Анализ сферы применения электроники
Особенность применения элементов электронных схем. Характеристика биполярных и полевых транзисторов. Анализ устройства для формирования и аналого-цифрового преобразования сигналов. Сущность линейных конфигураций на основе операционных усилителей.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 17.01.2015 |
Размер файла | 4,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Существует большое количество различных тиристоров. Наиболее часто используют незапираемые тиристоры с тремя выводами, управляемые по катоду. Такие тиристоры содержат два силовых и один управляющий электрод и проводят ток только в одном направлении.
Упрощенное изображение структуры тиристора представлено на рис. 5.1, а его условное графическое обозначение - на рис. 5.2.
Обратимся к простейшей схеме с тиристором (рис. 5.3), где использованы следующие обозначения:
· ia - ток анода (силовой ток в цепи анод-катод тиристора);
· uak - напряжение между анодом и катодом;
· iy - ток управляющего электрода (в реальных схемах используют импульсы тока);
· uyk - напряжение между управляющим электродом и катодом;
· uпит - напряжение питания.
Рис. 5.1. Структурная схема тиристора
Рис. 5.2. Графическое изображение тиристора
Рис. 5.3. Схема управления с применением тиристора
Предположим, что напряжение питания меньше так называемого напряжения переключения Uпер (uпит<Uпер) и что после подключения источника питания импульс управления на тиристор не подавался. Тогда тиристор будет находиться в закрытом (выключенном) состоянии. При этом ток тиристора будет малым (ia=0) и будут выполняться соотношения
,
(нагрузка отключена от источника питания).
Если предположить, что выполняется соотношение uпит>Uпер или что после подключения источника питания (даже при выполнении условия uпит<Uпер) был подан импульс управления достаточной величины, то тиристор будет находиться в открытом (включенном) состоянии. При этом для всех трёх переходов будут выполняться соотношения
, ,
(т. е. нагрузка оказалась подключенной к источнику питания).
Существуют тиристоры, для которых напряжение Uпер больше 1 кВ, а максимально допустимый ток ia больше, чем 1 кА.
Характерной особенностью рассматриваемого незапираемого тиристора, который очень широко используется на практике, является то, что его нельзя выключить с помощью тока управления.
Для выключения тиристора на практике не него подают обратное напряжение uак<0 и поддерживают это напряжение в течение времени, большего так называемого времени выключения tвыкл. Оно обычно составляет единицы или десятки микросекунд. За это время избыточные заряды в слоях n1 и p2 исчезают. Для выключения тиристора напряжение источника питания uпит в приведенной выше схеме (см. рис. 5.3) должно изменить полярность.
После указанной выдержки времени на тиристор вновь можно подавать прямое напряжение (uак>0), и он будет выключенным до подачи импульса управления.
Существуют и широко используются так называемые симметричные тиристоры (симисторы, триаки). Каждый симистор подобен паре рассмотренных тиристоров, включенных встречно-параллельно (рис. 5.4). Условное графическое обозначение симистора показано на рис. 5.5.
Рис. 5.4., 5.5
5.1 Классификация и система обозначений тиристоров
Выпускаемые с 1980 года тиристоры имеют классификацию и систему обозначений, установленные ГОСТ 20859.1-89. В основу обозначений тиристоров положен буквенно-цифровой код, состоящий из девяти элементов.
Первый элемент (буква или буквы) обозначает вид прибора: Т - тиристор; ТЛ - лавинный тиристор; ТС - симметричный тиристор (симистор); ТО - оптотиристор; ТЗ - запираемый тиристор; ТБК - комбинированно выключаемый тиристор; ТД - тиристор-диод.
Второй элемент (буква) - подвид тиристора по коммутационным характеристикам: Ч - высокочастотный (быстро включающийся) тиристор; Б - быстродействующий; И - импульсный.
Третий элемент (цифра от 1 до 9) обозначает порядковый номер модификации (разработки).
Четвертый элемент (цифра от 1 до 9) - классификационный размер корпуса прибора.
Пятый элемент (цифра от 0 до 5) - конструктивное исполнение.
Шестой элемент - число, равное значению максимально допустимого среднего тока.
Седьмой элемент - буква Х для приборов с обратной полярностью (основание корпуса - катод).
Восьмой элемент - число, обозначающее класс по повторяющемуся импульсному напряжению в закрытом состоянии (сотни вольт).
Девятый элемент - группа цифр, обозначающая сочетание классификационных параметров: (duзс/dt). Аббревиатура «зс» означает запертое состояние.
Пример условных обозначений тиристоров по ГОСТ 20859.1-89:
ТЛ171-320-10-6 - тиристор лавинный первой модификации, размер шестигранника «под ключ» 41 мм, конструктивное исполнение - штыревое с гибким катодным выводом, максимально допустимый средний ток в открытом состоянии 320 А, повторяющееся импульсное напряжение в закрытом состоянии 1000 В (10-й класс), критическая скорость нарастания напряжения в закрытом состоянии 500 В/мкс.
6. Оптоэлектронные приборы
Оптоэлектронными называют приборы, которые чувствительны к электромагнитному излучению в видимой, инфракрасной и ультрафиолетовой областях, а также приборы, производящие или использующие такое излучение.
Излучение в видимой, инфракрасной и ультрафиолетовой областях относят к оптическому диапазону спектра. Обычно к указанному диапазону относят электромагнитные волны с длиной от 1 нм до 1 мм, что соответствует частотам примерно от 0,5?1012 Гц до 5?1017 Гц. Иногда говорят о более узком диапазоне частот - от 10 нм до 0,1 мм (~5?1012…5?1016 Гц). Видимому диапазону соответствуют длины волн от 0,38 мкм до 0,78 мкм (частота около 1015 Гц).
На практике широко используются источники излучения (излучатели), приемники излучения (фотоприемники) и оптроны (оптопары).
Оптроном называют прибор, в котором имеется и источник, и приемник излучения, конструктивно объединенные и помещенные в один корпус.
