Нормы приемо-сдаточных испытаний электродвигателей переменного тока

Знакомство с особенностями и способами проверки работы электродвигателя на холостом ходу или с ненагруженным механизмом. Общая характеристика норм приемо-сдаточных испытаний электродвигателей переменного тока. Анализ схемы измерения тока утечки.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 14.01.2015
Размер файла 672,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нормы приемо-сдаточных испытаний электродвигателей переменного тока

1.Объем приемо-сдаточных испытаний

Вводимые в эксплуатацию электродвигатели переменного тока в соответствии с требованиями ПУЭ должны испытываться в следующем объеме:

1. Определение возможности включения без сушки электродвигателей напряжением выше 1кВ.

2. Измерение сопротивления изоляции.

3. Испытание повышенным напряжением промышленной частоты.

4. Измерение сопротивления постоянному току

а) обмоток статора и ротора б) реостатов и пускорегулировочных резисторов.

5. Измерение зазоров между сталью ротора и статора.

6. Измерение зазоров в подшипниках скольжения.

7. Измерение вибрации подшипников электродвигателя.

8. Измерение разбега ротора в осевом направлении.

9. Испытание воздухоохладителя гидравлическим давлением.

10. Проверка работы электродвигателя на холостом ходу и с ненагруженным механизмом.

11. Проверка работы электродвигателя под нагрузкой.

Электродвигатели переменного тока напряжением до 1кВ испытываются по п.п.2, 4б, 10, 11.

Электродвигатели переменного тока напряжением выше 1кВ испытываются по п.п.1-4, 7, 9-1 1.

По п.п.5, 6, 8 испытываются электродвигатели, поступающие на монтаж в разобранном виде.

2.Определение возможности включения без сушки электродвигателей напряжением выше 1кВ

Руководящими материалами для определения условий включения электродвигателей без сушки являются "Инструкция по определению возможности включения вращающихся электрических машин переменного тока без сушки" и заводская документация.

По условиям включения без сушки электрические машины переменного тока условно разделяют на две группы:

I - электродвигатели мощностью до 5 МВт включительно, имеющие частоту вращения не более 1500 об/мин;

II - генераторы и синхронные компенсаторы, а также электродвигатели, не отнесенные к группе I.

Критериями оценки состояния изоляции обмоток электродвигателей переменного токая являются: сопротивление изоляции К60, коэффициент абсорбции Кабс, характеристика токов утечки и коэффициент нелинейности. Допустимые значения измеренных величин для электродвигателей выше 1кВ приведены в табл. 1.

Таблица 1. Условия включения электродвигателей переменного тока без сушки

Изм. величины для контроля увлаж. изоляции обмоток статоров электрод. переменного тока

Допустимые значения величин для электродвигателей

I группа

II группа

Одноминутное сопротивление изоляции обмоток К60(замеренное через 60с

после начала измерений), измеренное

при температуре не ниже +10°С.

Не менее значений, приведенных в табл.22.2.

При отсутствии заводских данных минимальное значение сопрот. изоляции R60, МОм, при t=+75°С, определяется по формуле R60=Uном/(1000+0,01Рном) где Uном - номинальное напр. элект., В; Рном - номинальная мощность, кВт. Если вычисленное значение R60 менее 0,5МОм, за наименьшее допустимое значение R60принимается 0,5МОм. Значение R60 измеренное при темп. обмотки ниже +75°С, подсчитывается по формуле и умножается на коэф. пересчета Кt: t,0 C 10; '-0; 30; 40; 50; 60; 70; 75.

К R60, 9,4; 6,7; 4,7; 3,4; 2,4; 1,7; 1,2; 1,0.

Коэф. абсорбции, равный отношению одном. сопрот. изоляции к 15-секундному значению R60/R15при температуре измерения 10-30°С.

