжения
Постоянное напряжение на коллекторе V1 значительно превышает необходимое напряжение смещения на базе V2. Поэтому в усилителях с непосредственной связью требуется погасить, т.е. скомпенсировать избыточное постоянное напряжение. Цепи, предназначенные для погашения избыточного постоянного напряжения, называют схемами сдвига уровня постоянного напряжения.
Простейшей схемой сдвига уровня является делитель напряжения в цепи межкаскадной связи, рис.2,а.
Рис..2. Схемы сдвига уровня
Однако при такой схеме R1R2 одинаково уменьшает передаваемое напряжение как , так и усиливаемый сигнал. Вследствие этого уменьшается коэффициент усиления.
В схемах сдвига уровня часто применяют стабилитроны, рис.2,б, у которых динамическое сопротивление незначительно. При этом полезный сигнал на нем практически не ослабляется, а погашаемое постоянное напряжение равно напряжению стабилизации стабилитрона. К сожалению, такая схема сдвига уровня имеет ряд недостатков: большой разброс напряжения стабилизации, следовательно, и погашаемого напряжения; стабилитроны работают в предпробойной области, вследствие чего имеют большой уровень шумов; малое динамическое сопротивление обеспечивается только при большом токе стабилитрона, поэтому приходится включать небольшое сопротивление , которое шунтирует и тем самым уменьшает коэффициент усиления первого каскада.
Шунтирование элементами схемы сдвига уровня постоянного напряжения можно уменьшить, подключив к схеме сдвига уровня эмиттерный повторитель на транзисторе VТ2, рис.2,в, что позволит заметно увеличить коэффициент усиления.
В операционных усилителях в схемах сдвига уровня вместо стабилитрона часто используются делители напряжения, содержащие обычный резистор и сопротивление генераторов стабильного тока (ГСТ). ГСТ отличается тем, что имеет значительное сопротивление по переменной составляющей и небольшое сопротивление по постоянной составляющей. Если включить ГСТ вместо R2 (рис.2,а), то потеря полезного сигнала резко снижается, и все избыточное напряжение по постоянной составляющей погашается на R1.
Дрейф нуля и способы его уменьшения
Для УПТ с непосредственной связью большим недостатком является наличие дрейфа нуля. Под дрейфом нуля понимается выходное напряжение усилителя при отсутствии входного сигнала, т.е. при . При наличии полезного сигнала на входе это напряжение, складываясь с полезным выходным сигналом, дает искажение усиливаемого сигнала.
Причиной дрейфа нуля являются изменения источников питания во времени, изменение температуры, старение элементов во времени и внутренние шумы. Напряжение дрейфа может даже превышать полезный сигнал. Поэтому при построении УПТ необходимо предусмотреть меры, уменьшающие дрейф нуля. Качество УПТ, с точки зрения дрейфа нуля, оценивается приведенным ко входу дрейфом нуля
где К - коэффициент усиления. Для неискаженного усиления сигналов необходимо обеспечить следующее условие: Uдр.пр Uc. Особое внимание приходится уделять первым каскадам, т.к. усиливаемый сигнал Uc еще незначителен.
Основными мерами уменьшения дрейфа нуля являются: высокая стабилизация напряжения источников питания; предварительный прогрев и ручная установка нуля; хорошая стабилизация рабочей точки; применение высококачественных элементов; построение специальных схем УПТ (балансные схемы, дифференциальные каскады); применение УПТ с оптронной связью и УПТ с преобразованием сигнала.
Для уменьшения дрейфа и стабилизации коэффициента усиления вводится глубокая ООС с выхода усилителя на его вход. Однако отрицательная обратная связь полностью не устраняет дрейф нуля и не улучшает отношение сигнала к дрейфу. При глубокой ООС напряжение дрейфа первого каскада передается на выход усилителя полностью, так как дрейф, возникающий во входной цепи, нельзя отличить от входного сигнала.
Балансные усилители постоянного тока
Применение балансных схем является эффективным методом уменьшения дрейфа нуля. Балансные схемы в сочетании с глубокой отрицательной обратной связью и термокомпенсацией дают возможность существенно увеличить стабильность УПТ. Балансные схемы строятся на двух транзисторах и бывают параллельного и последовательного типов. Основой построения балансного каскада является электрический мост с попарно симметрично выполненными плечами, рис.3.