Из источников излучения нашли широкое применение светодиоды и лазеры, а из приемников - фоторезисторы, фотодиоды, фототранзисторы и фототиристоры.
Широко используются оптроны, в которых применяются пары светодиод-фотодиод, светодиод-фототранзистор, светодиод-фототиристор.
Основные достоинства оптоэлектронных приборов:
· высокая информационная емкость оптических каналов передачи информации, что является следствием больших значений используемых частот;
· полная гальваническая развязка источника и приемника излучения;
· отсутствие влияния приемника излучения на источник (однонаправленность потока информации);
· невосприимчивость оптических сигналов к электромагнитным полям (высокая помехозащищенность).
6.1 Излучающий диод (светодиод)
Излучающий диод, работающий в видимом диапазоне волн, часто называют светоизлучающим, или светодиодом.
Рассмотрим устройство, характеристики, параметры и систему обозначений излучающих диодов.
Устройство. Схематическое изображение структуры излучающего диода представлено на рис. 6.1,а, а его условное графическое обозначение - на рис. 6.2,б.
Излучение возникает при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n-перехода и в областях, примыкающих к указанной области. При рекомбинации излучаются фотоны.
Характеристики и параметры. Для излучающих диодов, работающих в видимом диапазоне (длина волн от 0,38 до 0,78 мкм, частота около 1015 Гц), широко используются следующие характеристики:
· зависимость яркости излучения L от тока диода i (яркостная характеристика);
зависимость силы света Iv от тока диода i.
Рис. 6.1. Структура светоизлучающего диода (а) и его графическое изображение (б)
Яркостная характеристика для светоизлучающего диода типа АЛ102А представлена на рис. 6.2. Цвет свечения этого диода - красный.
Рис. 6.2 Яркостная характеристика светодиода
График зависимости силы света от тока для светоизлучающего диода типа АЛ316А представлен на рис. 6.3. Цвет свечения - красный.
Рис. 6.3. Зависимость силы света от тока светодиода
Для излучающих диодов, работающих не в видимом диапазоне, используют характеристики, отражающие зависимость мощности излучения Р от тока диода i. Зона возможных положений графика зависимости мощности излучения от тока для излучающего диода типа АЛ119А, работающего в инфракрасном диапазоне (длина волны 0,93…0,96 мкм), представлена на рис. 6.4.
Приведем для диода АЛ119А его некоторые параметры:
· время нарастания импульса излучения - не более 1000 нс;
· время спада импульса излучения - не более 1500 нс;
· постоянное прямое напряжение при i=300 мА - не более 3 В;
· постоянный максимально допустимый прямой ток при t <+85°C - 200 мА;
· температура окружающей среды -60 …+85°С.
Рис. 6.4 Зависимость мощности излучения от тока светодиода
Для информации о возможных значениях коэффициента полезного действия отметим, что излучающие диоды типа ЗЛ115А, АЛ115А, работающие в инфракрасном диапазоне (длина волны 0,95 мкм, ширина спектра не более 0,05 мкм), имеют коэффициент полезного действия не менее 10 %.
Система обозначений. Используемая система обозначений светоизлучающих диодов предполагает применение двух или трех букв и трех цифр, например АЛ316 или АЛ331. Первая буква указывает на материал, вторая (или вторая и третья) - на конструктивное исполнение: Л - единичный светодиод, ЛС - ряд или матрица светодиодов. Последующие цифры (а иногда буквы) обозначают номер разработки.
6.2 Фоторезистор
Фоторезистором называют полупроводниковый резистор, сопротивление которого чувствительно к электромагнитному излучению в оптическом диапазоне спектра. Схематическое изображение структуры фоторезистора приведено на рис. 6.5,а, а его условное графическое изображение - на рис. 6.5,б.
Поток фотонов, падающих на полупроводник, вызывает появление пар электрон-дырка, увеличивающих проводимость (уменьшающих сопротивление). Это явление называют внутренним фотоэффектом (эффектом фотопроводимости). Фоторезисторы часто характеризуются зависимостью тока i от освещенности Е при заданном напряжении на резисторе. Это так называемая люкс-амперная характеристика (рис. 6.6).
Рис. 6.5. Структура (а) и схематическое обозначение (б) фоторезистора
Рис. 6.6. Люкс-амперная характеристика фоторезистора ФСК-Г7
Часто используют следующие параметры фоторезисторов:
· номинальное темновое (при отсутствии светового потока) сопротивление (для ФСК-Г7 это сопротивление равно 5 МОм);
· интегральную чувствительность (чувствительность, определяемая при освещении фоторезистора светом сложного спектрального состава).
Интегральная чувствительность (токовая чувствительность к световому потоку) S определяется выражением:
,
где iф - так называемый фототок (разность между током при освещении и током при отсутствии освещения);
Ф - световой поток.
Для фоторезистора ФСК-Г7 S=0,7 А/лм.
Фотодиод
Устройство и основные физические процессы. Упрощенная структура фотодиода приведена на рис. 6.7,а, а его условное графическое изображение - на рис. 6.7,б.
Рис. 6.7 Структура (а) и обозначение (б) фотодиода
Физические процессы, протекающие в фотодиодах, носят обратный характер по отношению к процессам, протекающим в светодиодах. Основным физическим явлением в фотодиоде является генерация пар электрон-дырка в области p-n-перехода и в прилегающих к нему областях под действием излучения.
Генерация пар электрон-дырка приводит к увеличению обратного тока диода при наличии обратного напряжения и к появлению напряжения uак между анодом и катодом при разомкнутой цепи. Причем uак>0 (дырки переходят к аноду, а электроны - к катоду под действием электрического поля p-n-перехода).
Характеристики и параметры. Фотодиоды удобно характеризовать семейством вольт-амперных характеристик, соответствующих различным световым потокам (световой поток измеряется в люменах, лм) или различным освещенностям (освещенность измеряется в люксах, лк).
Вольт-амперные характеристики (ВАХ) фотодиода представлена на рис. 6.8.
