Асинхронные двигатели с фазным ротором

Определение параметров и расчет рабочих характеристик асинхронных двигателей. Изучение схемы включения трехфазного асинхронного двигателя. Исследование процесса пуска двигателей с фазным ротором. Анализ особенностей бутылочной формы стержней ротора.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 15.02.2015
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Опытное определение параметров и расчет рабочих характеристик асинхронных двигателей

1.1 Основные понятия

Существует два метода получения данных для построения рабочих характеристик асинхронных двигателей: метод непосредственной нагрузки и косвенный метод. Метод непосредственной нагрузки заключается в опытном исследовании двигателя в диапазоне нагрузок от холостого хода до режима номинальной нагрузки с измерением необходимых параметров. Этот метод обычно применяется для двигателей мощностью не более 10--15 кВт. С ростом мощности двигателя усложняется задача его нагрузки, растут непроизводительный расход электроэнергии и загрузка электросети (исключение составляют установки, содержащие несколько электрических машин, включенных по схеме с частичным возвратом электроэнергии в сеть).

Применение этого метода ограничивается еще и тем, что не всегда представляется возможным создать испытательную установку по причине отсутствия требуемого оборудования и недопустимости перегрузки электросети. Широкое применение получил более универсальный косвенный метод, применение которого не ограничивается мощностью двигателя. Этот метод заключается в выполнении двух экспериментов: опыта холостого хода и опыта короткого замыкания.

Опыты х.х. и к.з. асинхронных двигателей в основном аналогичны таким же опытам трансформаторов (см. § 1.11). Но они имеют и некоторые особенности, обусловленные главным образом наличием у двигателя вращающейся части -- ротора. Кроме того, при переходе из режима х.х. в режим к.з. параметры обмоток двигателя (активные и индуктивные сопротивления) не остаются неизменными, что объясняется зубчатой поверхностью статора и ротора. Все это создает некоторые затруднения в проведении опытов и в последующей обработке их результатов.

1.2 Опыт холостого хода

Питание асинхронного двигателя при опыте х.х. осуществляется через индукционный регулятор напряжения ИР (рис. 1.1) или регулировочный автотрансформатор, позволяющие изменять напряжение в широких пределах. При этом вал двигателя должен быть свободным от механической нагрузки.

Опыт начинают с повышенного напряжения питания U1 = 1,15 Uном, затем постепенно понижают напряжение до 0,4 Uном так, чтобы снять показания приборов в 5--7 точках. При этом один из замеров должен соответствовать номинальному напряжению U1ном. Измеряют линейные значения напряжений и токов и вычисляют их средние значения:

Uср = (UАВ + UВС + UСА)/ 3 (1.1)

I0ср = (IОА + IОВ + IOC)/ 3 (1.2)

а затем в зависимости от схемы соединения обмотки статора определяют фазные значения напряжения и тока х.х.: при соединении в звезду

U1 = Uср/ ; I0 = Iср (1.3)

при соединении в треугольник

U1 = Ucp; U0 = I0cp/. (1.4)

Рис. 1,1. Схема включения трехфазного асинхронного двигателя при опытах х.х. и к.з.

Ваттметр W измеряет активную мощность Р0, потребляемую двигателем в режиме х.х., которая включает в себя электрические потери в обмотке статора m1 I20 r1, магнитные потери в сердечнике статора Рм и механические потери Рмех (Вт):

Р0 = m1 I20 r1 + Рм + Рмех (1.5)

Здесь r1 - активное сопротивление фазы обмотки статора (Ом), измеренное непосредственно после отключения двигателя от сети, чтобы обмотка не успела охладиться.

Сумма магнитных и механических потерь двигателя (Вт)

P/0 = Рм + Рмех = Р0 - m1 I20 r1 (1.6)

Коэффициент мощности для режима х.х.

cоs ц0 = Р0/ (m1 U1 I0). (1.7)

По результатам измерений и вычислений строят характеристики х.х. I0, P0, P/0 и соs ц0 = f(U1), на которых отмечают значения величин I0ном, Р0ном, Р/0ном и соs ц0 соответствующих номинальному напряжению U1ном (рис. 1.2).

Если график Р/0 =f(U1) продолжить до пересечения с осью ординат (U1 = 0), то получим величину потерь Рмех.

Это разделение магнитных и механических потерь основано на том, что при неизменной частоте сети f1 частота вращения двигателя в режиме х.х. n0, а следовательно, и механические потери Рмех неизменны. В то же время магнитный поток Ф прямо пропорционален ЭДС статора Е1. Для режима х.х. U1 ? E1 , а поэтому при U1 = 0 и магнитный поток Ф = 0, а следовательно, и магнитные потери Рм = 0.

Определив величину механических потерь Рмех, можно вычислить магнитные потери (Вт):

Рм = Р/0 - Рмех (1.8)

Для асинхронных двигателей с фазным ротором в опыте холостого хода определяют коэффициент трансформации напряжений между обмотками статора и ротора.

Рис. 1.2. Характеристики х.х. трехфазного асинхронного двигателя (3,0 кВт, 220/380 В, 1430 об/мин)

Этот коэффициент с достаточной точностью может быть определен по отношению средних арифметических линейных (междуфазовых) напряжений статора к аналогичным напряжениям ротора.

1.3 Опыт короткого замыкания

Схема соединений асинхронного двигателя при опыте к.з. остается, как и в опыте х.х. (см. рис. 1.1). Но при этом измерительные приборы должны быть выбраны в соответствии с пределами измерения тока, напряжения и мощности. Ротор двигателя следует жестко закрепить, предварительно установив его в положение, соответствующее среднему току к.з. С этой целью к двигателю подводят небольшое напряжение (UK = 0,1Uном) и, медленно поворачивая ротор, следят за показанием амперметра, стрелка которого будет колебаться в зависимости от положения ротора двигателя. Объясняется это взаимным смещением зубцовых зон ротора и статора, вызывающего колебания индуктивных сопротивлений обмоток двигателя.

