Кинематика материальной точки

Уравнение траектории. Скорость и ускорение при криволинейном движении. Угловая скорость и угловое ускорение. Траектория и вектор перемещения при криволинейном движении. Единица измерения угловой скорости, принятая в Международной системе единиц (СИ).

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 28.12.2014
Размер файла 48,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема: Кинематика материальной точки

Задание: 1. Кинематика абсолютно твердого тела

Уравнение траектории. Скорость и ускорение при криволинейном движении. Угловая скорость и угловое ускорение.

Траектория материальной точки -- линия в пространстве, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве относительно выбранной системы отсчёта. Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения.

Кроме того, и при наличии движущегося по ней объекта, траектория, изображаемая в наперёд заданной системе пространственных координат, сама по себе не может ничего определённого сказать в отношении причин его движения, пока не проведён анализ конфигурации поля действующих на него сил в той же координатной системе.

Не менее существенно, что форма траектории неотрывно связана и зависит от конкретной системы отсчёта, в которой описывается движение.

Возможно наблюдение траектории при неподвижности объекта, но при движении системы отсчёта. Так, звёздное небо может послужить хорошей моделью инерциальной и неподвижной системы отсчёта. Однако при длительной экспозиции эти звёзды представляются движущимися по круговым траекториям.

Возможен и случай, когда тело явно движется, но траектория в проекции на плоскость наблюдения является одной неподвижной точкой. Это, например, случай летящей прямо в глаз наблюдателя пули или уходящего от него поезда.

В соответствии с Первым законом Ньютона, иногда называемым законом инерции должна существовать такая система, в которой свободное тело сохраняет (как вектор) свою скорость. Такая система отсчёта называется инерциальной. Траекторией такого движения является прямая линия, а само движение называется равномерным и прямолинейным.

Скорость и ускорение при криволинейном движении

Криволинейное движение - это движение, траектория которого представляет собой кривую линию. (Например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модуль скорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1 Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1), а l - длина траектории. Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 2).

Рис. 2 Мгновенная скорость при криволинейном движении.

Криволинейное движение - это всегда ускоренное движение. То естьускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени - это тангенциальное ускорение:

или

Где vф, v0 - величины скоростей в момент времени t0 + Дt и t0соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение - это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 3).

Рис. 3 Движение тела при криволинейном движении.

Угловая скорость и угловое ускорение.

Угловая скорость -- векторная величина, являющаяся псевдовектором (аксиальным вектором) и характеризующая скорость вращения материальной точки вокруг центра вращения. Вектор угловой скорости по величине равен углу поворота точки вокруг центра вращения в единицу времени:

,

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в Международной системе единиц (СИ) и системе СГС -- радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, -- физически безразмерен, поэтому физическая размерность угловой скорости -- просто [1/секунда]). В технике также используются обороты в секунду, намного реже -- градусы в секунду,грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту -- это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли просто «вручную», подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью , определяется формулой:

????????? ????????????? ??????????

где -- радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) от оси вращения можно считать так: Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

Угловое ускорение -- псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости движения материальной точки по окружности.

При вращении точки вокруг неподвижной оси, угловое ускорение по модулю равно[1]:

При вращательном движении тела вектор углового ускорения направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно -- при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости по времени[2], то есть

,

и направлен по касательной к годографу вектора в соответствующей его точке.

Существует связь между тангенциальным и угловым ускорениями:

,

где R -- радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени.

Угловое ускорение измеряется в рад/сІ.

В теоретической механике угловое ускорение обозначается

Размещено на Allbest.ru

...

Подобные документы

  • Задача на определение ускорения свободного падения. Расчет начальной угловой скорости торможения вентилятора. Кинетическая энергия точки в момент времени. Молярная масса смеси. Средняя арифметическая скорость молекул газа. Изменение энтропии газа.

    контрольная работа [468,3 K], добавлен 02.10.2012

  • Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.

    задача [27,6 K], добавлен 12.10.2014

  • Изучение единиц выражения скорости и приборов, которыми она измеряется. Определение зависимости скорости от времени для двух тел, скорости при равномерном движении. Исследование понятий механического движения, тела отсчета, траектории и пройденного пути.