Рис. 6.8. Вольт-амперные характеристики фотодиода
Пусть вначале световой поток равен нулю, тогда ВАХ фотодиода фактически повторяет ВАХ обычного диода. Если световой поток не равен нулю, то фотоны, проникая в область p-n-перехода, вызывают генерацию пар электрон-дырка. Под действием электрического поля p-n-перехода носители тока движутся к электродам (дырки - к электроду слоя p, электроны - к электроду слоя n). В результате между электродами возникает напряжение, которое возрастает при увеличении светового потока. При положительном напряжении анод-катод ток диода может быть отрицательным (четвертый квадрант характеристики). При этом прибор не потребляет, а вырабатывает энергию.
На практике фотодиоды используют и в так называемом режиме фотогенератора (фотогальванический режим, вентильный режим), и в так называемом режиме фотопреобразователя (фотодиодный режим).
В режиме фотогенератора работают солнечные элементы, преобразующие свет в электроэнергию. В настоящее время коэффициент полезного действия солнечных элементов достигает 20 %. Пока энергия, полученная от солнечных элементов, примерно в 50 раз дороже энергии, получаемой из угля, нефти или урана.
Режим фотопреобразователя соответствует ВАХ в третьем квадранте. В этом режиме фотодиод потребляет энергию (u ? i > 0) от некоторого обязательно имеющегося в цепи внешнего источника напряжения (рис. 6.9). Графический анализ этого режима выполняется при использовании линии нагрузки, как и для обычного диода. При этом характеристики обычно условно изображаются в первом квадранте (рис. 6.10).
Рис. 6.9., 6.10
Фотодиоды являются более быстродействующими приборами по сравнению с фоторезисторами. Они работают на частотах 107-1010 Гц. Фотодиод часто используют в оптопарах светодиод-фотодиод. В этом случае различные характеристики фотодиода соответствуют различным токам светодиода (который при этом создает различные световые потоки).
Оптрон (оптопара)
Оптрон - полупроводниковый прибор, содержащий источник излучения и приемник излучения, объединенных в одном корпусе и связанные между собой оптически, электрически и одновременно обеими связями. Очень широко распространены оптроны, у которых в качестве приемника излучения используются фоторезистор, фотодиод, фототранзистор и фототиристор.
В резисторных оптронах выходное сопротивление при изменении режима входной цепи может изменяться в 107…108 раз. Кроме того, вольт-амперная характеристика фоторезистора отличается высокой линейностью и симметричностью, что обусловливает широкую применимость резистивных оптопар в аналоговых устройствах. Недостатком резисторных оптронов является низкое быстродействие - 0,01…1 с.
В цепях передачи цифровых информационных сигналов применяются главным образом диодные и транзисторные оптроны, а для оптической коммутации высоковольтных сильноточных цепей - тиристорные оптроны. Быстродействие тиристорных и транзисторных оптронов характеризуется временем переключения, которое часто лежит в диапазоне 5…50 мкс.
Рассмотрим подробнее оптопару светодиод-фотодиод (рис. 6.11,а). Излучающий диод (слева) должен быть включен в прямом направлении, а фотодиод - в прямом (режим фотогенератора) или обратном направлении (режим фотопреобразователя). Направления токов и напряжений диодов оптопары приведены на рис. 6.11,б.
Рис. 6.11 Схема оптопары (а) и направление токов и напряжений в ней (б)
Изобразим зависимость тока iвых от тока iвх при uвых=0 для оптопары АОД107А (рис. 6.12). Указанная оптопара предназначена для работы как в фотогенераторном, так и в фотопреобразовательном режиме.
Рис. 6.12 Передаточная характеристика оптопары АОД107А
Фототранзистор и фототиристор
Выходные характеристики фототранзистора подобны выходным характеристикам обычного биполярного транзистора, в котором положение характеристик определяется не током базы, а уровнем освещенности (или величиной светового потока).
Свойства фототиристора подобны свойствам обычного тиристора, однако с той лишь особенностью, что включение тиристора осуществляется не с помощью импульса тока управления, а с помощью светового импульса.
7. Операционные усилители
Операционный усилитель (ОУ) - это высококачественный усилитель, предназначенный для усиления как постоянных, так и переменных сигналов. Вначале такие усилители использовались в аналоговых вычислительных устройствах для выполнения математических операций (сложения, вычитания и т. д.). Это объясняет происхождение термина «операционный».
В настоящее время операционные усилители широко используются в виде полупроводниковых интегральных схем. Эти схемы содержат большое число (десятки) элементов (транзисторов, диодов и т. д.), но по размерам и стоимости приближаются к отдельным транзисторам. Операционные усилители удобно использовать для решения самых различных задач преобразования и генерирования маломощных сигналов, поэтому эти усилители очень широко применяются на практике.
Рассмотрим наиболее широко используемые разновидности операционных усилителей, для питания которых применяются два источника напряжения (обычно +15 В и -15 В). По-другому это называется питанием от источника с нулевым выводом или от расщепленного источника.
Условное графическое обозначение операционного усилителя показано на рис. 7.1.
Рис. 7.1 Графическое обозначение операционного усилителя
Обозначение общего вывода «0V» расшифровывается как «ноль вольт». Для пояснения назначения выводов на рис. 7.2 приведена типовая схема на операционном усилителе - схема инвертирующего усилителя.
Рис. 7.2 Инвертирующий усилитель на основе операционного усилителя
Если входное напряжение uвх достаточно мало по модулю, то выходное напряжение uвых определяется выражением
.
Часто на схемах выводы +U, -U и 0V не указывают (но подразумевают) и используют упрощенное условное графическое обозначение (рис. 7.3). При этом приведенная на рис. 7.2 типичная схема приобретает упрощенный вид (рис. 7.4).
Рис. 7.3, 7.4
Обозначим напряжения на выводах операционного усилителя (рис. 7.5).
Рис. 7.5
Напряжение uдиф между инвертирующим и неинвертирующим входами называют дифференциальным напряжением (дифференциальным сигналом). Ясно, что . Операционные усилители конструируют таким образом, чтобы они как можно больше изменяли напряжение uвых при изменении дифференциального сигнала (т. е. разности ) и как можно меньше изменяли напряжение uвых при одинаковом изменении напряжений и .