Предельное значение тока статора при опыте к.з. устанавливают исходя из допустимой токовой нагрузки питающей сети и возможности провести опыт в минимальный срок, чтобы не вызвать опасного перегрева двигателя. Для двигателей мощностью до 1 кВт возможно проведение опыта начиная с номинального напряжения UK = 0,1Uном .В этом случае предельный ток Iк = (1,5 ч 2,5)х I1ном. Для двигателей большей мощности сила предельного тока Iк = (2,5 ч 5)х I1ном. При выполнении опыта к.з. в учебных целях можно ограничиться предельным током Iк = (1,5 ч 2,5)х I1ном. При выполнении опыта к.з. желательно соединение обмотки статора звездой.

Определив диапазон изменения тока статора при опыте к.з., опыт начинают с предельного значения этого тока, установив на индукционном регуляторе соответствующее напряжение к.з. UK. Затем постепенно снижают это напряжение до значения, при котором ток Iк достигнет нижнего предела установленного диапазона его значений. При этом снимают показания приборов для 5--7 точек, одна из которых должна соответствовать номинальному току статора (IК = I1ном). Продолжительность опыта должна быть минимально возможной. С этой целью измеряют лишь одно линейное напряжение (например, UкАВ), так как некоторая несимметрия линейных напряжений при опыте к.з. не имеет значения. Линейные токи измеряют хотя бы в двух линейных проводах (например, IкА и IкВ). За расчетное значение тока к.з. принимают среднее арифметическое этих двух значений. После снятия последних показаний приборов двигатель следует отключить и сразу же произвести замер активного сопротивления фазы обмотки статора r/1,чтобы определить температуру обмотки. Линейные напряжения и токи пересчитывают на фазные Uк и Iк по формулам, аналогичным (1.3) и (1.4).

Ваттметр W измеряет активную мощность к.з. Pк По полученным значениям напряжений UK, токов Iк и мощностей Рк вычисляют следующие параметры:

коэффициент мощности при к.з.

cos цк = Pк (m1 Uк Iк); (1.9)

полное сопротивление к.з. (Ом)

zк = Uк / Iк; (1.10)

активные и индуктивные составляющие этого сопротивления (Ом)

rк = rк соs цк; (1.11)

xк = (1.12)

Измеренные и вычисленные величины заносят в таблицу, а затем строят характеристики к.з.: Iк; Рк и cos цк = f(Uк) (рис. 1.3).

При опыте к.з. обмотки двигателя быстро нагреваются до рабочей температуры, так как при неподвижном роторе двигатель не вентилируется.

Рис. 1.3. Характеристики к.з. трехфазного асинхронного двигателя (3,0 кВт, 220/380 В, 1430 об/мин)

Температуру (°С) обмотки И1, обычно определяют по сопротивлению фазы r/2 , измеренному непосредственно после проведения опыта, по формуле

И1 = [(r/1 - r1.20)(255/r1.20) ] + 20, (1.13)

где -- r1.20 сопротивление фазы обмотки статора в холодном состоянии (обычно при температуре 20 °С), Ом.

Если же температура обмотки оказалась меньше расчетной рабочей температуры И2 для соответствующего класса нагревостойкости изоляции двигателя (см. § 8.4), то активное сопротивление к.з. кк (Ом) пересчитывают на рабочую температуру:

rк = r/к [1 + б(И2 - И1)] (1.14)

где rк' - активное сопротивление к.з. при температуре И1 отличающейся от расчетной рабочей; б = 0,004.

Затем пересчитывают на рабочую температуру полное сопротивление к.з. zk = , напряжение к.з. Uк = Iк zk и мощность к.з. Рк = m1 I2к rк.

На характеристиках к.з. (рис. 1.3) отмечают значения величин Рк.ном, Uк.ном, соответствующих току к.з. Iк = I1ном.

Ток и мощность к.з. пересчитывают на номинальное напряжение U1ном:

I/к = Iп ? I1ном (U1ном / Uк.ном); (1.15)

Р/к ? Рк.ном (U1ном / Uк.ном)2 (1.16)

Следует иметь в виду, что такой пересчет является приближенным, так как при UK = U1ном наступает магнитное насыщение сердечников (особенно зубцовых слоев) статора и ротора; это приводит к уменьшению индуктивного сопротивления хк, что не учитывается формулами (1.15) и (1.16). Кратность пускового тока равна Iп /Iном.

Электромагнитная мощность в режиме к.з., передаваемая на ротор двигателя, равна электрическим потерям в обмотке ротора РЭ2к, поэтому электромагнитный момент при опыте к.з. (Нм)

Мк ? Мп = Pэ2к 1 = (Рк.ном - Рэ1к - Рм.к)/щ1,

где Рэ1к = m1 I2к.ном r1 -- электрические потери в обмотке статора при опыте к.з.

Магнитные потери при опыте к.з. Рм.к приближенно определяют по характеристикам х.х. (см. рис. 1.2) при напряжении U1 = UK. В режиме х.х. магнитный поток Ф больше, чем в режиме к.з., но если в режиме х.х. магнитные потери происходят только в сердечнике статора (см. § 13.1), то в режиме к.з. (s = 1) магнитные потери происходят еще и в сердечнике ротора, так как f2 = f1.

Начальный пусковой момент получают пересчетом момента Мк на начальный пусковой ток Iп:

Мп ? МК (IП/ IК)2.

Затем определяют кратность пускового момента Мп/ Мном.

1.4 Круговая диаграмма асинхронного двигателя

Представим схему замещения асинхронного двигателя (рис. 12.2, 6) в упрощенном виде (рис. 1.4), где R1 = r1 + rm, Х2 = х1 + с1х'2; R2 = r1 + c1r'2/ s и Х2 = x1 + с1х'2 . Ветвь намагничивания R1 + jX1 не содержит переменных параметров, поэтому векторная диаграмма для нее содержит лишь два вектора: вектор тока и вектор напряжения , сдвинутые по фазе относительно друг друга на угол ц0 (рис. 1.5, а). Что же касается рабочей ветви R2 + jX2, то она содержит переменный параметр R2, Диаграмму для этой ветви удобно представить в виде прямоугольного треугольника напряжений ABC, у которого катеты АВ и ВС представляют собой индуктивное падение напряжения = j X2 и активное падение напряжения = R2, а гипотенуза АС - вектор приложенного напряжения = + j , (рис. 1.5, б).