Рис.3. Электрический мост
Как известно, если мост сбалансирован, т.е R1/R2=R3/R4, то при изменении питающего напряжения Е ток нагрузки остается равным нулю. В балансной схеме УПТ, рис.4, вместо R2 и R4 применяются транзисторы VI и V2. Таким образом, коллекторные сопротивления и внутренние сопротивления транзисторов образуют четыре плеча моста.
Рис. 4. Балансный усилитель постоянного тока.
К вертикальной диагонали подключается напряжение питания, а нагрузка включается между коллекторами транзисторов. Входной сигнал прикладывается на базу первого транзистора. При полной симметрии плеч схемы, которая обусловлена выбором Rн1=Rн2 и транзисторов с идентичными параметрами, и отсутствии входного сигнала разность потенциалов между коллекторами VI и V2 равна нулю. Если входной сигнал не равен нулю, то потенциалы коллекторов получают одинаковые по абсолютной величине, но разные по знаку приращения и через нагрузку течет ток. Такие каскады очень удобны в качестве выходных, если необходимо иметь симметрично изменяющееся напряжение или симметрично изменяющийся ток.
Уменьшение дрейфа нуля обусловлено следующим: при изменении напряжения питания Е потенциалы коллекторов в симметричной схеме получают одинаковые приращения, поэтому выходное напряжение и ток в нагрузке остаются неизменными. То же самое происходит и при температурных изменениях.
В реальной схеме всегда имеется некоторая асимметрия плеч, поэтому изменения токов в обоих плечах моста будут различными и некоторая нестабильность нуля сохранится. Для повышения стабильности в цепь эмиттеров включается большое сопротивление Rэ. В симметричной схеме на сопротивлении R не возникает обратная связь, так как ток через него можно считать неизменным:
Jэ1= - Jэ2.
Установка нуля при использовании каскада в усилителе постоянного тока может вестись с помощью потенциометра Rp. Но так как плечи мостовой схемы за счет разброса параметров оказываются несимметричными, то это приводит к нарушению баланса при изменении температуры.
Специальные каскады УПТ
Дифференциальные усилители
Дифференциальные усилители (ДУ) позволяют получить высокую стабильность, малый уровень внутренних шумов и напряжение дрейфа, широкую полосу пропускания и высокий коэффициент усиления. Принципиальная схема ДУ строится на основе балансного усилителя постоянного тока, рис.5.
Рис 5. Дифференциальный усилитель
Схема ДУ может быть использована в различных вариантах: с симметричным выходом и несимметричным входом, с симметричным входом и несимметричным выходом. Наилучшие показатели имеет схема ДУ с симметричным входом и выходом, приведенная на рис.5
Общее напряжение входа Uвх между 1-2 клеммами определяется Uвх=Uвх1-Uвх2, соответственно Uвых=Uвых1-Uвых2=Kд(Uвх1-Uвх2) будет наибольшим в том случае, когда на вход поступают равные по амплитуде и противоположные по фазе напряжения, поскольку при этом их абсолютные значения складываются. Такой входной сигнал называют дифференциальным. Если Uвх1 и Uвх2 имеют одинаковую фазу, то такой сигнал называют синфазным.
Дифференциальный каскад усиливает разность входных сигналов Uвх=Uвх1-Uвх2. Коэффициент усиления для дифференциального сигнала при симметричном выходе можно выразить:
(2)
Характерной чертой дифференциального каскада является его нечувствительность к синфазному сигналу. При равенстве Uвх1= Uвх2 разность входных сигналов Uвх=Uвx1-Uвх2 равна нулю. Поэтому выходное напряжение должно быть также равным нулю. Однако за счет некоторой асимметрии имеет место передача синфазного сигнала с коэффициентом передачи
(3)
Важным параметром ДУ является отношение коэффициента усиления дифференциального сигнала к коэффициенту передачи синфазного сигнала
(4)
Этот параметр называется коэффициентом дискриминации или ослабления синфазных сигналов и для современных ДУ задается в пределах 60-120 дБ.