Пусть uдиф=0. Обозначим синфазное напряжение (синфазный сигнал) . Операционные усилители конструируют таким образом, чтобы влияние синфазного сигнала на выходное напряжение было как можно меньше.
Передаточная характеристика. Операционный усилитель хорошо характеризует его передаточная характеристика - зависимость вида
,
где f - некоторая функция.
График этой зависимости для операционного усилителя К140УД1Б приведен на рис. 7.6. Эта конкретная характеристика не проходит через начало координат. Значение напряжения uдиф, при котором выполняется условие uвых=0, называют напряжением смещения нуля и обозначают через Uсм. Для операционного усилителя типа К140УД1 известно, что напряжение Uсм лежит в диапазоне от -10 мВ до + 10 мВ. А это означает, что при нулевом напряжении uдиф напряжение uвых может лежать в пределах от минимально возможного (около -7 В) до максимально возможного (около +10 В).
Рис. 7.6. Передаточная характеристика операционного усилителя К140УД1Б
Для того, чтобы при нулевом сигнале на входе напряжение на выходе было равно нулю, т. е. для того, чтобы передаточная характеристика проходила через начало координат, предусматривают меры по компенсации напряжения смещения (балансировка, коррекция нуля, настройка нуля). В некоторых операционных усилителях для компенсации напряжения смещения предусмотрены специальные выводы. Типовая схема включения операционного усилителя типа К140УД8А, в котором предусмотрены такие выводы, представлена на рис. 7.7.
Рис. 7.7. Схема включения операционного усилителя К140УД8А
Через NC обозначены специальные выводы для балансировки. Цифрами обозначены номера выводов.
Диапазон выходного напряжения, соответствующий почти вертикальному участку передаточной характеристики, называется областью усиления. Соответствующий этому диапазону режим работы называют режимом усиления (линейным, активным режимом). В линейном режиме
,
где К - коэффициент усиления по напряжению (коэффициент усиления напряжения, коэффициент усиления дифференциального сигнала).
Обычно величина К лежит в пределах 104…105. Например, для операционного усилителя типа К140УД1Б К=1350…12000, для операционного усилителя К140УД14А К не менее 50000.
Диапазоны выходного напряжения вне области усиления называются областями насыщения. Соответствующий этим областям режим называют режимом насыщения.
Реальные электронные устройства на основе операционных усилителей практически всегда имеют коэффициент усиления значительно меньше К, так как в них используется отрицательная обратная связь (рис. 7.2).
8. Интегральные микросхемы
Интегральные микросхемы, или интегральные схемы (ИС) - микроэлектронное изделие (т.е. изделие с высокой степенью миниатюризации), выполняющее определенную функцию преобразования и обработки сигнала и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов) и (или) кристаллов, которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.
Элемент интегральной схемы - часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т.д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации.
Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.
По конструктивно-технологическим признакам интегральные схемы обычно подразделяются на:
· полупроводниковые;
· гибридные;
· пленочные.
В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.
Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника.
В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов.
По функциональным признакам интегральные схемы подразделяются на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т.п.).
Историческая справка. Первые опыты по созданию полупроводниковых интегральных схем были осуществлены в 1953 г., а промышленное производство интегральных схем началось в 1959 г. В 1966 г. был начат выпуск интегральных схем средней степени интеграции (число элементов в одном кристалле до 1000). В 1969 г. были созданы интегральные схемы большой степени интеграции (большие интегральные схемы, БИС), содержащие до 10000 элементов на одном кристалле.
В 1971 г. были разработаны микропроцессоры, а в 1975 г. - интегральные схемы сверхбольшой степени интеграции (сверхбольшие интегральные схемы, СБИС), содержащие более 10000 элементов в одном кристалле. Предельная частота биполярных транзисторов в полупроводниковых интегральных схемах достигает 15 ГГц и более (1 ГГц=109 Гц).
В настоящее время ожидается появление интегральных схем, содержащих до 100 млн МОП-транзисторов в одном кристалле (речь идет о цифровых схемах).
Система обозначений. Условное обозначение интегральных микросхем включает в себя основные классификационные признаки. Оно состоит из четырех элементов.
Первый элемент - цифра, соответствующая конструктивно-технологической группе. Цифрами 1, 5, 6 и 7 в первом элементе обозначаются полупроводниковые интегральные микросхемы. Гибридным микросхемам присвоены цифры 2, 4 и 8. Пленочные, вакуумные и керамические интегральные микросхемы обозначаются цифрой 3.
Второй элемент, определяющий порядковый номер разработки серии, состоит из двух (от 00 до 99) или трех (от 000 до 999) цифр.
Третий элемент, обозначающий подгруппу и вид микросхемы, состоит из двух букв (см. таблицу).
Четвертый элемент, обозначающий порядковый номер разработки микросхемы данной серии, состоит из одной или нескольких цифр.
К этим основным элементам обозначений микросхем могут добавляться и другие классификационные признаки.
Дополнительная буква в начале четырехэлементного обозначения указывает на особенность конструктивного исполнения:
Р - пластмассовый корпус типа ДИП;
А - пластмассовый планарный корпус;
Е - металлокерамический корпус типа ДИП;
С - стеклокерамический корпус типа ДИП;
И - стеклокерамический планарный корпус;
Н - керамический «безвыводной» корпус.
Серии бескорпусных полупроводниковых микросхем начинаются с цифры 7, а бескорпусные аналоги корпусных микросхем обозначаются буквой Б перед указанием серии.
Через дефис после обозначения указывается цифра, характеризующая модификацию конструктивного исполнения:
1 - с гибкими выводами; 2 - с ленточными (паучковыми) выводами, в том числе на полиамидном носителе; 3 - с жесткими выводами; 4 - на общей пластине (неразделенные); 5 - разделенные без потери ориентировки (наклеенные на пленку); 6 - с контактными площадками без выводов.