Не менее 1,2

Не менее 1,3

Хар. токов утечки при приложении выпрям. испыт. напряжения и коэф. нелинейности, равным отношению Kн=Rmin/Rmax Rmin и Rmax опр. по формулам Rmin = Umin/iUmin ; Rmax = Umax/iUmax где Umin и Umax - мин. и макс. ступени прил. испыт. напряжения; iUmin и iUmax - соответ. токи утечки.

Снятие характеристики токов утечки от прил. испыт. выпр. напряжения и определение коэф. нелинейности производятся при условии неуд. значений R60 или Кабс. Величина токов утечки не должна превышать значений, приведенных в табл.22.4. Хар. токов утечки не должна иметь крутых изгибов, а К„должен быть не более 3.

Снятие характеристик токов утечки и определение коэффициента нелинейности обязательно. Токи утечки не должны превышать значений, приведенных в табл.22.4. Характеристика токов утечки не должна иметь крутых изгибов, Кн, не более 3.

Абсолютные значения сопротивления изоляции +p одной фазы обмоток статоров электрических машин I группы, измеренные при температуре не ниже +10°С, должны быть не менее, указанных в табл. 2.

Таблица 2. Значения сопротивления изоляции для электродвигателей I группы

Температура обмотки, °С

Значение сопротивления R60, МОм, при номинальном напряжении электродвигателя, кВ

3-3,15

6-6,3

10-10,5

10

35

75

125

20

25

50

85

30

18

35

60

40

12

24

40

50

9

16

27

60

6

10

18

75

3

6

10

Величина Umax для электрических машин I группы принимается равной 2,5·Umin а для электродвигателей II группы принимается в соответствии со значениями, приведенными в табл. 3. Минимальная величина Umin для машин I группы принимается равной 0,5· Umin а для электродвигателей II группы - не более 0,2·Umax.

Таблица 3. Допустимые испытательные напряжения для электродвигателей II группы

Мощность, кВ·А

Номинальное напряжение, В

Испытат. выпрямленное напряжение, В

Менее 1000

Все напряжения

1,2 (2Uном+1000)

От 1000 и выше

До 3300 до 6600 включительно

1,2 (2Uном +1000)

Вышще 3300 до 6600 включительно

1,2·2,5 Uном

Выше 6600

1,15 (2Uном +3000)

Таблица 4. Предельные значения токов утечки

Ступень (краткость) испытательного напряжения по отношению к Uном

0,5

1,0

1,5

2,0

2,5

3,0

Наибольший допустимый ток утечки, мА

250

500

1000

2000

3000

3000

Снятие характеристик токов утечки допускается при минимальной величине сопротивления изоляции обмоток статора 1 МОм на 1кВ номинального напряжения электродвигателя при температуре не ниже 10°С.

Измерение токов утечки производится по схеме рис. 1.

Выпрямленное напряжение проводится к каждой фазе обмотки относительно корпуса при двух других, соединенных между собой и "землей". При наличии параллельных ветвей фаз обмотки каждая ветвь испытывается отдельно.

Рис. 1. Схема измерения токов утечки

электродвигатель механизм переменный ток

Проводник, с помощью которого на обмотку электродвигателя подается испытательное напряжение выпрямительного тока, прокладывается и надежно закрепляется на расстоянии менее чем 0,5м от корпуса двигателя и других заземленных частей воизбежании перекрытия и попадания высокого потенциала на конструкции.

Вначале, не подсоединяя одну из фаз обмотки статора, плавно увеличивают испытательное напряжение и замеряют величины токов утечки измерительной схемы для корректировки при необходимости дальнейших результатов измерений. Затем, после присоединения обмотки электродвигателя, осуществляется подъем испытательного напряжения не менее чем пятью равными ступенями в диапазоне от Umin дo Umax. На каждой ступени напряжение следует выдерживать в течение 1 мин. Ток утечки при этом измеряется через каждые 15 и 60 с.