Разделив каждую сторону треугольника ABC на Х2, получим треугольник HDC, в котором катет HD изображает вектор тока - (рис. 1.5, в). Под углом ц2 = arctg (X2/ R2) к вектору тока - . в положительном направлении оси ординат проведем вектор напряжения . Если изменить активное сопротивление R2 то изменится и ток в цепи, а катеты займут новое положение: HD1 и D1C. Но гипотенуза U1/ X2 треугольника останется неизменной. Таким образом, новый режим работы электрической цепи будет определен на диаграмме положением точки D1. Если же активное сопротивление цепи изменять в широких пределах (от нуля до бесконечности), то вектор тока - будет занимать различные положения на диаграмме, описывая своим концом (точка D) окружность диаметром U1/ X2 . При R2 = 0 (нагрузка чисто индуктивная) точка D совместится с точкой С. При R2 = ? ток = 0, а поэтому точка D совместится с точкой H. При любом промежуточном значении сопротивления R2 конец вектора тока - занимает различные положения на окружности НDС, которую принято называть окружностью токов.

Рис. 1.4. Упрощенная схема замещения асинхронного двигателя

Полученная диаграмма называется круговой. Если же совместить диаграммы, показанные на рис. 1.5, а и б, то получим круговую диаграмму схемы замещения на рис. 1.4 или, что одно и то же, схемы замещения, изображенной на рис. 12.2, б, т. е. круговую диаграмму асинхронного двигателя (рис. 1.5, г). Сложив векторы токов I0 и - получим вектор тока статора ,сдвинутого по фазе относительно напряжения , на угол ц1,. Диаметр окружности токов круговой диаграммы = (U1к )/mi, где mi -- масштаб тока, А/мм.

Построение круговой диаграммы. Для построения круговой диаграммы асинхронного двигателя необходимо знать: напряжение сети (фазное) U1, ток холостого хода (фазный) I0, угол сдвига фаз ц0 между I0 и U1, ток короткого замыкания Iк.ном, а также сопротивление к.з. ZK = rк + jxK.

Если построение диаграммы ведется при расчете двигателя, то необходимые параметры определяются в процессе расчета. Если же круговую диаграмму нужно построить для готового двигателя, то необходимо для определения исходных параметров диаграммы воспользоваться результатами опытов х.х. и к.з.

Рис 1.5. К обоснованию круговой диаграммы асинхронного двигателя

Круговую диаграмму строят в следующем порядке. Проводят оси координат и на оси ординат строят вектор напряжения (рис. 1.6). Выбрав масштаб тока m1 (А/мм), проводят вектор тока I0 (отрезок ОН) под углом ц0 к оси ординат. Из точки H, называемой точкой х.х., соответствующей скольжению s = 0, проводят прямую, параллельную оси абсцисс, на которой откладывают отрезок НС, равный диаметру окружности токов (мм)

Di = (U1/xк)/ mi. (14-17)

Рис 1.6. Круговая диаграмма асинхронного двигателя

Для обеспечения достаточной точности при последующем использовании круговой диаграммы следует принять масштаб тока mi - таким, чтобы диаметр Di был не менее 200 мм, при этом все построения следует вести остро отточенным карандашом.

Разделив отрезок НС на две равные части, получаем точку О1, из которой радиусом Di/ 2 проводим полуокружность. Затем из точки Н в масштабе токов проводят дугу радиусом, эквивалентным току к.з. Iк.ном. В месте пересечения этой дуги и полуокружности токов получаем точку К, называемую точкой к.з. Соединив точки Н и К, получаем вектор тока короткого замыкания = Iп. Точке К на диаграмме соответствует скольжение s = 1.

На средней части отрезка О1С отмечаем точку F, в которой восставляем перпендикуляр к диаметру НС. На этом перпендикуляре отмечаем отрезок

FF1 = HF(r1/ xк). (1.18)

Из точки Н через точку F1 проводим прямую до пересечения с окружностью в точке Т. Точка Т соответствует скольжению s = ± ? (ротор вращается по часовой стрелке или против нее с бесконечно большой скоростью).

Таким образом, на круговой диаграмме отмечены три характерные точки: Н (s = 0), К (s = 1) и Т (s = ± ?). Между этими точками расположены три зоны возможных режимов асинхронной машины. При обходе окружности токов по часовой стрелке этим режимам соответствуют:

а) дуга НК -- двигательный режим (s = 0 ч 1);

б) дуга КТ-- тормозной режим (s = 1 ч ? );

в) дуга ТСН (включая не показанную на рис. 1.6 нижнюю полуокружность) -- генераторный режим (s = - ? ч 0 ).

Соединив точки Н и К, получим линию полезной мощности НК, соединив точки Н к Т, получим линию электромагнитной мощности НТ.

Точка Е на круговой диаграмме соответствует максимальному моменту, т. е. критическому скольжению sкр. Положение этой точки определяется следующим образом: из точки О1 опускают перпендикуляр на линию электромагнитной мощности НТ и продолжают его до пересечения с окружностью токов в точке Е.

Рассматриваемая круговая диаграмма является упрощенной, так как она построена при предположении постоянства активных и индуктивных сопротивлений схемы замещения асинхронного двигателя. Однако эти сопротивления при изменениях нагрузки двигателя меняют свои значения. Объясняется это тем, что с ростом нагрузки усиливается магнитное насыщение зубцовых слоев статора и ротора, что ведет к уменьшению индуктивных сопротивлений х1, хm и х'2. Кроме того, рост нагрузки двигателя сопровождается увеличением скольжения, а следовательно, и увеличением частоты тока в обмотке ротора. Это является причиной усиления эффекта вытеснения тока [см. § 2.3] - явления, вызывающего увеличение активного сопротивления обмотки ротора r2'. Практика применения упрощенной круговой диаграммы показывает, что ошибка от применения упрощенной круговой диаграммы становится заметной при скольжениях s > sкр, а при скольжениях, превышающих 0,4--0,5, эта ошибка недопустима.