9. Аналоговые электронные устройства
Усилители
Усилитель - это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем, мощность, требующаяся для управления, намного меньше мощности, отдаваемой в нагрузку, а форма входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 9.1).
Рис. 9.1. Функциональная схема усилителя
Классификация. Все усилители можно классифицировать по следующим признакам:
· по частоте усиливаемого сигнала: усилители низкой частоты (УНЧ) для усиления сигналов с частотой от 10 Гц до 100 кГц; широкополосные усилители, усиливающие сигналы от 1 до 100 МГц; избирательные усилители, усиливающие сигналы узкой полосы частот;
· по роду усиливаемого сигнала: усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от 0 Гц и выше; усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;
· по функциональному назначению: усилители напряжения, усилители тока и усилители мощности (в зависимости от того, какой из параметров усиливается усилителем).
Основным качественным параметром усилителя является коэффициент усиления. В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению KU, току KI или мощности KP:
, , ,
где Uвх, Iвх - амплитудные значения переменных составляющих соответственно напряжения и тока на входе;
Uвых, Iвых - амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;
Pвх, Pвых - мощности сигналов соответственно на входе и выходе.
Коэффициенты усиления часто выражаются в логарифмических единицах - децибелах:
KU(дБ)=20lgKU; KI(дБ)=20lgKI; КР(дБ)=10lgKP.
Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления его каскадов: К=К1?К2?…?Кn. Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:
К(дБ)=К1(дБ)+К2(дБ)+…+Кn(дБ).
Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:
,
где
- модуль коэффициента усиления;
- сдвиг фаз между входным и выходным напряжениями с амплитудами Uвх и Uвых.
Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия
,
где Pист - мощность, потребляемая от источника питания.
Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.
К количественным показателям усилителя относятся также входное Rвх и выходное Rвых сопротивления усилителя:
; ,
где Uвх и Iвх - амплитудные значения напряжения и тока на входе усилителя;
и - приращения амплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки.
Рассмотрим основные характеристики усилителей.
Амплитудная характеристика - это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 9.2). Точка 1 соответствует напряжению шумов, измеряемому при Uвх=0, точка 2 - минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов. Участок 2-3 - это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжением усилителя. После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):
,
где U1m, U2m, U3m, Unm - амплитуды 1-й (основной), 2, 3 и n-ой гармоник выходного напряжения соответственно.
Величина характеризует динамический диапазон усилителя.
Рис. 9.2. Амплитудная характеристика усилителя
Амплитудно-частотная характеристика (АЧХ) усилителя - это зависимость модуля коэффициента усиления от частоты (рис. 9.3). Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн-fв) - полосой пропускания усилителя.
Рис. 9.3. Амплитудно-частотная характеристика усилителя
При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает. При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.
Такие искажения называются частотными и характеризуются коэффициентом частотных искажений:
,
где Кf - модуль коэффициента усиления на заданной частоте.
Коэффициенты частотных искажений
и
называются соответственно коэффициентами искажений на нижней и верхней граничных частотах.
АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 9.4), коэффициент усиления усилителя выражается в децибелах, а по оси абсцисс откладываются частоты через декаду (интервал частот между 10f и f ).
Рис. 9.4. Логарифмическая амплитудно-частотная характеристика усилителя (ЛАЧХ)
Обычно в качестве точек отсчета выбирают частоты, соответствующие f=10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду.
Фазо-частотная характеристика (ФЧХ) усилителя - это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая ФЧХ приведена на рис. 9.5. Она также может быть построена в логарифмическом масштабе.
В области средних частот дополнительные фазовые искажения минимальны. ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.
Рис. 9.5. Фазо-частотная характеристика (ФЧХ) усилителя
Пример возникновения фазовых искажений приведен на рис. 9.6, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.
Рис. 9.6. Фазовые искажения в усилителе
Переходная характеристика усилителя - это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 9.7). Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом.
Рис. 9.7. Переходная характеристика усилителя
Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот - переходная характеристика в области больших времен.
Обратная связь в усилителях
Понятие «обратная связь» (ОС) широко используется как в технике, так и в других областях знаний. Обратной связью называют влияние некоторой выходной величины на некоторую входную, которая в свою очередь существенным образом влияет на выходную величину (определяет эту выходную величину). В усилителях, как правило, используется так называемая отрицательная обратная связь (ООС). При наличии отрицательной обратной связи выходной сигнал таким образом влияет на входной, что входной сигнал уменьшается и соответственно приводит к уменьшению выходного сигнала. При этом уменьшаются искажения сигнала, расширяется частотный диапазон и т. д.
Классификация обратных связей в усилителях представлена на рис. 9.8.
В соответствии с рисунком 9.8 обратные связи подразделяются на:
· последовательная по напряжению (а);
· параллельная по напряжению (б);
· последовательная по току (в);
· параллельная по току (г).
Рис. 9.8. Классификация обратных связей усилителя:
К - коэффициент прямой передачи, или коэффициент усиления усилителя без обратной связи; в - коэффициент передачи цепи обратной связи
Для определения вида обратной связи (ОС) нужно «закоротить» нагрузку. Если при этом сигнал обратной связи обращается в нуль, то это ОС по напряжению, если сигнал ОС не обращается в нуль - то это ОС по току. При обратной связи по напряжению сигнал обратной связи, поступающий с выхода усилителя на вход, пропорционален выходному напряжению. При обратной связи по току сигнал обратной связи пропорционален выходному току. При последовательной обратной связи (со сложением напряжений) в качестве сигнала обратной связи используется напряжение, которое вычитается (для отрицательной обратной связи) из напряжения внешнего входного сигнала. При параллельной обратной связи (со сложением токов) в качестве сигнала обратной связи используется ток, который вычитается из тока внешнего входного сигнала.