Если в процессе испытания возникают по какой-то причине колебания или уменьшаются значения испытательного напряжения на любой ступени, испытания про водят повторно. Если же в процессе испытаний наблюдается возрастание тока утечки или его значение превышает предельное значение (см. табл. 4), испытания прекращают, устраняют причину (загрязнение, увлажнение и др.) и после этого повторяют испытания.

Характеристики тока утечки Iут = f (Uи/Uном) должна быть близка к линейной (рис. 2.).

Нарушение линейности (наличие крутого изгиба кривой) свидетельствует об увлажненности изоляции. Резкое расхождение величин тока по фазам (больше чем в 2-3 раза) указывает на дефекту изоляции.

После измерений токов утечки импульсную обмотку разряжают и заземляют не менее чем на 5 мин.

Измерение токов утечки обмоток статора электродвигателя, имеющего шесть выводов (начала и конца обмоток), должны производиться пофазно. При наличии трех выводов обмоток статора электродвигателя характеристику токов утечки не снимают. Обязательным условием для включения таких электродвигателей является соблюдение допустимых значений R60 и Кабр при значениях R60, вдвое меньших по сравнению с приведенными в табл. 1.

Сопротивление изоляции обмоток роторов электродвигателей напряжением выше 1кВ при температуре 10-20 °С должно быть не менее 0,2МОм.

Рис. 2. Примерные характеристики тока утечки.

3.Измерение сопротивления изоляции

Измерение сопротивления изоляции обмотки статора напряжением до 1кВ производится мегаомметром на напряжение 1000В. Величина сопротивления изоляции должна быть не менее 0,5МОм при температуре 10-30 °С.

Измерение сопротивления изоляции обмотки ротора синхронного электродвигателя и электродвигателя с фазным ротором производится мегаомметром на напряжение 500 В. Величина сопротивления изоляции должна быть не менее 0,2 МОм при температуре 10-30°С (допускается не ниже 2 кОм при +75 °С или +20°С для неявнополюсных роторов).

Измерение сопротивления изоляции встроенных температурных индикаторов производится мегаомметром на напряжение 250 В. Величина сопротивления изоляции не нормируется.

Измерение сопротивления изоляции подшипников синхронных электродвигателей напряжением выше 1кВ производится мегаомметром на напряжение 1000В. Измерение выполнятся относительно фундаментной плиты при полностью собранных маслопроводах. Величина сопротивления изоляции не нормируется.

Измерение сопротивления изоляции обмоток статора электродвигателей напряжением выше 1кВ производится с помощью мегаомметра на напряжение 1000-2500 В. Мегаомметры напряжением 2500 В применяют для измерения сопротивления изоляции обмоток статоров крупных электродвигателей переменного тока с напряжением 6 кВ и выше.

Методика измерения сопротивления изоляции представлена в испытание изоляции электрооборудования повышенным напряжением.

После окончания измерений сохранившийся на обмотке потенциал высокого напряжения следует разрядить путем замыкания ее на корпус, предварительно соединенным с корпусом. Продолжительность разряда для обмоток с номинальным напряжением 3 кВ и выше должны быть не менее 15 с для электродвигателей до 1000 кВт и 60 с для электродвигателей больше 1000 кВт,

Измерение сопротивления изоляции обмоток относительно корпуса электродвигателя и между обмотками производят поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом электродвигателя.

Допустимые значения сопротивления изоляции электродвигателей напряжением выше 1 кВ должны соответствовать требованиям, изложенным в п.22.2.2.

Испытание производится на полностью собранном электродвигателе. Они, как правило, заключают объем пусконаладочных проверок, измерений и испытаний на не подвижном двигателе и предшествуют комплексным испытаниям.

Изоляция электродвигателя испытывается повышенным напряжением переменного тока только при удовлетворительных результатах измерения сопротивления изоляции, коэффициента абсорбции, токов утечки и коэффициента нелинейности. Испытание электрической прочности изоляции обмотки статора относительно корпуса и между фазами производят синусоидально переменным напряжением частотой 50 Гц по схеме рис. 3. У двигателей, не имеющих выводов каждой фазы в отдельности, допускается выполнять испытание всей обмотки относительно заземленного корпуса.