1.5 Построение рабочих характеристик асинхронного двигателя по круговой диаграмме

Рассмотрим порядок действий при определении параметров асинхронного двигателя, характеризующих номинальный режим его работы, а также принцип построения рабочих характеристик двигателя посредством круговой диаграммы (рис. 1.6). Участок диаграммы, соответствующий рабочему режиму двигателя, слишком мал (на рис. 1.6 он обведен пунктирной рамкой), поэтому для дальнейших пояснении воспользуемся его более крупным изображением на рис. 1.7.

Ток статора. Из точки О в масштабе токов mi строят вектор тока статора , так, чтобы конец этого вектора (точка D) лежал на окружности токов (рис. 1.6):

= I1/mi (1.19)

Затем, соединив точку D с точкой Н, получают треугольник токов ОDН, стороны которого определяют токи: ток х.х. = miOH, приведенный ток ротора = miHD и ток статора = miOD.

Далее, опустив перпендикуляр из точки D на ось абсцисс (Da), получают прямоугольный треугольник ODa, из которого находят активную и реактивную составляющие тока статора:

= miDa; I1p = miOa (1.20)

Рис. 1.7. Рабочий участок круговой диаграммы

Если U1 = const, a I1 cos ц1 = Ila, то мощность P1 прямо пропорциональна активной составляющей тока статора (Р1 ? I). На круговой диаграмме значение I определяется отрезком Da, поэтому подведенная мощность (Вт)

P1 = mp Da, (1.21)

где mр = m1U1mi -- масштаб мощности, Вт/мм.

Подведенную мощность отсчитывают от оси абсцисс, которую называют линией подведенной мощности Р1, до заданной точки на окружности токов.

Полезная мощность. Полезную мощность P2 двигателя на круговой диаграмме определяют отрезком, измеренным по вертикали от окружности токов до линии полезной мощности. Для заданной точки на окружности токов

P2 = mpDb. (1.22)

Электромагнитная мощность и электромагнитный момент.

Электромагнитную мощность и электромагнитный момент на круговой диаграмме определяют отрезком, измеренным по вертикали от окружности токов до линии электромагнитной мощности. Для заданной точки D на окружности токов электромагнитная мощность (Вт)

Р2 = трDс; (1.23)

электромагнитный момент (Нм)

M = mмDc, (1.24)

где mм = 9,55mр/n1 --масштаб момента, Нм/мм.

Коэффициент мощности. Для определения коэффициента мощности соs ц1 на оси ординат строят полуокружность произвольного диаметра Of (см. рис. 1.6). Для заданной точки на окружности токов соs ц1 = Oh/ Of . Для удобства расчета обычно принимают Of= 100 мм. В этом случае соs ц1 = Oh/ 100.

КПД двигателя. Если определять КПД как отношение полезной мощности Р2 к подведенной мощности Р1, то с учетом (1.22) и (1.21) получим

з = Db/ Da. (1.25)

Однако определение КПД этим способом дает заметную погрешность, так как он не учитывает все виды потерь в двигателе. Поэтому КПД целесообразнее определять по (13.9) и (13.10), используя результаты опытов холостого хода и короткого замыкания (см. § 1.2 и 1.3): сумма магнитных и механических потерь

(Pм + Pмех) =P01 - m/1 I20 r1 ; (1.26)

электрические потери в обмотке статора определяют по (13.2), а в обмотке ротора - по (13.3); добавочные потери Pдо6, согласно ГОСТу, при работе двигателя в номинальном режиме составляют 0,5 % от подводимой к двигателю мощности. Принято считать, что добавочные потери пропорциональны квадрату тока I1 тогда добавочные потери при любой (неноминальной) нагрузке

P/доб = Pдоб(I1/ Iном)2 (14-27)

Перегрузочная способность двигателя. Для определения максимального момента двигателя следует из точки О1 опустить перпендикуляр на линию электромагнитной мощности и продолжить его до пересечения с окружностью токов (точка Е). Из точки Е (см. рис. 1.6) проводят прямую, параллельную оси ординат, до пересечения с линией электромагнитной мощности (точка N). Тогда отрезок EN в масштабе моментов определит значение максимального момента:

Mmax = mмEN. (1.28)

Если точка D на окружности токов соответствует номинальному режиму, то перегрузочная способность двигателя

мтаx/ мном = EN/ Dc . (1.29)

Скольжение. Скольжение двигателя обычно определяют как отношение мощностей по (13.24): s = Рэ2/ Рэм, где Рэм определяют по(1.23).

Рабочие характеристики. Задавшись рядом значений тока статopa 0,5 I1ном; 0,75 I1ном; I 1ном; 1,15 I1ном, строят векторы этих точек и получают на окружности токов рад точек (D1, D2, D3 и D4). Для каждой из них определяют все необходимые для построения рабочих характеристик значения (см. рис. 13.7).

1.6 Аналитический метод расчета рабочих характеристик асинхронных двигателей

Рассмотренный графический метод расчета рабочих характеристик асинхронных двигателей с применением круговой диаграммы имеет существенный недостаток -- необходимость построения этой диаграммы и неизбежную неточность как при построении, так и при ее последующем использовании, связанные с дополнительными построениями, измерениями отрезков и т. п. Аналитический метод расчета рабочих характеристик не предусматривает каких-либо графических изображений и измерений, а некоторое увеличение объема математических вычислений при условии применения простейшей вычислительной техники не вызывает каких-либо затруднений. Аналитический метод расчета основан на схеме замещения асинхронного двигателя (рис. 12.2, б). Исходными при этом являются паспортные данные двигателя (Рном, U1HOM, n2ном) и результаты выполнения опытов холостого хода и короткого замыкания (см. § 1.2 и 1.3).

Расчет ведут в следующем порядке.