9.1 Усилители на биполярных транзисторах
В усилителе в качестве активного элемента использован биполярный транзистор. Перед тем, как подавать на вход усилителя сигнал, подлежащий усилению, необходимо обеспечить начальный режим работы (статический режим, режим по постоянному току, режим покоя). Начальный режим работы характеризуется постоянными токами электродов транзистора и напряжениями между этими электродами. Для характеристики проблемы обеспечения начального режима рассматривают следующие три схемы:
· с фиксированным током базы;
· с коллекторной стабилизацией;
· с эмиттерной стабилизацией.
Схема с фиксированным током базы (рис. 9.9).
В соответствии со вторым законом Кирхгофа
.
Отсюда находим ток коллектора iK:
,
что соответствует линейной зависимости вида .
Рис. 9.9. Схема включения транзистора с фиксированным током базы
Это уравнение описывает так называемую линию нагрузки. Изобразим выходные характеристики транзистора и линию нагрузки (рис. 9.10).
В соответствии со вторым законом Кирхгофа
.
Отсюда находим ток базы iб:
.
Учитывая, что uбэ<<Ек, пренебрежем напряжением uбэ. Тогда
.
Рис. 9.10. Выходные характеристики транзистора с линией нагрузки
Таким образом, в рассматриваемой схеме ток iб задается величинами Eк и Rб (ток «фиксирован»). При этом
.
Пусть iб=iб2. Тогда начальная рабочая точка (НРТ) займет то положение, которое указано на рис. 9.10. Видно, что самое нижнее возможное положение начальной рабочей точки соответствует точке Y (режим отсечки, iб=0), а самое верхнее положение - точке Z (режим насыщения, iб ? iб4).
Схему с фиксированным током базы используют редко по следующим причинам:
· при воздействии дестабилизирующих факторов (например, температуры) изменяются величины и , что изменяет ток Iкн и положение начальной рабочей точки;
· для каждого значения необходимо подбирать соответствующее значение Rб, что нежелательно при использовании как дискретных приборов (т. е. приборов, изготовленных не по интегральной технологии), так и интегральных схем.
Схема с коллекторной стабилизацией (рис. 9.11). Эта схема обеспечивает лучшую стабильность начального режима.
Рис. 9.11 Схема включения транзистора с коллекторной стабилизацией
В схеме имеет место отрицательная обратная связь по напряжению (выход схемы - коллектор транзистора соединен со входом схемы - базой транзистора с помощью резистора Rб). При увеличении тока iк (например, из-за повышения температуры) начинает увеличиваться напряжение uRк. Это приведет к уменьшению напряжения uкэ и тока iб (), что будет препятствовать значительному увеличению тока iк, т. е. будет осуществляться стабилизация тока коллектора.
Схема с эмиттерной стабилизацией (рис. 9.12). Основная идея, реализованная в схеме, состоит в том, чтобы зафиксировать ток iэ и через это - ток iк . С указанной целью в цепь эмиттера включают резистор Rэ и создают на нем практически постоянное напряжение uRэ. При этом оказывается, что:
.
Для создания требуемого напряжения uRэ используют делитель напряжения на резисторах R1 и R2.
Рис. 9.12. Схема включения транзистора с эмиттерной стабилизацией
Резисторы R1 и R2 выбирают насколько малыми, что величина тока iб практически не влияет на величину напряжения uR2. При этом
.
В соответствии со вторым законом Кирхгофа uRэ = uR2 - uбэ .
При воздействии дестабилизирующих факторов величина uбэ изменяется мало, поэтому мало изменяется и величина uRэ. На практике обычно напряжение uRэ составляет небольшую долю напряжения Ек.
Различают следующие режимы работы транзистора (классы работы): А, АБ, В, С и D. Рассматриваемые RC - усилители обычно работают в режиме А. В режиме А ток коллектора всегда больше нуля (iк > 0). При этом он увеличивается или уменьшается в зависимости от входного сигнала. В режиме В ток Iкн=0, поэтому ток коллектора может только увеличиваться. При синусоидальном входном сигнале в цепи коллектора протекают положительные полуволны тока. Режим АВ является промежуточным между режимами А и В. В режиме С на вход транзистора подается начальное запирающее напряжение, поэтому в цепи коллектора в каждый период входного сигнала ток протекает в течение времени, меньшего чем половина периода. Режимом D называют ключевой режим работы (транзистор находится или в режиме насыщения, или в режиме отсечки).
Усилители на полевых транзисторах
В качестве примера рассмотрим RC-усилитель на полевом транзисторе с p-n-переходом, включенным с общим истоком (рис. 9.13). Используем транзистор с каналом n-типа. Для используемого транзистора начальное напряжение uиз должно быть положительным (p-n-переход должен находиться под запирающим напряжением). С целью получения этого напряжения в цепь истока включают резистор Rи, на котором возникает падение напряжения uRи от протекания по нему начального тока истока Iин.
Рис. 9.13. Усилитель на полевом транзисторе
Напряжение uRи через резистор Rз передается на затвор. Так как ток затвора полевого транзистора пренебрежительно мал, падение напряжения на резисторе Rз практически равно нулю, поэтому uиз=uRи.
Рассмотренную схему обеспечения начального режима работы называют схемой с автоматическим смещением.
Пусть задан начальный ток стока (ICH = IИН) и начальное напряжение UИЗН между истоком и затвором. Тогда резистор RИ следует выбрать из соотношения
.
Резистор RЗ обычно выбирают порядка 1 МОм.
Рассматриваемая схема обеспечения начального режима работы характеризуется повышенной стабильностью. Если по каким-либо причинам начальный ток стока IСН начнет увеличиваться, то это приведет к увеличению напряжений URИ и UИЗ, что будет препятствовать значительному увеличению тока ICН.
Модуль коэффициента усиления каскада в области средних частот определяется равенством
,
где S - статическая крутизна характеристики полевого транзистора, определяемая по справочникам.
Назначение конденсаторов С1, С2 и С4 аналогично назначению соответствующих конденсаторов RC-усилителя на биполярном транзисторе.
Частотные характеристики рассматриваемого усилителя подобны частотным характеристикам RC-усилителя на биполярном транзисторе.