Рис. 3. Схема испытания изоляции обмотки статора электродвигателя повышенным напряжением переменного тока.

Испытательный трансформатор TL выбирается с запасом по напряжению и мощности. Требуемая мощность S трансформатора определяется по формуле, кВ·А,

электродвигатель механизм переменный ток

где щ=2·р·f - угловая частота; С - емкость изоляции обмотки, пФ; U - величина испытательного напряжения, кВ.

Питание испытательного трансформатора регулируемым напряжением производится через индукционный регулятор или регулируемый трансформатор от линейного напряжения сети трехфазного тока. Питание фазным напряжением недопустимо. Для испытательных трансформаторов с пределом испытательного напряжения не выше 3 кВ возможно применение регулируемых реостатов, включенных по схеме потенциометра.

При испытании крупных электродвигателей мощностью более 2000 кВт и номинальным напряжением 6 кВ и выше рекомендуется включать параллельно обмотки электродвигателя (см. рис. 3) шаровой разрядник, разрядное напряжение искрового промежутка которого не должно превышать значения испытательного напряжения более чем на 10%. В табл.22.3 приведены значения пробивных напряжений для различных диаметров шарового разрядника.

Таблица 5. Пробивные напряжения шаровых разрядников

Диаметр, см

Верхний предел измерения

Нижний предел измерения

Иск. промеж, мм

Пробивное напряжение (действ. значение), кВ

Искровой промеж, мм

Пробивное нап. (дейст. знач), кВ

2

15

28,3

0,5

1,9

5

35

58,3

3

5,7

6,5

45

71,5

4

10

10

75

109,6

5

1 1,9

До начала испытаний необходимо обеспечить правильную установку требуемого искрового промежутка разрядника, так как разрядное напряжение искрового промежутка в большой степени зависит от состояния окружающей среды (давления, температуры, влажности и др.). Для этой цели непосредственно на месте испытания выполняется проверка и настройка шарового разрядника.

Увеличивая плавно напряжение до разрядного, фиксируют его значения по вольтметру, после этого установку отключают, очищают поверхность шаров от следов разряда, а затем снова подают напряжение и повторяют эксперимент несколько раз.

За истинное значение разрядного напряжения принимается среднее из 10 разрядов. При необходимости производится регулировка расстояния искрового промежутка. Напряжение пробоя разрядника не должно превышать более чем на 10% заданного значения испытательного напряжения. Значения испытательных напряжений приведены в табл. 6. Время испытания 1 мин.

Таблица 6. Испытательное напряжение промышленной частоты для электродвигателей переменного тока

Испытуемый объект

Характеристика электродвигателя

Испытательное напряжение, кВ

Обмотка статора

Мощность до 1 МВт, номинальное

напряжение выше 1 кВ

1,6 Uном + 0,8

Мощность выше 1 МВт, номинальное

напряжение до 3,3 кВ

1,6 Uном + 0,8

Мощность выше 1 МВт, номинальное

напряжение выше 3,3 до 6,6 кВ

2 Uном

Мощность выше 1 МВт, номинальное

напряжение выше 6,6 кВ

1,6 Uном + 2,4

Обмотка ротора синхронного электродвигателя

-

8 Uном системы возбуждения, но не менее 1,2.

Обмотка ротора электродвигателя с фазным ротором

-

1

Реостат и пускорегулировочныи резистор

-

1

Резистор гашения поля синхронного электродвигателя

-

2

Результаты испытаний считаются удовлетворительными, если в процессе испытаний не происходило пробоя изоляции или перекрытия ее скользящим разрядом. Явление коронирования на поверхности во внимание не принимается. Пробой изоляции характеризуется резким и устойчивым спаданием испытательного напряжения. Перекрытие скользящими разрядами сопровождается неустойчивым понижением испытательного напряжения.