    презентация [1,2 M], добавлен 12.12.2011

  • Понятие и характерные свойства геометрического вектора. Правило сложения векторов по треугольнику. Сущность и методика исследования траектории движения. Скорость и ускорение движения, их оценка и относительность. Система координат и точки в ней.

    реферат [141,3 K], добавлен 24.12.2010

  • Равновесие жесткой рамы. Составление уравнений равновесия для плоской системы сил. Нахождение уравнения траектории точки, скорости и ускорения, касательного и нормального ускорения и радиуса кривизны траектории. Дифференциальные уравнение движения груза.

    контрольная работа [62,3 K], добавлен 24.06.2015

  • Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.

    контрольная работа [125,0 K], добавлен 03.04.2013

  • Составление уравнений равновесия пластины и треугольника. Применение теоремы Вариньона для вычисления моментов сил. Закон движения точки и определение ее траектории. Формула угловой скорости колеса и ускорения тела. Основные положения принципа Даламбера.

    контрольная работа [1,5 M], добавлен 04.03.2012

  • Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.

    презентация [8,5 M], добавлен 13.02.2016

  • Характеристика движения объекта в пространстве. Анализ естественного, векторного и координатного способов задания движения точки. Закон движения точки по траектории. Годограф скорости. Определение уравнения движения и траектории точки колеса электровоза.

    презентация [391,9 K], добавлен 08.12.2013

  • Вращение тела вокруг неподвижной точки. Углы Эйлера. Мгновенная ось вращения и угловая скорость. Ускорение точек тела, имеющего одну неподвижную точку. Расчет геометрической суммы ускорения полюса, а также точки в ее движении вокруг этого же полюса.

    презентация [2,1 M], добавлен 24.10.2013

  • Относительность движения, его постулаты. Системы отсчета, их виды. Понятие и примеры материальной точки. Численное значение вектора (модуль). Скалярное произведение векторов. Траектория и путь. Мгновенная скорость, ее компоненты. Круговое движение.

    презентация [265,9 K], добавлен 29.09.2013

  • Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.

    контрольная работа [151,8 K], добавлен 04.12.2010

  • Построение траектории движения тела, отметив на ней положение точки М в начальный и заданный момент времени. Расчет радиуса кривизны траектории. Определение угловых скоростей всех колес механизма и линейных скоростей точек соприкосновения колес.

    контрольная работа [177,7 K], добавлен 21.05.2015

  • Характеристика движения простейшего тела и способы его задания. Определение скорости и ускорение точки при векторном, координатном, естественном способе задания движения. Простейшие движения твердого тела, теоремы о схождении скоростей и ускорений.

    курс лекций [5,1 M], добавлен 23.05.2010

  • Составление расчетной схемы установки. Нахождение уравнения траектории движения точки. Построение траектории движения в соответствующих координатах и участка ее в интервале времени. Линейные скорости звеньев и передаточные числа зубчатых зацеплений.

    задача [1020,9 K], добавлен 27.12.2010

  • Анализ теоремы об изменении кинетического момента материальной точки и несвободной механической системы. Теоретическая механика как наука об общих законах механического движения тел. Основные кинематические характеристики: скорость, ускорение, траектория.

    курсовая работа [788,4 K], добавлен 23.11.2012

  • Изучение причин изменения скорости тела, результата взаимодействия и графического изображения сил. Описания нахождения равнодействующей сил, принципа действия динамометра. Определение направления векторов скорости бруска, его ускорения и перемещения.

    презентация [1,8 M], добавлен 23.04.2011

  • Закон изменения угловой скорости колеса. Исследование вращательного движения твердого тела вокруг неподвижной оси. Определение скорости точки зацепления. Скорости точек, лежащих на внешних и внутренних ободах колес. Определение углового ускорения.

    контрольная работа [91,3 K], добавлен 18.06.2011

  • Изменение вектора скорости за промежуток времени. Годограф скорости. Нахождение ускорения при координатном способе задания движения. Проекции ускорения на радиальное и поперечное направления. Линия пересечения спрямляющей и нормальной плоскостей.

    презентация [2,4 M], добавлен 24.10.2013

  • Измерение угловой скорости в Международной Системе СИ. Формула расчета максимальной высоты полета. Движение свободного падания. Понятие и алгоритм расчета центростремительного ускорения. Измерение радиуса окружности. Обозначение начальной координаты.

    тест [106,6 K], добавлен 17.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.