10. Линейные схемы на основе операционных усилителей
Операционные усилители (ОУ) в настоящее время используются в самых различных электронных устройствах. Их широко применяют как в аналоговых, так и в импульсных устройствах электроники. В то же время существуют и часто используются типовые линейные схемы на основе операционных усилителей. При создании схем с операционными усилителями используется ряд допущений, принимаемых в предположении, что используемые операционные усилители достаточно близки к идеальным.
Примем следующие допущения:
1. Входное сопротивление ОУ равно бесконечности, токи входных электродов равны нулю
.
2. Выходное сопротивление ОУ равно нулю, т. е. ОУ со стороны выхода является идеальным источником напряжения (Rвых=0).
3. Коэффициент усиления по напряжению (коэффициент усиления дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов ОУ).
4. В режиме насыщения напряжение на выходе равно по модулю напряжения питания, а знак определяется полярностью входного напряжения.
5. Синфазный сигнал не действует на ОУ.
6. Напряжение смещения нуля равно нулю.
Инвертирующий усилитель на основе ОУ
Рассмотрим схему инвертирующего усилителя (рис. 10.1), из которого видно, что в ней действует параллельная обратная связь по напряжению.
Рис. 10.1. Инвертирующий усилитель с параллельной обратной связью по напряжению
Так как i = 0, то в соответствии с первым законом Кирхгофа i1 = i2.
Если ОУ работает в режиме усиления, то uдиф = 0. В соответствии с этим на основании второго закона Кирхгофа получим
, .
Учитывая, что i1 = i2, получаем
.
Например, если R1=1 кОм, R2=10 кОм, тогда uвых = -10 ? uвх.
Для уменьшения влияния входных токов ОУ на выходное напряжение в цепь неинвертирующего входа включают резистор R3 (рис. 10.2), которое определяется из выражения
.
Входное сопротивление инвертирующего усилителя на низких частотах значительно ниже собственного входного сопротивления ОУ. Это подтверждает вывод о том, что параллельная отрицательная обратная связь уменьшает входное сопротивление.
Рис. 10.2. Операционный усилитель с обратной связью
Учитывая, что , входное сопротивление усилителя на низких частотах приблизительно равно R1.
Выходное сопротивление инвертирующего усилителя на низких частотах Rвых.ос существенно меньше выходного сопротивления на низких частотах Rвых собственно операционного усилителя. Это является следствием действия отрицательной обратной связи по напряжению.
Можно показать, что
,
где К - коэффициент усиления по напряжению ОУ.
Неинвертирующий усилитель на основе ОУ
Рассмотрим схему неинвертирующего усилителя (рис. 10.3), где имеет место последовательная связь по напряжению.
В соответствии с ранее принятыми допущениями входные токи ОУ равны нулю, т. е. i- = i+ = 0 и, следовательно, i1 = i2. Если ОУ работает в режиме усиления, тогда uдиф = 0.
Рис. 10.3. Неинвертирующий усилитель на основе ОУ с обратной связью
На основании второго закона Кирхгофа получаем
, .
Неинвертирующий усилитель характеризуется коэффициентом усиления по напряжению
.
Коэффициент усиления усилителя, охваченный обратной связью, определяется выражением
.
При
.
Коэффициент в определяется выражением
.
Таким образом, при
.
Пусть, например, R1=2 кОм, R2=4 кОм и uвх=2 В.
Тогда
.
Входное сопротивление неинвертирующего усилителя на ОУ с обратной связью
,
причем при К> Rвх.ос>.
На входах операционного усилителя, использующегося в неинвертирующем усилителе, имеется синфазный сигнал, равный напряжению uвх. Это недостаток такого усилителя. В инвертирующем усилителе синфазный сигнал отсутствует.
Повторитель напряжения на основе ОУ
Схема повторителя (рис. 10.4) легко может быть получена из схемы неинвертирующего усилителя при R1>, R2> 0. Здесь предполагается, что операционный усилитель работает в режиме усиления (uдиф0). Используя второй закон Кирхгофа, получаем uвых = uвх.
Рис. 10.4. Повторитель напряжения на основе ОУ
Сумматор напряжения (инвертирующий сумматор)
Рассмотрим схему сумматора, приведенную на рис. 10.5.
Рис. 10.5. Сумматор напряжения (инвертирующий сумматор)
Предположим, что операционный усилитель работает в режиме усиления, тогда uдиф 0. Учитывая, что i-= i+= 0, получим
.
ри uдиф 0 получим uRj = uвхj, j = 1,…,n; uRос = uвых. На основании этих выражений после несложных преобразований получаем
.
Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор с сопротивлением Rэ = R1 // R2 //… // Rn // Rос .
Вычитающий усилитель (усилитель с дифференциальным входом)
В вычитающем усилителе (рис. 10.6) один входной сигнал подается на инвертирующий вход, а второй - на неинвертирующий.
Рис. 10.6. Вычислительный усилитель с дифференциальным входом
Предположим, что ОУ работает в линейном режиме. Тогда все устройство можно считать линейным и для анализа принцип суперпозиции (наложения).
Если uвх2 = 0, тогда соответствующее выходное напряжение u'вых будет определяться выражением, соответствующим инвертирующему усилителю:
.
Если uвх1 = 0, определим напряжение на выходе u''вых. Для оценки воздействия напряжения uвх2 целесообразно на основе теоремы об эквивалентном генераторе преобразование цепи, подключенной к неинвертирующему входу (рис. 10.7).
Как следует из теоремы,
, .
Рис. 10.7
В соответствии с принципом суперпозиции, общее напряжение на выходе uвых определяется из выражения
,
при R1=R2=R3=R4
.
Схемы с диодами и стабилитронами на основе ОУ
Рассматриваемые схемы являются нелинейными, так как содержат нелинейные элементы - диоды и стабилитроны. Однако такие схемы часто рассматривают как линейные, считая диоды и стабилитроны идеальными и заменяя открытые диоды и стабилитроны закоротками, запертые диоды и стабилитроны - разрывами, а стабилитроны, работающие в режиме пробоя, - источниками напряжения.