Измерение сопротивлений производят с целью проверки соответствия сопротивления расчетному значению и надежности паек, отсутствия витковых замыканий, определения превышения температуры нагрева обмоток над температурой окружающей среды. Сопротивление может быть измерено в холодном и нагретом состоянии. Нагретое состояние - это состояние обмоток при рабочей температуре. При определении температуры в холодном состоянии необходимо за 30 мин до испытаний заложить в машину термометры. Для измерения температуры обмоток электродвигателей мощностью до 10 кВт устанавливается один термометр или температурный индикатор, для электродвигателей мощностью до 100кВт 2- не менее двух, для электродвигателей мощностью от 100 до 1000 кВт - не менее трех, для электродвигателей мощностью более 1000 кВт - не менее четырех. В качестве температуры обмоток принимается среднее арифметическое измеренных значений. Методика измерения сопротивления постоянному току приведена в испытание изоляции электрооборудования повышенным напряжением.

а) Измерение сопротивления постоянному току обмоток статора и ротора. Производится для электродвигателей мощностью 300 кВт и более.

Измерение сопротивления каждой фазы или ветви обмотки производится отдельно. Если фазы обмотки статора соединены в звезду и не имеют вывода нулевой точки (рис. 4,а), измерение сопротивления производится между двумя фазами.

Рис. 4. Соединение фаз обмотки.

Значение сопротивления каждой фазы в отдельности определяется по формулам:

В случае соединения фаз в треугольник (рис. 4,6) сопротивление каждой фазы определяется:

Если при измерениях значения r12, r23, r31 не отличаются друг от друга более чем на 2% при соединении обмоток в звезду и более чем на 1,5% при соединении обмоток в треугольник, сопротивление отдельных фаз могут рассчитываться по упрощенным фор мулам: при соединении в звезду r1 = r2 = r3 = rизм/2, а при соединении в треугольник r1 = r2 = r3 = 3/2rизм. В этих выражениях rизм - среднее арифметическое измеренных сопротивлений между фазами:

Измерение сопротивления обмотки ротора в двигателях с фазным ротором производят аналогично измерениям обмоток статора. Напряжение измеряют на контактных кольцах, чтобы исключить влияние переходного сопротивления контактов щеток.

Для обеспечения надежного контакта используют специальные разъемные бандажи, под которые подкладывают специальные проводники для измерения падения напряжения. Бандажи накладываются на тщательно зачищенную поверхность колец ротора.

Измерение сопротивления обмоток постоянному току повторяют не менее трех раз, и среднее значение принимается за истинное значение сопротивления постоянном току.

Измерение сопротивления различных фаз обмоток статора и ротора электродвигателя должны отличаться друг от друга или от заводских данных не более чем на 2%.

б) Измерение сопротивления постоянному току реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление и проверяется целость отпаек. Измерение производится на всех ответвлениях пускорегулировочных сопротивлений.

Измеренные сопротивления должны отличаться от паспортных данных не более чем на 10%.

4.Измерение зазоров между сталью ротора и статора

Величину воздушных зазоров определяют с помощью специального набора калиброванных щупов (пластинчатых - для измерения зазоров до 2мм и клиновых - для зазоров до 20мм). Измерения производят в междужелезном пространстве. Ширину щупа следует применять меньше ширины зубцов, и при замерах щуп не должен попадать на пазовых клин или бандаж. Для электродвигателей переменного тока измерения производят в нескольких диаметрально противоположных точках - в четырех или восьми в зависимости от размера двигателя.

При небольшой длине активной стали (до 300 мм) зазоры можно измерять с одной стороны, при большей длине - с обеих сторон. Средний зазор равен среднеарифретическому значению измеренных зазоров. В крупных электродвигателях воздушный зазор в нижней части допускается на 0,1ч0,3 мм больше, чем в верхней части.

Размеры воздушных зазоров в диаметрально противоположных точках или точках, сдвинутых относительно оси ротора на 900, должны отличаться не более чем на 10% среднего размера.