Особенность дифференциального каскада усиливать только дифференциальный сигнал и подавлять синфазный является очень важной, т.к. все виды помех, в т.ч. и дрейф нуля, являются синфазными. Подавление синфазных сигналов в ДУ объясняется тем, что для этих сигналов за счет падения напряжения на сопротивлении в цепи эмиттеров Rэ в схеме возникает ООС по току, что уменьшает величину Ксф. Для дифференциального сигнала ООС в каскаде отсутствует, т.к. в этом случае текущий через Rэ ток сигнала одного плеча компенсируется равным ему током сигнала другого плеча. Глубина ООС для синфазных сигналов равна 1+2У21Rэ. Для повышения глубины ООС, улучшающей свойства ДУ, следует увеличивать сопротивление Rэ. Однако чрезмерное увеличение Rэ невозможно по двум причинам. Во-первых, при этом возрастает падение напряжения на нем, т.к. через Rэ протекают постоянные составляющие токов обоих транзисторов. Во-вторых, в интегральном исполнении получение больших сопротивлений связано с большими технологическими затруднениями. Таким образом, чрезмерное увеличение Rэ потребовало бы увеличения питающего напряжения. По этим причинам в современных ДУ вместо активного сопротивления Rэ используют стабилизаторы тока на транзисторе V3, рис. 16.2, у которого сопротивление переменной составляющей R во много раз больше сопротивления по постоянному току R=.
Рис 6. Дифференциальный усилитель с генератором стабильного тока.
Например, биполярный транзистор с Iк=IмА и Uкэ=5B имеет R==5 к0м, R=50 кОм.
Введение в цепь эмиттера транзистора V3 сопротивления с небольшим номиналом Rэ (порядка 1 к0м) позволяет за счет ООС по току повысить сопротивление R до нескольких сотен кОм. Диод в цепи базы позволяет ввести температурную стабилизацию рабочей точки транзисторов.
Усилители постоянного тока с преобразованиями сигнала
Характерной особенностью УПТ прямого усиления является наличие дрейфа нуля. Усилители прямого усиления с высокой чувствительностью в эксплуатационном отношении в ряде случаев неприменимы, так как они имеют большой дрейф нуля и отличаются сложностью настройки. Применение специальных схем стабилизации и стабилизации источников питания позволяют снизить приведенный ко входу дрейф до десятков милливольт в час. Поэтому для усиления сигналов с напряжением ниже сотен микровольт УПТ прямого усиления непригодны, и для усиления таких сигналов применяют усилители постоянного тока с преобразованием по следующей структурной схеме, рис. 7.
Рис 7. Структурная схема УПТ с преобразованием сигнала
Напряжение усиливаемого сигнала, имеющего спектр от 0 до , при помощи модулятора М преобразуется в переменное напряжение. На выходе модулятора появляются модулированные колебания несущей частоты со спектром щ±..
Эти колебания поступают на вход обычного усилителя переменного тока К, имеющего узкую полосу пропускания от щ+. до щ-. С выхода этого усилителя усиленные модулированные колебания подаются на демодулятор ДМ, который производит обратное преобразование, т.е. выделяет сигнал первоначальной формы.
Фильтр Ф не пропускает в нагрузку несущую частоту и ее гармоники. Следует отметить, что для неискаженного преобразования сигнала несущая частота должна быть в 5-10 раз больше частоты усиливаемых сигналов .в.
УПТ с преобразованием по сравнению с УПТ прямого усиления имеют следующие преимущества: малый уровень дрейфа выходного напряжения в течение длительной работы при высокой чувствительности; малая чувствительность к колебаниям питающих напряжений и температуры; возможность получения гальванически не связанных цепей входа и выхода; простота введения обратных связей; простота регулировки усиления в широких пределах; отсутствие необходимости корректировки нуля в процессе эксплуатации; относительная простота устройства, связанная с отсутствием необходимости применения стабилизаторов напряжения.
УПТ с использованием оптрона
усилитель постоянный ток напряжение
В качестве модулятора в настоящее время используются оптроны. Оптрон - это полупроводниковый прибор, в едином корпусе которого находятся излучатель света, управляемый входным током, и фотоприемник. В качестве излучателя света используется светодиод, а фотоприемником служит фоторезистор, сопротивление которого зависит от силы облучающего света.
Оптрон обладает способностью усиливать напряжение до десятков раз, коэффициент усиления по току меньше единицы. К достоинствам оптрона относится полная электрическая развязка входной и выходной цепей, функциональная схема УПТ с использованием оптрона приведена на рис.8.
Рис. 8. Функциональная схема УПТ с использованием оптрона
Благодаря облучению фоторезистора пульсирующим световым потоком его сопротивление колеблется с частотой модуляции. При подаче на вход усиливаемого напряжения через R1 возникают ток и напряжение UR1 с частотой модуляции. Далее это напряжение усиливается усилителем переменного напряжения и поступает на балансный демодулятор, который выделяет полезный сигнал.
