Судовые энергетические установки

Типы, состав и размещение судовых энергетических установок. Паровые котлы и котельные установки. Паровые и газовые турбины, паро- и газотурбинные установки. Двигатели внутреннего сгорания, дизельные установки. Судовые движители, вспомогательные механизмы.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 18.02.2015
Размер файла 6,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 9.22. Схема ядерного реактора.

1 - активная зона; 2 - урановые стержни; 3 - замедлитель; 4 - отражатель; 5 - теплоноситель; 6 - биологическая защита; 7 - тепловой экран; 8 - система регулирования

Замедлителем в ядерных реакторах служит графит, тяжелая и обычная вода, а теплоносителем - жидкие металлы с низкой температурой плавления (натрий, калий, висмут), газы (гелий, азот, углекислый газ, воздух) или вода.

В судовых АЭУ получили распространение реакторы, у которых и замедлителем и теплоносителем является дистиллированная вода, откуда и произошло их название водо-водяные реакторы. Эти реакторы проще по устройству, компактнее, надежнее в работе, чем другие типы, и дешевле.

Рис. 9.23. Тепловые схемы ядерных энергетических установок: а - одноконтурная; б - двухконтурная; в - трехконтурная.1 - реактор 2 - турбина 3 - конденсатор 4 - циркуляционный насос 5 - парогенератор 6 - конденсатный насос 7 - система подогрева фильтрации и подпитки 8 - питательный насос 9 - теплообменник 10 - биологическая защита

В зависимости от способа передачи тепловой энергии от реактора исполнительному механизму (турбине) различают одноконтурную, двухконтурную и трехконтурную схемы АЭУ.

По одноконтурной схеме (Рис. 9.23, а) рабочее вещество - паробразуется в реакторе, откуда поступает непосредственно в турбину и из нее через конденсатор с помощью циркуляционного насоса возвращается в реактор.

По двухконтурной схеме (Рис. 9.23, б) циркулирующий в реакторе теплоноситель отдает свое тепло в теплообменнике - парогенераторе - воде, образующей пар, который поступает в турбину. При этом теплоноситель пропускают через реактор и парогенератор циркуляционным насосом или воздуходувкой, а образующийся в конденсаторе турбины конденсат прокачивают конденсатным насосом через систему подогрева, фильтрации и подпитки и питательным насосом снова подают в парогенератор.

Трехконтурная система (Рис. 9.23, в) представляет собой двухконтурную схему с включенным между первым и вторым контурами дополнительным промежуточным контуром.

Одноконтурная схема требует биологической защиты вокруг всего контура, включая и турбину, что усложняет обслуживание и управление и повышает опасность для экипажа. Безопаснее двухконтурная схема, так как здесь второй контур уже не опасен для экипажа. Поэтому на атомных судах почти всегда применяют двухконтурные схемы. Трехконтурные схемы используют в том случая, если теплоноситель в реакторе сильно активируется и его необходимо тщательно отделить от рабочего вещества, для чего и предназначен промежуточный контур.

Интересны атомные газотурбинные установки, в которых теплоносителем и рабочим телом является газ гелий. Нагретый в реакторе до 700о газ сжимается компрессором и под давлением примерно 4,0 МПа (40 кгс/см2) подводится к двухкорпусной газовой турбине. При этом ТВД приводит в действие компрессор, а ТНД работает на гребной винт. Гелий под действием облучения в реакторе не становится радиоактивным, поэтому отпадает необходимость в биологической защите гелиевого контура. Однако гелий дефицитен, дорог и отличается большой текучестью, что требует особых уплотнительных устройств.

Опыт эксплуатации первых судов с АЭУ подтвердил их высокие эксплуатационно-технические качества, а постепенное снижение стоимости этих установок и ядерного горючего позволит сделать атомные суда вполне конкурентоспособными с обычными судами. Кроме того, по мере роста скорости морских транспортных судов и связанного с этим значительного увеличения мощности главного двигателя и массы запасов топлива (особенно при большой дальности плавания) эксплуатационно-экономические преимущества судов с АЭУ будут возрастать. Расчеты показывают, что при мощности судовой энергетической установки более 45 000 - 75 000 кВт суда с АЭУ становятся более выгодными, чем суда с обычными СЭУ. Именно поэтому в последнее время в ряде стран разработаны проекты новых крупных транспортных судов (контейнеровозов, танкеров и т.п.) и мощных ледоколов с АЭУ, а в Советском Союзе в 1988 г. построен ледокольно-транспортный лихтеровоз - контейнеровоз "Севморпуть" с АЭУ.

Валопровод

Валопровод предназначен для передачи крутящего момента (мощности) от главного двигателя к движителю, а также для восприятия упорного давления, создаваемого движителем, и передачи его от движителя корпусу судна. Это сложная и ответственная конструкция из нескольких жестко соединенных между собой валов, опирающихся на подшипники, установленные на специальных опорах - фундаментах. Валопровод изгибается вместе с изгибом корпуса судна и испытывает при вращении вокруг своей оси большие знакопеременные нагрузки. В связи с этим к конструкции, прочности и качеству монтажа этого важнейшего узла, обеспечивающего ход судна, предъявляются особенно высокие требования, несоблюдение которых может привести к серьезным повреждениям судна.