5.Измерение зазоров в подшипниках скольжения

Замер зазоров производится между шейкой вала и верхним вкладышем подшипника. Величина зазора зависит от диаметра шейки вала и частоты вращения ротора электродвигателя. Размеры радиального зазора в подшипниках скольжения с разъемными вкладышами определяются по оттискам отрезов свинцовой проволоки диаметром 0,5ч1мм, длиной 2 ч4см, закладываемых между шейкой вала и верхней половиной вкладыша', а также в полость разъема вкладышей, как показано на рис. 5.

Рис. 5. Измерение зазоров в разъемных подшипниках скольжения а - зазор между шейкой вала и верхним вкладышем; б - зазор между верхним вкладышем и крышкой

При равномерной затяжке стяжными болтами верхней половины вкладыша и крышки подшипника отрезки свинцовой проволоки сплющиваются соответственно зазорам. После снятия верхнего вкладыша производится измерение мегаомметром толщины всех свинцовых оттисков.

Зазор по линии А-А определяется

Зазор по линии Б-Б определяется

где с1, с2, b1, b2, b3, b4 -- толщины свинцовых оттисков.

Значения b1, b2 -- не должны отличаться друг от друга больше чем на 10%.

Разъемные подшипники скольжения должны иметь зазоры между верхним вкладышем и шейкой вала,. приведенным в табл. 6.

Таблица 6. Значения зазоров разъемных подшипников скольжения

Подшипники

Зазор верхней, % от диаметра шейки вала

С кольцевой смазкой

С принудительной смазкой

С отрицат. реакцией у приводов с зубчатой передачей

0,15-0,20

0,20-0,30

0,15

Аналогично определяют зазор между верхним вкладышым и крышкой подшипника (рис. 5,б). Его устанавливают равным 0,05 мм. Радиальный зазор в неразъемных подшипниках скольжения измеряют щупом, вводимым между шейкой вала и вкладышем. При измерении щуп следует вводить на всю длину вкладыша. Допустимые размеры радиальных зазоров приведены в табл. 7. Вибрация измеряется на всех подшипниках электродвигателя. Вибрация должна измеряться в горизонтальной плоскости, проходящей через ось вращения, в поперечном, осевом и вертикальном направлениях возможно ближе к оси вращения (рис. 6). Способ установки вибропреобразователей с помощью резьбовых соединений является предпочтительным. Штифт виброметра устанавливается в том направлении, в котором измеряется вибрация.

Таблица 22.7. Допустимые зазоры в подшипниках скольжения

Диаметр вала, мм

Зазор, мм, при частоте вращения, об/мин

до 1000

1000-1500

свыше 1500

18-30

0,040-0,093

0,060-0,130

0,14-0,28

30-50

0,050-0,112

0,075-0,160

0,17-0,34

50-80

0,065-0,135

0,095-0,195

0,20-0,40

80-120

0,080-0,160

0,120-0,235

0,23-0,46

120-180

0,100-0,195

0,150-0,285

0,26-0,52

180-260

0,120-0,225

0,180-0,300

0,30-0,60

260-360

0,140-0,250

0,200-0,380

0,34-0,68

360-500

0,170-0,305

0,250-0,440

0,38-0,76

Рис. 6. Измерение составляющих вибрации: х - продольная; у - поперечная; z - вертикальная

Измерение вибрации подшипников следует производить при номинальных значениях напряжения и частоты электрической сети.

Значения вибрации, измеренной на каждом подшипнике, должны быть не более следующих величин:

Таблица. Синхронная частота вращения

электродвигателя, об/мин

3000

1500

1000

750 и ниже

Допустимая вибрация, мкм

50

100

130

160

6.Измерение разбега ротора в осевом направлении

Измерение производится для электродвигателей, имеющих подшипники скольжения, и поступившие на монтаж в разобранном виде. После установки статора и ротора проверяют осевой разбег вала, т.е. зазора между заточками шеек вала и торцами вкладышей подшипников.