Определяют приведенное активное сопротивление ротора (Ом):

r2' = rк - r1, (1.30)

а затем критическое скольжение:

sкр ? r2'/ xк (1.31)

и номинальное скольжение:

sном = (n1 - n2ном)/ n1 (1.32)

Задавшись рядом значений скольжения (всего 6--7 значений, в том числе номинальное shom и критическое sкр), определяют необходимые для построения рабочих характеристик величины.

Эквивалентное активное сопротивление (Ом)

rэк = r1 +r2'/ s. (1.33)

Эквивалентное полное сопротивление рабочего контура схемы замещения (Ом)

Zэк = (1-34)

Коэффициент мощности рабочего контура схемы замещения

cos ц2 = rэк / zэк. (1.35)

Приведенный ток ротора, (А)

I/2 = U1 /zэк (1.36)

и его активная и реактивная составляющие (А)

I/2a = I/2 соs ц2; (1.37) I/2p = I/2 sin ц2. (1.37)

Активная и реактивная составляющие тока статора (А)

I1а = I0а + I/2а; (1-38)

I1p = I0p + I2p (1-39)

Здесь I = I0 соs ц0 -- активная составляющая тока холостого хода; I0p = I0 sin ц0 -- реактивная составляющая этого тока.

Ток в обмотке статора (А)

I1 = (1.40)

Коэффициент мощности двигателя

cos ц1 = I1a/ I1 (1.41)

Потребляемая двигателем мощность (Вт)

P1 = m1U1I1a (1.42)

Полезная мощность двигателя (Вт)

Р2 = Рэм - Рэ2 - Рмех - Рдоб, (1.43)

где Рмех -- механические потери, Вт; их определяют из опыта холостого хода (см. рис. 1.2).

Полезный момент (момент на валу) двигателя (Нм)

М2 = 9,55Р2/ n2. (1.44)

Результаты расчета сводят в таблицу, а затем строят рабочие характеристики двигателя.

Трехфазный асинхронный двигатель имеет паспортные данные: Рном =3,0 кВт, Uном = 220/380 В, I1ном = 6,3 А, nном = 1430 об/мин. Активное сопротивление фазы обмотки статора при рабочей температуре r1 = 1,70 Ом. Характеристики х.х. двигателя приведены на рис. 1.2 (I0ном = 1,83 А, Рном = 300 Вт, Р/0ном = 283 Вт, Рмех = 200 Вт, соs ц0ном = 0,24, обмотка статора соединена звездой). Характеристики к.з. приведены на рис. 1.3 (Рк.ном = 418 Вт, Uк.ном = 59,5 В, Iк.ном = 6,3 А, cos цк.ном =0,372).

Требуется рассчитать данные и построить рабочие характеристики двигателя и определить перегрузочную его способность.

Решение. Активная и реактивная составляющие тока х.х.

I0a = I0 cos ц0ном = 1,83 * 0,24 = 0,44 А,

I0p = I0 sin ц0ном = 1,83 * 0,97 = 1,77 А.

Полное сопротивление кз. по (1.10)

zк = Uк.ном/ Iк.ном = 59,5/6,3 = 9,45 Ом,

его активная и реактивная составляющие по (1.11) и (1.12)

rк = zк соs цк.ном = 9,45 * 0,372 = 3,5 Ом,

xк = = =8,8 Ом.

Приведенное активное сопротивление ротора по (1.30)

r/2 = rк - r1 = 3,5 - 1,7 = 1,8 Ом.

Критическое скольжение по (1.31)

sкр = r/2/ xк = 1,8/ 8,8 = 0,20.

Номинальное скольжение по (1.32)

sном = (n1 - n2ном)/ n1 = (1500 - 1430)/ 1500 = 0,046.

Магнитные потери по (1.8)

Рм = Р/0 - Рмех = 283 - 200 = 83 Вт.

Задаемся следующими значениями скольжения: 0,01, 0,02, 0,03, 0,046, 0,06 и 0,20. Результаты расчета приведены в табл. 1.1.

Перегрузочная способность двигателя л = Мmax/ Mном = 38,7/ 21,4 = 1,81.