При использовании подобных способов линеаризации нелинейных схем основная проблема состоит в том, чтобы определить, в каком режиме работает каждый нелинейный элемент.
Для примера выполним анализ схемы на рис. 10.8, предполагая, что диоды - идеальные. Пусть вначале uвх = 1 В. Если диод D1 открыт (заменяем его закороткой), а диод D2 - закрыт (заменим его разрывом), то получим эквивалентную схему, приведенную на рис. 10.9.
Рис. 10.8. Схема усилителя на ОУ с диодами
Рис. 10.9. Эквивалентная схема усилителя на ОУ
Из схемы на рис. 10.9 следует, что
.
Проверим правильность сделанного предположения, для чего определим ток iD1 диода D1 и напряжение uD2 диода D2. Используя допущение о том, что uдиф = 0, получаем uD2 = -2 В и iD1 = 0,2 мА. Так как напряжение на диоде D2 отрицательное, а ток через диод D1 положителен, можно утверждать, что предположение было правильным.
Пусть теперь uвх = -1 В. Предположим, что диод D1 закрыт, а диод D2 открыт. Тогда получим эквивалентную схему, приведенную на рис. 10.10, из которой получаем
...Подобные документы
Использование биполярных транзисторов. Назначение элементов в схемах усилителей с общим эмиттером и коллектором. Температурная стабилизация и форма кривой выходного напряжения. Расчет коэффициентов усиления по току, напряжению и входному сопротивлению.
контрольная работа [2,1 M], добавлен 15.02.2011Свойства операционных усилителей, охваченных отрицательной обратной связью по напряжению. Линейные и нелинейные схемы. Повторители и сумматоры на основе ОУ. Логарифмические, антилогарифмические и функциональные усилители. Простейшие фильтры на основе ОУ.
лекция [210,3 K], добавлен 15.03.2009Понятие и классификация полевых транзисторов, их разновидности и функциональные особенности. Входные и выходные характеристики данных устройств, принцип их действия, внутренняя структура и элементы. Физическое обоснование работы и сферы применения.
презентация [2,4 M], добавлен 29.03.2015Общие технические характеристики используемого транзистора, схема цепи питания и стабилизации режима работы. Построение нагрузочной прямой по постоянному току. Расчет параметров элементов схемы замещения. Анализ и оценка нелинейных искажений каскада.
курсовая работа [1,0 M], добавлен 27.12.2013Анализ свойств цепей, методов их расчета применительно к линейным цепям с постоянными источниками. Доказательство свойств линейных цепей с помощью законов Кирхгофа. Принцип эквивалентного генератора. Метод эквивалентного преобразования электрических схем.
презентация [433,3 K], добавлен 16.10.2013Кольца Ньютона как классический пример полос равной толщины. Прецизионные измерения малых линейных размеров и показателей преломления прозрачных сред. Основные сферы применения интерферометров. Интерференционный дилатометр Физо-Аббе, его особенности.
доклад [22,2 K], добавлен 11.04.2013Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.
контрольная работа [2,9 M], добавлен 22.10.2009Выбор режима работы усилителей электрических сигналов: подбор транзисторов, составление структурной схемы, распределение частотных искажений. Расчёт оконечного, инверсного и резистивного каскадов предварительного усиления. Вычисление источника питания.
курсовая работа [721,0 K], добавлен 01.08.2012Назначение полевых транзисторов на основе металлооксидной пленки, напряжение. Вольт-амперная характеристика управляющего транзистора в крутой линейной части. Передаточная характеристика инвертора, время переключения. Вычисление скорости насыщения.
контрольная работа [103,9 K], добавлен 14.12.2013Сущность когенерационной технологии и основные условия для ее успешного применения. Сферы применения когенерационных установок. Преимущества использования когенерации. Классификация когенерационных систем по типам основного двигателя и генератора.
реферат [455,4 K], добавлен 16.09.2010Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.
контрольная работа [739,7 K], добавлен 13.02.2015Исследование методов формирования полупроводниковых квантовых точек. Анализ возможности их применения в электронных приборах: лазерах, одноэлектронных транзисторах, элементах памяти наноразмеров. Размерное квантование энергии электронов. Квантовые ямы.
статья [143,0 K], добавлен 28.11.2013Процессы взаимодействия излучения. Схема реализации зондового устройства. Метод просвечивания узким пучком y-излучения. Анализ ядерно-геофизических методов разведки, использование в них излучений естественных и искусственных радиоактивных элементов.
курсовая работа [1,3 M], добавлен 24.12.2014Математическое моделирование устройств промышленной электроники. Задача оптимизации параметров. Процессы в электромеханической системе. Составление математической модели электромагнитного демпфера, проверка его работы в заданных начальных условиях.
курсовая работа [1,7 M], добавлен 16.07.2009Волноводный акустический метод контроля. Спектральное представление сигнала. Выбор и обоснование, расчет основных параметров для платы аналого-цифрового преобразования. Подробные характеристики ноутбука DELL Inspirion N5110. Автоматическая система.
курсовая работа [886,4 K], добавлен 09.03.2013Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.
курсовая работа [496,8 K], добавлен 18.05.2014Усилители, построенные на полупроводниковых усилительных элементах (биполярных и полевых транзисторах). Выбор принципиальной схемы. Расчет выходного, предоконечного и входного каскадов. Параметры схемы и расчет обратной связи. Расчет элементов связи.
курсовая работа [203,3 K], добавлен 27.11.2009Понятие и назначение электронных генераторов, их классификация и разновидности, структура и основные элементы, принцип действия и сферы применения. Характеристика, возможные режимы работы генераторов постоянного тока и автоматического включения резерва.
шпаргалка [1,1 M], добавлен 20.01.2010Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.
курсовая работа [323,7 K], добавлен 28.03.2015Диапазон параметров приборов, дифференциальное сопротивление на участке стабилизации. Температурный коэффициент напряжения стабилизации, примеры практического применения прибора. Обратная ветвь вольт-амперной характеристики при разных температурах.
курсовая работа [740,7 K], добавлен 21.02.2023