Осевой разбег ротора не должен превышать 2-4 мм. Регулировку осевых зазоров производят перемещением подшипников стояков. Разбег устанавливается в обе стороны от центрального положения ротора, определяемого магнитным полем.

7.Испытание воздухоохладителя гидравлическим давлением

Производится избыточным гидравлическим давлением 0,2-0,25 МПа (2 ч2,5кгс/см). Продолжительность испытания составляет 10мин. В процессе испытаний не должно быть снижения давления или утечки жидкости из воздухоохладителя.

8.Проверка работы электродвигателя на холостом ходу или с ненагруженным механизмом

Первый пробный пуск электродвигателя производится после окончания испытаний двигателя при их положительных результатах. Для пуска электродвигателя на холостом ходу или с ненагруженным механизмом осуществляется целый ряд организационно-технических мероприятий.

Для пуска электродвигателя должно быть получено разрешение от организации, выполняющей монтаж и ревизию двигателя, а также от организации, поводившей монтаж рабочего механизма.

Перед подачей на двигатель напряжения необходимо произвести внешний осмотр его, убрать посторонние предметы, проверить состояние подшипников и наличие масла в них, а также надежность заземления корпуса двигателя. Перед пуском следует провернуть ротор вручную или с помощью приспособления для проверки свободного вращения и смазки подшипников, проверить действие защитной и сигнальной аппаратуры и правильности присоединения выводов двигателя к сети.

Первое включение электродвигателя длится 1-2 с. определяется направление вращения и отсутствие задеваний и ненормальных явлений. При удовлетворительных результатах первого пуска осуществляется включение двигателя на более длительное время и опробывание работы электродвигателя на холостом ходу или с ненагруженным механизмом.

При этом необходимо проверять: - нагрев подшипников и обмоток активной стали; - вибрацию электрической машины; - отсутствие шума в двигателе; - величину тока холостого хода, напряжение и частоту вращения ротора; - работу системы охлаждения двигателя; - правильность работы смазки подшипников.

Продолжительность работы электродвигателя на холостом ходу или с ненагруженным механизмом составляет не менее 1 час.

9.Проверка работы электродвигателя под нагрузкой

При удовлетворительных результатах проверки работы электродвигателя на холостом ходу он включается под нагрузку, обеспечиваемой технологическим оборудованием к моменту сдачи в эксплуатацию.

Объем проверок работы электродвигателя под нагрузкой аналогичен работе двигателя на холостом ходу или с ненагруженным механизмом. Дополнительно для электродвигателей с регулируемой частотой вращения определяются пределы регулирования.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация и основные принципы действия магнитных усилителей. Двухтактные магнитные усилители. Управление величиной переменного тока посредством слабого постоянного тока. Схемы автоматического регулирования электродвигателей переменного тока.

    курсовая работа [1,6 M], добавлен 01.06.2012

  • Изучение механических характеристик электродвигателей постоянного тока с параллельным, независимым и последовательным возбуждением. Тормозные режимы. Электродвигатель переменного тока с фазным ротором. Изучение схем пуска двигателей, функции времени.

    лабораторная работа [1,3 M], добавлен 23.10.2009

  • Электрооборудование: порядок испытания, понятия и методические указания. Нормы контроля на примере электродвигателей переменного тока. Метрологическое обеспечение испытаний, выявление недостатков конструкции и изготовления, отклонений, скрытых дефектов.

    курсовая работа [474,8 K], добавлен 24.03.2009

  • Основные цели проведения пуско-наладочных работ. Объемы, нормы и методика испытаний. Проверка возможности включения электродвигателей в работу без предварительной ревизии и сушки. Снятие электрических характеристик на холостом ходу и под нагрузкой.

    отчет по практике [23,1 K], добавлен 13.11.2016

  • Освещение цеха в защищенном исполнении. Ведомость и линейный график производства ремонтных работ. Технологическая карта на ремонт двигателя переменного тока. Использование станка для динамической балансировки роторов. Извлечение ротора из статора.