Таблица 1.1

Значения параметров при скольжении s

0,01

0,02

0,03

0,046

0,06

0,20

r/2/s, Ом

180

90

60

39,1

30

10,1

rэк = r1 + r/2/ s, Ом

181,7

91,7

61,7

40,8

31,7

11,8

zэк = , Ом

182

92

62,5

42

33,2

15,5

cos ц2 = rэк/ zэк

0,998

0,996

0,987

0,971

0,955

0,760

I/2 = U1/ zэк, А

1,21

2,39

3,52

5,24

6,63

14,20

I/2a = I/2 cos ц2, А

1,21

2,38

3,47

5,09

6,33

10,7

I/2p = I/2 sin ц2, А

0,08

0,19

0,57

1,25

1,95

9,20

I1a = I0a + I/2a, А

1,65

2,82

3,91

5,54

6,77

11,10

I1p = I0p + I/2p, А

1,85

1,96

2,34

3,02

3,72

10,9

I1 = , A

2,48

3,43

4,55

6,30

7,70

15,5

cos ц1 = I1a/ I1

0,66

0,82

0,86

0,88

0,88

0,71

P1 = m1U1I1a, Вт

1089

1861

2580

3652

4468

7326

Рэ1 = m1I12r1, Вт

31,0

60,0

105

200

302

1225

Рэм = Р1 - Рэ1 - Рм,Вт

975

1718

2392

3369

4083

6080

М = Рэм/ щ1, Нм

6,2

10,9

15,3

21,4

26,0

38,7

Рэ2 = s Рэм, Вт

10

34

72

151

245

--

в2 =(I1/ I1ном)2

0,15

0,29

0,52

1,0

1,44

--

Р/доб = в2 Рдоб.ном, Вт

2,7

5,2

9,4

18

26

--

Р2 = Рэм - Рэ2 - --Рмех - Рдоб, Вт

762

1479

2110

3000

3612

--

з = Р2/ Р1

0,70

0,79

0,82

0,82

0,81

--

n2 = n1(1-s), об/мин

1485

1470

1455

1430

1410

--

М2 = 9,55Р2/ n2, Нм

4,9

9,6

13,8

20,0

24,5

--

2. Пуск и регулирование частоты вращения трехфазных асинхронных двигателей
2.1 Пуск двигателей с фазным ротором
Пусковые свойства двигателей. Пуск асинхронного двигателя сопровождается переходным процессом, обусловленным переходом ротора и механически связанных с ним частей исполнительного механизма из состояния покоя в состояние равномерного вращения, когда вращающий момент двигателя уравновешивается суммой противодействующих моментов, действующих на ротор двигателя.
Пусковые свойства двигателя определяются в первую очередь значением пускового тока Iп или его кратностью Iп/ Iном и значением пускового момента Мп или его кратностью Мпном. Двигатель, обладающий хорошими пусковыми свойствами, развивает значительный пусковой момент при сравнительно небольшом пусковом токе. Однако получение такого сочетания пусковых параметров в асинхронном двигателе сопряжено с определенными трудностями, а иногда оказывается невозможным.
В начальный момент пуска скольжение s = 1, поэтому, пренебрегая током х.х., пусковой ток можно определить из (12.25), подставив s = 1:
Iп = U1/ (2.1)
Mп =
В то же время напряжение U1 по-разному влияет на пусковые параметры двигателя: с уменьшением U1 пусковой ток уменьшается, что благоприятно влияет на пусковые свойства двигателя, но одновременно уменьшается пусковой момент. Целесообразность применения того или иного способа улучшения пусковых свойств двигателя определяется конкретными условиями эксплуатации двигателя и требованиями, которые предъявляются к его пусковым свойствам.
Помимо пусковых значений тока Iп и момента Мп пусковые свойства двигателей оцениваются еще и такими показателями: продолжительность и плавность пуска, сложность пусковой операции, ее экономичность (стоимость и надежность пусковой аппаратуры и потерь энергии в ней). Пуск двигателей с фазным ротором. Наличие контактных колец у двигателей с фазным ротором позволяет подключить к обмотке ротора пусковой реостат (ПР). При этом активное сопротивление цепи ротора увеличивается до значения R2 = r2' + rд', где rд' -- электрическое сопротивление пускового реостата, приведенное к обмотке статора.

Рис. 2.1. Зависимость пускового момента от активного сопротивления цепи ротора

Влияние возросшего значения активного сопротивления на пусковой момент двигателя Мп следует из (13.19). Это влияние графически показано на рис. 2.1, из которого видно, что если при отсутствии ПР, т. е. при активном сопротивлении цепи ротора R2 = r2, пусковой момент Мп = Мпо, то при введении в цепь ротора добавочного активного сопротивления rдоб , когда R/2 = r2' + rдоб' , пусковой момент возрастает и при R//2 = r2' + rдоб' = х1 + х'2 достигает наибольшего значения Мп.наиб. При R/2 > х1 + х'2 пусковой момент уменьшается.

При выборе сопротивления пускового реостата rдоб исходят из условий пуска двигателя: если двигатель включают при значительном нагрузочном моменте на валу, сопротивление пускового реостата rдо6 выбирают таким, чтобы обеспечить наибольший пусковой момент (см. график при r/ на рис. 13.6); если же двигатель включают при небольшом нагрузочном моменте на валу, когда пусковой момент не имеет решающего значения для пуска, оказывается целесообразным сопротивление ПР rдоб выбирать несколько больше значения, соответствующего наибольшему пусковому моменту, т. е. чтобы R/2 > x1 + х'2. В этом случае пусковой момент оказывается несколько меньшим наибольшего значения М п.mах, но зато пусковой ток значительно уменьшается (см. график при r'2IV на рис. 13.6).

На рис. 2.2, а показана схема включения ПР в цепь фазного ротора. В процессе пуска двигателя ступени ПР переключают таким образом, чтобы ток ротора оставался приблизительно неизменным, а среднее значение пускового момента было близко к наибольшему. На рис. 2.2, б представлен график изменения пускового момента асинхронного двигателя при четырех ступенях пускового реостата. Так, в начальный момент пуска (первая ступень реостата) пусковой момент равен Мп.maх. По мере разгона двигателя его момент уменьшается по кривой 1. Как только значение момента уменьшится до значения Мп.min рычаг реостата переводят на вторую ступень и сопротивление реостата уменьшается.

Рис. 2.2. Схема включения пускового реостата (а) и построение графика пускового момента (б) асинхронного двигателя с фазным ротором

Теперь зависимость М = f(s) выражается кривой 2 и пусковой момент двигателя вновь достигает Мп.mах. Затем ПР переключают на третью и на четвертую ступени (кривые 3 и 4). После того как электромагнитный момент двигателя уменьшится до значения, равного значению противодействующего момента на валу двигателя, частота вращения ротора достигнет установившегося значения и процесс пуска двигателя будет закончен. Таким образом, в течение всего процесса пуска значение пускового момента остается приблизительно постоянным, равным Мп.ср. Следует иметь в виду, что при слишком быстром переключении ступеней реостата пусковой ток может достигнуть недопустимо больших значений.

Пусковые реостаты состоят из кожуха, рычага с переключающим устройством и сопротивлений, выполненных из металлической проволоки или ленты, намотанной в виде спирали, или же из чугунного литья. Пусковые реостаты рассчитаны на кратковременное протекание тока, а поэтому рычаг пускового реостата нельзя долго задерживать на промежуточных ступенях, так как сопротивления реостата могут перегореть. По окончании процесса пуска, когда рычаг реостата находится на последней ступени, обмотка ротора замкнута накоротко.

В заключение отметим, что в асинхронных двигателях с фазным ротором обеспечивается наиболее благоприятное соотношение между пусковым моментом и пусковым током: большой пусковой момент при небольшом пусковом токе (в 2--3 раза больше номинального). Недостатками пусковых свойств двигателей с фазным ротором являются некоторая сложность, продолжительность и неэкономичность пусковой операции. Последнее вызывается необходимостью применения в схеме двигателя пускового реостата и непроизводительным расходом электроэнергии при его нагреве.