Размещено на Allbest.ru
...Подобные документы
УПТ прямого усиления и его балансные схемы. Напряжение смещение нуля и его дрейф. Условное обозначение операционного усилителя. Структурная схема ОУ, его основные характеристики и параметры. Подача питающих напряжений на ОУ и амплитудная характеристика.
лекция [257,5 K], добавлен 15.03.2009Классификация и основные принципы действия магнитных усилителей. Двухтактные магнитные усилители. Управление величиной переменного тока посредством слабого постоянного тока. Схемы автоматического регулирования электродвигателей переменного тока.
курсовая работа [1,6 M], добавлен 01.06.2012Номинальная мощность и скорость. Индуктивность якорной обмотки, момент инерции. Электромагнитная постоянная времени. Модель двигателя постоянного тока. Блок Step и усилители gain, их главное назначение. График скорости, напряжения, тока и момента.
лабораторная работа [456,6 K], добавлен 18.06.2015Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.
реферат [3,2 M], добавлен 12.11.2009Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.
реферат [3,6 M], добавлен 17.12.2009Конструирование электронных схем, их моделирование на ЭВМ на примере разработки схемы усилителя постоянного тока. Балансная (дифференциальная) схема для уменьшения дрейфа в усилителе постоянного тока. Режим работы каскада и данные элементов схемы.
курсовая работа [1,4 M], добавлен 27.08.2010Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.
курсовая работа [509,4 K], добавлен 01.02.2015Роль и значение машин постоянного тока. Принцип работы машин постоянного тока. Конструкция машин постоянного тока. Характеристики генератора смешанного возбуждения.
реферат [641,0 K], добавлен 03.03.2002Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.
методичка [874,1 K], добавлен 22.12.2009Особенности расчета двигателя постоянного тока с позиции объекта управления. Расчет тиристорного преобразователя, датчиков электропривода и датчика тока. Схема двигателя постоянного тока с независимым возбуждением. Моделирование внешнего контура.
курсовая работа [1,2 M], добавлен 19.06.2011Основные источники и схемы постоянного оперативного тока. Принципиальная схема распределительной сети постоянного тока. Контроль изоляции сети постоянного тока. Источники и схемы переменного оперативного тока. Схемы и обмотки токового блока питания.
научная работа [328,8 K], добавлен 20.11.2015Работа и устройство двигателя постоянного тока. Вращая генератор постоянного тока какой-нибудь внешней силой, мы затрачиваем определенную механическую мощность Pмех, а в сети получаем соответствующую злектрическую мощность Рэл.
реферат [7,7 K], добавлен 08.05.2003Двигатели постоянного тока, их применение в электроприводах, требующих широкого плавного и экономичного регулирования частоты вращения, высоких перегрузочных пусковых и тормозных моментов. Расчет рабочих характеристик двигателя постоянного тока.
курсовая работа [456,2 K], добавлен 12.09.2014Переходные процессы электропривода постоянного тока при пуске в три ступени. Номинальное напряжение якоря. Расчет ступеней двигателя постоянного тока. Расчетное время работы на ступенях. Моделирование ситуаций при изменении расчетного времени работы.
контрольная работа [156,3 K], добавлен 04.03.2012Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".
методичка [658,2 K], добавлен 06.03.2015Изучение принципа работы электропривода постоянного тока и общие требования к функционированию контроллера. Разработка микропроцессорной системы управления электродвигателем постоянного тока, обеспечивающей контроль за скоростью вращения вала двигателя.
курсовая работа [193,7 K], добавлен 14.01.2011Принцип действия генератора постоянного тока. Якорные обмотки и процесс возбуждения машин постоянного тока. Обмотка с "мертвой" секцией. Пример выполнения простой петлевой и волновой обмотки. Двигатель постоянного тока с последовательным возбуждением.
презентация [4,9 M], добавлен 09.11.2013Экспериментальное исследование электрических цепей постоянного тока методом компьютерного моделирования. Проверка опытным путем метода расчета сложных цепей постоянного тока с помощью первого и второго законов Кирхгофа. Составление баланса мощностей.
лабораторная работа [44,5 K], добавлен 23.11.2014Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.
курсовая работа [351,4 K], добавлен 10.05.2013Генераторы и электродвигатели постоянного тока, якоря которых снабжены коллекторами и содержат совокупность обмоток, связанных с коллекторами. Действие заявляемого бесколлекторного генератора постоянного тока. Движения вихревого электрического поля.
доклад [14,9 K], добавлен 25.10.2013