    курсовая работа [465,6 K], добавлен 25.05.2014

  • Метрология как наука об измерениях физических величин, методах и средствах обеспечения их единства. Знакомство с основными особенностями комбинированного вольтметра В7-40 для измерения среднеквадратических значений переменного напряжения и тока.

    дипломная работа [1,5 M], добавлен 08.11.2013

  • Явление резонанса в цепи переменного тока. Проверка закона Ома для цепи переменного тока. Незатухающие вынужденные электрические колебания. Колебательный контур. Полное сопротивление цепи.

    лабораторная работа [46,9 K], добавлен 18.07.2007

  • Основные источники и схемы постоянного оперативного тока. Принципиальная схема распределительной сети постоянного тока. Контроль изоляции сети постоянного тока. Источники и схемы переменного оперативного тока. Схемы и обмотки токового блока питания.

    научная работа [328,8 K], добавлен 20.11.2015

  • Сила тока в резисторе. Действующее значение силы переменного тока в цепи. График зависимости мгновенной мощности тока от времени. Действующее значение силы переменного гармонического тока и напряжения. Сопротивление элементов электрической цепи.

    презентация [718,6 K], добавлен 21.04.2013

  • Особенности управления электродвигателями переменного тока. Описание преобразователя частоты с промежуточным звеном постоянного тока на основе автономного инвертора напряжения. Динамические характеристики САУ переменного тока, анализ устойчивости.

    курсовая работа [619,4 K], добавлен 14.12.2010

  • Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.

    курсовая работа [510,7 K], добавлен 13.01.2016

  • Исследование назначения машин переменного тока, их места в системе энергоснабжения. Анализ принципа действия трансформатора. Характеристика его работы в режиме холостого хода и короткого замыкания. Оценка качества работы магнитной системы трансформатора.

    презентация [254,5 K], добавлен 21.10.2013

  • Анализ состояния цепей постоянного тока. Расчет параметров линейных и нелинейных электрических цепей постоянного тока графическим методом. Разработка схемы и расчет ряда показателей однофазных и трехфазных линейных электрических цепей переменного тока.

    курсовая работа [408,6 K], добавлен 13.02.2015

  • Исследование неразветвленной и разветвленной электрических цепей постоянного тока. Расчет нелинейных цепей постоянного тока. Исследование работы линии электропередачи постоянного тока. Цепь переменного тока с последовательным соединением сопротивлений.

    методичка [874,1 K], добавлен 22.12.2009

  • Расчет линейных электрических цепей постоянного тока, определение токов во всех ветвях методов контурных токов, наложения, свертывания. Нелинейные электрические цепи постоянного тока. Анализ электрического состояния линейных цепей переменного тока.

    курсовая работа [351,4 K], добавлен 10.05.2013

  • Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

    реферат [360,2 K], добавлен 19.11.2011

  • Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ "Расчет линейных цепей постоянного тока".

    методичка [658,2 K], добавлен 06.03.2015

  • Расчет разветвленной цепи постоянного тока с одним или несколькими источниками энергии и разветвленной цепи синусоидального переменного тока. Построение векторной диаграммы по значениям токов и напряжений. Расчет трехфазной цепи переменного тока.

    контрольная работа [287,5 K], добавлен 14.11.2010

  • Техническая характеристика принципиальной схемы системы тягового электроснабжения переменного тока 2х25 кВ: принцип устройства, векторная диаграмма, преимущества и недостатки. Питание потребителей электричества от тяговой подстанции железной дороги.

    контрольная работа [30,8 K], добавлен 13.10.2010

  • Общая характеристика переменного тока, закон Ома и теорема Фурье. Сопротивление в цепи переменного тока. Резонанс напряжений, методы его определения. Векторная диаграмма напряжений при резонансе. Изменение разности фаз между током и электродвижущей силой.

    презентация [691,1 K], добавлен 25.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.