Параметры движения

Анализ изменения местоположения или положения объекта относительно времени. Исследование движения как пространственного изменения в физической системе. Изучение приборов для измерения механических величин, параметров движения. Расчет скорости и ускорения.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 17.02.2015
Размер файла 48,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Республики Казахстан

Восточно - Казахстанский государственный технический университет им. Д. Серикбаева

Реферат

Параметры движения

Выполонила: Казезканова Д.Б.

Проверила: Азаматова Ж.К.

2014 год

В физике движение - изменение местоположения или положение объекта относительно времени. Изменение в движении - результат приложенной силы. Движение как правило описывается с точки зрения скорости, также замеченной как скорость, ускорение, смещение, и время. [1] скорость объекта не может измениться, если на нее не действует сила, столь же описанная первым законом Ньютона, также известным как Инерция. Импульс объекта непосредственно связан с массой объекта и скоростью, и полный импульс всех объектов в закрытой системе (один не затронутый внешними силами) не изменяется со временем, как описано законом сохранения импульса.

Тело, которое не перемещается, как говорят, в покое, неподвижно, неподвижно, постоянно, или имеет постоянное (инвариантное временем) положение.

Движение всегда наблюдается и измеряется относительно системы взглядов. Как нет никакой абсолютной справочной структуры, абсолютное движение не может быть определено; это подчеркнуто движением родственника термина. [2] тело, которое неподвижно относительно данной справочной структуры, шагов относительно бесконечно многих других структур. Таким образом, все во вселенной перемещается. [3]

Более широко, термин движение показывает любое пространственное и/или временное изменение в физической системе. Например, можно говорить о движении волны или квантовой частицы (или любая другая область), где местоположение понятия не применяется.

Приборы для измерения механических величин

Измерение механических величин сводится к измерению параметров движения.

Для измерения перемещения требуется измерять длины пути. Для этого используются не только механические, но и оптоэлектронные и другие принципы измерений.

Для измерения величин v и а требуется измерение времени. Следовательно, для измерения всех указанных величин достаточно измерения перемещений S и времени t. Спецификой измерения первых трех величин является их изменение во времени.

1. Плоскопараллельные концевые меры длины - это такие меры длины, которые постоянны и имеют форму прямоугольного параллелепипеда. При измерении их помещают между двумя плоскостями у детали.

Основной проблемой механического и других видов преобразований измеряемых величин является преобразование больших по величине параметров в пригодные для передачи измерительному устройству, то есть малые.

«Бичом» всех измерительных устройств является температурное расширение материалов.

Эти приборы служат эталоном для длины и через них передают эти эталоны измерительным приборам. Их применяют при поверке (настройке) измерительных устройств на необходимую шкалу (установка на нуль).

Что касается поверки, то в качестве номинальной длины концевой меры измеряют «срединную» длину концевой меры.

2. Измерительная металлическая линейка - это металлическая полоса, которая заштрихована делениями.

Измерение линейкой производится методом прямого прикладывания ее к измеряемому объекту, такой метод называют непосредственным методом измерений. Погрешность измерений линейкой обычно 0,5-1 мм. Поверка линеек проводится с помощью штриховых метров: штриховой метр - это такая линейка, на которой имеются деления через 0,2-0,05 мм.

3. Штангенинструмент - это общее название целой группы измерительных средств длины: штангенциркуль; штангенглубиномер; штангенрейсмасс и др.

Особенностью штангенинструмента является то, что у него имеется не только шкала линейки измерения, штанга с точностью до 1 мм, но и вспомогательная шкала - нониус, которая позволяет снять еще и подробную часть длины в пределах 1 мм.

У нониуса число делений 10-20, с ценой 0,9 мм = = 1 мм - 0,1 мм.

Нулевые штрихи основной шкалы и нониуса совпадают, однако у нониуса первый штрих нанесен слева от нулевой отметки, в итоге там, где у нониуса кончается, например, деление 1 мм, у основной шкалы только - 0,9 мм.

Показанию основной шкалы в 1 мм соответствует показатель нониуса уже в 1,1 мм. Поэтому возникает впечатление, что у нониуса шкала растянута.

Приборы для измерения параметров движения

Рассмотрим такие параметры движения, как скорость, ускорение, угловые скорость и ускорение.

Для измерения скорости поступательного перемещения достаточно знать длины пути и времени. Тогда средняя скорость:

где S - длина пути; t - промежуток времени.

Погрешность измерений, само собой разумеется, складывается из погрешностей измерений перемещений и времени

Измерение ускорения при поступательном перемещении измеряется точно так же: движение прибор скорость ускорение

Погрешность измерения ускорений также определяется погрешностями, допущенными при измерении величины перемещения и времени, затраченного на это перемещение.

Для измерения скорости перемещения поступательного движения часто пользуются приборами, которые преобразуют угловую скорость в линейную.

Сперва разберемся с угловой скоростью: это измерение угла поворота х за время t; эту величину называют средней угловой скоростью.

Если взять производную по времени, то получим угловое ускорение.

Для измерения линейной скорости применяются различные приборы с электрическими датчиками. Наиболее надежными из них являются приборы с индукционными датчиками: чувствительность - 0,07 мА/мм; погрешность - 12 мм при при 1 см/с.

Для измерения угловых скоростей применяются различные тахометры: механические, гидравлические, магнитные, электрические (обоих типов тока), импульсные и др.

Для измерения линейных ускорений при поступательном движении применяют акселерометры; наибольшей точностью из них обладают те, у которых имеются индуктивные датчики.