2.2 Пуск двигателей с короткозамкнутым ротором

Пуск непосредственным включением в сеть (рис. 2.3). Этот способ пуска, отличаясь простотой, имеет существенный недостаток: в момент подключения двигателя к сети в обмотке статора возникает большой пусковой ток, в 5--7 раз превышающий номинальный ток двигателя. При небольшой инерционности исполнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значительный бросок тока в питающей сети может вызвать в ней заметное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей мощностью до 38--50 кВт и более (при достаточном сечении жил токоподводящего кабеля).

Рис. 2.3. Схема непосредственного включения в сеть (а) и графики изменения тока и момента при пуске (б) асинхронного двигателя с короткозамкнутым ротором

При необходимости уменьшения пускового тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.

Пуск при пониженном напряжении. В соответствии с (2.1) пусковой ток двигателя пропорционален подведенному напряжению U1, уменьшение которого вызывает соответствующее уменьшение пускового тока. Существует несколько способов понижения подводимого к двигателю напряжения. Рассмотрим некоторые из них.

Для асинхронных двигателей, работающих при соединении обмоток статора треугольником, можно применить пуск переключением обмотки статора со звезды на треугольник (рис. 2.4, а). В момент подключения двигателя к сети переключатель ставят в положение «звезда», при котором обмотка статора оказывается соединенной в звезду. При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фазных обмотках двигателя (рис. 2.4, б). Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении этих же обмоток треугольником линейный ток больше фазного в раз. Следовательно, переключив обмотки статора звездой, мы добиваемся уменьшения линейного тока в ()2 = 3 раза.

Рис. 2.4. Схема включения (а) и графики изменения момента и тока (фазного) при пуске (б) асинхронного двигателя с короткозамкнутым ротором переключением обмотки статора со звезды на треугольник

После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, переключатель быстро переводят в положение «треугольник» и фазные обмотки двигателя оказываются под номинальным напряжением. Возникший при этом бросок тока до значения I/пД является незначительным.

Рассмотренный способ пуска имеет существенный недостаток - уменьшение фазного напряжения в раз сопровождается уменьшением пускового момента в три раза, так как, согласно (13.19), пусковой момент асинхронного двигателя прямо пропорционален квадрату напряжения U1. Такое значительное уменьшение пускового момента не позволяет применять этот способ пуска для двигателей, включаемых в сеть при значительной нагрузке на валу.

Описанный способ понижения напряжения при пуске применим лишь для двигателей, работающих при соединении обмотки статора треугольником. Более универсальным является способ с понижением подводимого к двигателю напряжения посредством реакторов (реактивных катушек -- дросселей). Порядок включения двигателя в этом случае следующий (рис. 2.5, а). При разомкнутом рубильнике 2 включают рубильник 7. При этом ток из сети поступает в обмотку статора через реакторы Р, на которых происходит падение напряжения jхр (где хр -- индуктивное сопротивление реактора, Ом). В результате на обмотку статора подается пониженное напряжение

После разгона ротора двигателя включают рубильник 2 и подводимое к обмотке статора напряжение оказывается номинальным.

Рис. 2.5. Схемы реакторного (а) и автотрансформаторного (б) способов пуска асинхронных двигателей с короткозамкнутым ротором

Недостаток этого способа пуска состоит в том, что уменьшение напряжения в U/1/ U1ном раз сопровождается уменьшением пускового момента Мп в (U/1/ U1ном)2 раз.

При пуске двигателя через понижающий автотрансформатор (рис. 2.5, б) вначале замыкают рубильник 1, соединяющий обмотки автотрансформатора звездой, а затем включают рубильник 2 и двигатель оказывается подключенным на пониженное напряжение U/1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в КА раз, где КА -- коэффициент трансформации автотрансформатора. Что же касается тока в питающей двигатель сети, т. е. тока на входе автотрансформатора, то он уменьшается в К2А раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в КА раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет КАКА = К2А раз. Например, если кратность пускового тока асинхронного двигателя при непосредственном его включении в сеть составляет Iп/I1ном = 6 , а напряжение сети 380 В, то при автотрансформаторном пуске с понижением напряжения до 220 В кратность пускового тока в сети I/п/ I1ном = 6/ (380/220)2 = 2.

После первоначального разгона ротора двигателя рубильник 1 размыкают и автотрансформатор превращается в реактор. При этом напряжение на выводах обмотки статора несколько повышается, но все же остается меньше номинального. Включением рубильника 3 на двигатель подается полное напряжение сети. Таким образом, автотрансформаторный пуск проходит тремя ступенями: на первой ступени к двигателю подводится напряжение U1 = (0,50ч0,60)U1ном, на второй -- U1 = (0,70ч0,80)U1ном и, наконец, на третьей ступени к двигателю подводится номинальное напряжение U1ном.

Как и предыдущие способы пуска при пониженном напряжении, автотрансформаторный способ пуска сопровождается уменьшением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьшения пускового тока автотрансформаторный способ пуска лучше реакторного, так как при реакторном пуске пусковой ток в питающей сети уменьшается в U/1/ U1ном раз, а при автотрансформаторном - в (U/1/ U1ном)2 раз. Но некоторая сложность пусковой операции и повышенная стоимость пусковой аппаратуры (понижающий автотрансформатор и переключающая аппаратура) несколько ограничивают применение этого способа пуска асинхронных двигателей.

2.3 Короткозамкнутые асинхронные двигатели с улучшенными пусковыми характеристиками

Стремление улучшить пусковые свойства асинхронных двигателей с короткозамкнутым ротором привело к созданию асинхронных двигателей с особой конструкцией ротора: двигателей с глубокими пазами на роторе и двигателей с двумя короткозамкнутыми клетками на роторе.

Двигатель с глубокими пазами на роторе. От обычного асинхронного двигателя этот двигатель отличается тем, что у него пазы ротора сделаны в виде узких глубоких щелей, в которые уложены стержни обмотки ротора, представляющие собой узкие полосы. С обеих сторон эти стержни приварены к замыкающим кольцам. Обычно глубокий паз имеет соотношение размеров hп/ bп = 9ч10, где hп, bп -- высота и ширина паза.

...

Подобные документы

  • Принцип действия асинхронного двигателя. Устройство асинхронных электродвигателей с фазным ротором. Схемы присоединения односкоростных асинхронных электродвигателей с короткозамкнутым ротором. Режимы работы электродвигателей, их монтаж и центровка.

    презентация [674,1 K], добавлен 29.04.2013

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

    курсовая работа [827,2 K], добавлен 23.11.2010

  • Особенности расчета характеристик и определение параметров асинхронных короткозамкнутых двигателей по каталожным данным. Расчеты параметров обмоток статора и ротора, характеристики двигателя в двигательном режиме и в режиме динамического торможения.

    курсовая работа [801,8 K], добавлен 03.04.2010

  • Ремонт трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные неисправности асинхронного двигателя с фазным ротором. Объем и нормы испытаний электродвигателя. Охрана труда при выполнении работ, связанных с ремонтом электродвигателя.

    курсовая работа [1,7 M], добавлен 28.01.2011

  • Определение эквивалентной мощности и подбор асинхронного двигателя с фазным ротором. Проверка заданного двигателя на нагрев по методу средних потерь, перегрузочную способность при снижении напряжения в сети. Расчет теплового режима выбранного двигателя.

    курсовая работа [455,0 K], добавлен 12.05.2015

  • Главные параметры асинхронного двигателя с фазным ротором, технические характеристики. Расчет коэффициента трансформации ЭДС, тока и напряжения. Экспериментальное определение параметров схемы замещения. Опыт короткого замыкания и работы на холостом ходу.

    лабораторная работа [109,0 K], добавлен 18.06.2015

  • Асинхронный двигатель: сущность и принцип действия. Электромагнитный, тепловой, вентиляционный и механический расчет двигателя. Увеличение срока службы токопроводящих щеток фазного ротора. Технология изготовления статорной обмотки асинхронного двигателя.

    дипломная работа [3,9 M], добавлен 20.08.2012

  • Перспектива совершенствования технологии проектирования электрических машин. Выбор главных размеров. Расчет зубцовой зоны и обмотки статора, магнитной цепи, параметров рабочих режимов, потерь, рабочих характеристик. Работа двигателя при отключениях.

    курсовая работа [1,7 M], добавлен 17.08.2013

  • Стендовое испытание асинхронной машины с фазным ротором в двигательном и генераторном режимах, в режимах холостого хода и короткого замыкания. Ознакомление со способом пуска машины в ход. Обучение построению круговой диаграммы и ее использованию.

    лабораторная работа [165,0 K], добавлен 27.01.2011

  • Расчет и выбор асинхронного двигателя с фазным ротором для грузового лифта с двухконцевой подъемной лебедкой, оборудование и разновидности лифтов, построение механических и электромеханических характеристик. Расчет пусковых сопротивлений в цепи ротора.

    курсовая работа [126,3 K], добавлен 22.12.2010

  • Способы управления асинхронным двигателем. Ротор асинхронной машины типа "беличья клетка". Устройство, принцип работы, пусковые условия асинхронных электродвигателей с фазным ротором. Применение пускового реостата. Реостатный способ регулирования частоты.

    реферат [860,5 K], добавлен 17.03.2012

  • Паспортные данные устройства трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Определение рабочих характеристик двигателя: мощность, потребляемая двигателем; мощность генератора; скольжение; КПД и коэффициент мощности двигателя.

    лабораторная работа [66,3 K], добавлен 22.11.2010

  • Изучение механических характеристик электродвигателей постоянного тока с параллельным, независимым и последовательным возбуждением. Тормозные режимы. Электродвигатель переменного тока с фазным ротором. Изучение схем пуска двигателей, функции времени.

    лабораторная работа [1,3 M], добавлен 23.10.2009

  • Разработка проекта трехфазного асинхронного двигателя с короткозамкнутым ротором по заданным данным. Электромагнитный и тепловой расчет. Выбор линейных нагрузок. Обмоточные параметры статора и ротора. Параметры рабочего режима, пусковые характеристики.

    курсовая работа [609,5 K], добавлен 12.05.2014

  • Основные особенности лабораторной установки для испытания асинхронного двигателя с короткозамкнутым ротором в трехфазном, однофазном и конденсаторном режимах. Общая характеристика принципов действия однофазного и конденсаторного асинхронных двигателей.

    лабораторная работа [381,6 K], добавлен 18.04.2013

  • Исследование асинхронного трехфазного двигателя с фазным ротором. Схема последовательного и параллельного соединения элементов для исследования резонанса напряжений. Резонанс напряжений, токов. Зависимость тока от емкости при резонансе напряжений.

    лабораторная работа [249,7 K], добавлен 19.05.2011

  • Выбор главных размеров статора, ротора и короткозамыкающего кольца. Сопротивление обмотки короткозамкнутого ротора с закрытыми пазами. Масса двигателя и динамический момент инерции ротора. Вентиляционный расчет двигателя с радиальной вентиляцией.

    курсовая работа [1,6 M], добавлен 15.10.2012

  • Размеры, конфигурация, материал магнитной цепи трехфазного асинхронного двигателя с короткозамкнутым ротором. Обмотка статора с трапецеидальными полузакрытыми пазами. Тепловой и вентиляционный расчеты, расчет массы и динамического момента инерции.

    курсовая работа [4,0 M], добавлен 22.03.2018

  • Данные двигателя постоянного тока серии 4А100L4УЗ. Выбор главных размеров асинхронного двигателя с короткозамкнутым ротором. Расчет зубцовой зоны и обмотки статора, конфигурация его пазов. Выбор воздушного зазора. Расчет ротора и магнитной цепи.

    курсовая работа [4,8 M], добавлен 06.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.