Для измерения угловых ускорений используют инерционные приборы с упругим стержнем, с инерционным диском и пружиной.

Перемещения в виде смещений и все другие параметры движения имеют место также при вибрации. Измеряются также частота и амплитуда вибраций, а также фаза, с этой целью применяются виброметры.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет величины ускорения тела на наклонной плоскости, числа оборотов колес при торможении, направление вектора скорости тела, тангенциального ускорения. Определение параметров движения брошенного тела, расстояния между телами во время их движения.

    контрольная работа [1,0 M], добавлен 29.05.2014

  • Расчет тангенциального и полного ускорения. Определение скорости бруска как функции. Построение уравнения движения в проекции. Расчет начальной скорости движения конькобежца. Импульс и закон сохранения импульса. Ускорение, как производная от скорости.

    контрольная работа [151,8 K], добавлен 04.12.2010

  • Понятие механического движения как изменения положения тела по отношению к каким-либо другим телам. Зависимость характера движения от выбора тел, основные типы движения и их особенности. Инструменты для измерения длины, нониус как добавочная шкала.

    реферат [2,4 M], добавлен 23.06.2010

  • Закон изменения угловой скорости колеса. Исследование вращательного движения твердого тела вокруг неподвижной оси. Определение скорости точки зацепления. Скорости точек, лежащих на внешних и внутренних ободах колес. Определение углового ускорения.

    контрольная работа [91,3 K], добавлен 18.06.2011

  • Определение высоты и времени падения тела. Расчет скорости, тангенциального и полного ускорения точки окружности для заданного момента времени. Нахождение коэффициента трения бруска о плоскость, а также скорости вылета пульки из пружинного пистолета.

    контрольная работа [95,3 K], добавлен 31.10.2011

  • Закон движения груза для сил тяжести и сопротивления. Определение скорости и ускорения, траектории точки по заданным уравнениям ее движения. Координатные проекции моментов сил и дифференциальные уравнения движения и реакции механизма шарового шарнира.

    контрольная работа [257,2 K], добавлен 23.11.2009

  • Характеристика движения объекта в пространстве. Анализ естественного, векторного и координатного способов задания движения точки. Закон движения точки по траектории. Годограф скорости. Определение уравнения движения и траектории точки колеса электровоза.

    презентация [391,9 K], добавлен 08.12.2013

  • Исследование устройства и принципов работы приборов для измерения влажности и скорости движения воздуха, плотности жидкостей. Абсолютная и относительная влажность воздуха, их отличительные особенности. Оценка преимуществ и недостатков гигрометра.

    лабораторная работа [232,2 K], добавлен 09.05.2011

  • Изучение единиц выражения скорости и приборов, которыми она измеряется. Определение зависимости скорости от времени для двух тел, скорости при равномерном движении. Исследование понятий механического движения, тела отсчета, траектории и пройденного пути.

    презентация [1,2 M], добавлен 12.12.2011

  • Изучение законов Ньютона, лежащих в основе классической механики и позволяющих записать уравнения движения для любой механической системы. Анализ причин изменения движения тел. Исследование инерциальных систем отсчета. Взаимодействие тел с разной массой.

    презентация [531,3 K], добавлен 08.11.2013

  • Изменение вектора скорости за промежуток времени. Годограф скорости. Нахождение ускорения при координатном способе задания движения. Проекции ускорения на радиальное и поперечное направления. Линия пересечения спрямляющей и нормальной плоскостей.

    презентация [2,4 M], добавлен 24.10.2013

  • Определение реакций связей в точках, вызываемых действующими нагрузками. Определение главного вектора и главного момента системы относительно начала координат. Расчет скорости и ускорения точки в указанный момент времени; радиус кривизны траектории.

    контрольная работа [293,6 K], добавлен 22.01.2013

  • Использование теоремы об изменении кинетической энергии при интегрировании системы уравнений движения. Получение дифференциальных уравнений движения диска. Анализ динамики ускорения движения стержня при падении. Расчет начальных давлений на стену и пол.

    презентация [597,5 K], добавлен 02.10.2013

  • Общие понятия о кривых движения. Реализация сил тяги и торможения поезда. Зависимость формы кривых движения от характера изменения скорости действующих на поезд сил. Период разгона поезда. Реализация сил тяги и торможения поезда. Законы сцепления.

    лекция [193,2 K], добавлен 27.09.2013

  • Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.

    презентация [191,8 K], добавлен 07.12.2015

  • Исследование относительного движения материальной точки в подвижной системе отсчета с помощью дифференциального уравнения. Изучение движения механической системы с применением общих теорем динамики и уравнений Лагранжа. Реакция в опоре вращающегося тела.

    курсовая работа [212,5 K], добавлен 08.06.2009

  • Определение скорости, нормального, касательного и полного ускорения заданной точки механизма в определенный момент времени. Расчет параметров вращения вертикального вала. Рассмотрение заданной механической системы и расчет скорости ее основных элементов.

    контрольная работа [2,4 M], добавлен 13.03.2014

  • Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.

    лабораторная работа [213,9 K], добавлен 07.02.2011

  • Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.

    задача [27,6 K], добавлен 12.10.2014

  • Кинематика точки. Способы задания движения. Определение понятия скорости точки и методы ее нахождения. Выявление ее значения при естественном способе задания равномерного движения. Способ графического представления скорости в декартовой системе координат.

    презентация [2,3 M], добавлен 24.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.