Основными элементами валопровода являются (Рис. 9.25): гребной вал, проходящий через ахтерпик внутрь корпуса судна и предназначенный для крепления гребного винта; вал имеет бронзовую облицовку, защищающую его от коррозии; промежуточные валы, соединенные между собой гребным валом и двигателем с помощью фланцев (носовой промежуточный вал с гребнем, посредством которого передается упорное давление упорному подшипнику, называют упорным валом); главный упорный подшипник для восприятия упорного давления, создаваемого гребным винтом; опорные подшипники, служащие опорами для промежуточных валов; дейдвудное устройство, являющееся опорой для гребного вала и предназначенное для уплотнения места выхода гребного вала из корпуса судна.

Рис. 9.25. Элементы валопровода.

1 - гребной вал; 2 - промежуточный вал; 3 - упорный вал; 4 - главный упорный подшипник; 5 - опорный подшипник; 6 - переборочный сальник; 7 - дейд-вудное устройство

Длина валопровода зависит от размеров судна и места расположения главных двигателей. На судах с кормовым расположением МКО длина валопровода равна 16-20 м. У крупных судов со средним расположением МКО протяженность валопровода равна 50-70 м. В этом случае валопровод проходит через коридор гребного вала, защищающий его от повреждений.

Рис. 9.26. Дейдвудное устройство.

1 - яблоко ахтерштевня; 2 - бакаутовая набивка; 3 - переборка ахтерпика; 4 - сальник; 5 - сальниковая набивка; 6 - носовая латунная втулка; 7 - дейдвудная труба; 8 - кормовая латунная втулка; 9 - гайка

Наиболее ответственным узлом валопровода является д е й д-вудное устройство (Рис. 9.26). Оно состоит из дей-двудной трубы, закрепляемой одним концом в вырезе водонепроницаемой переборки ахтерпика, а другим в отверстии яблока ахтерштевня; двух подшипников в виде латунных втулок, внутренняя поверхность которых облицована бакаутом; сальника на переборке ахтерпика, препятствующего попаданию воды через дейдвудную трубу внутрь корпуса.

Бакаут, которым облицовывают дейдвудные втулки, - редкое дерево, обладающее высокой прочностью и способностью смазываться водой, благодаря чему бакаутовые подшипники, смоченные водой, не требуют смазки. Однако из-за высокой стоимости и дефицитности бакаут теперь заменяют другими материалами - текстолитом, лигнофолем, туфнолом. В качестве подшипников применяют также резинометаллические вкладыши. В последнее время на крупных судах стали применять металлические (баббитовые) подшипники, смазываемые маслом и имеющие специальные патентованные уплотнения.

Судовые движители

Движителем называют такое судовое устройство, которое, используя работу двигателя, создает в воде упор - силу, способную двигать судно в заданном направлении.

Движители судов с механическим двигателем делятся на лопастные и водометные.

К числу лопастных судовых движителей относятся гребные вингы, крыльчатые движители и гребные колеса, создающие силу упора за счет отбрасывания своими лопастями струи воды в сторону, противоположную движению судна.

Водометные движители создают упор за счет отбрасывания воды, забранной специальным насосом. Так как и лопастные, и водометные движители создают движущую силу за счет реакции отбрасываемых назад масс воды, их называют реактивными. Среди судовых движителей наибольшее распространение получили гребные винты.

Рис. 9.27. Гребной винт (а) и схема его действия (б).

1 - ступица; 2 - лопасть; 3 - обтекатель. У" - окружная скорость элемента, в- лопасти; v - скорость поступательного перемещения гребного винта вместе с судном; V - результирующая скорость от сложения скоростей V и v; a - угол между результирующей скоростью V и хордой элемента лопасти (угол атаки); R - подъемная сила, возникающая на элементе лопасти; Р - упор гребного винта (горизонтальная составляющая силы R); Т - окружная составляющая сил, действующих на гребной винт

Рис. 9.28. Общий вид неподвижной направляющей насадки диаметром 7,5 м крупнотоннажного танкера "Крым"

Гребные винты изготовляют из нержавеющей стали, бронзы, латуни и их сплавов, а также из капрона, нейлона и стеклопластика (в основном для малых судов).

Гребной винт характеризуют следующие геометрические элементы:

диаметр - определяется в зависимости от возможной глубины погружения оси гребного вала (обычно, диаметр гребного винта не превышает 70 % осадки судна в полном грузу); наиболее крупные винты имеют диаметр до 9-10 м;

дисковое отношение - отношение площади всех лопастей винта к площади диска винта; может быть больше единицы, но у винтов морских транспортных судов оно обычно равно 0,45-0,60;

шаг винта - шаг винтовой поверхности, образующей нагнетающую поверхность лопасти винта.

На засасывающей стороне лопасти при быстром вращении винта благодаря увеличению скорости набегающего потока воды создается разрежение, причем по мере увеличения скорости вращения давление может понизиться настолько, что даже в холодной воде начнется образование пузырьков воздуха (известно, что с уменьшением давления температура кипения воды понижается). Такое вскипание холодной воды на засасывающей стороне лопасти называется кавитацией. Начальная стадия кавитации очень опасна для гребных винтов, так как возникающие при вскипании воды пузырьки воздуха, попав в зону более высокого давления, мгновенно конденсируются и производят сильнейшие гидравлические удары по лопасти винта, вызывая эрозию (местное изъязвление поверхности). В этих условиях работа гребного винта недопустима. Однако по мере дальнейшего увеличения скорости вращения винта зона кавитации распространяется уже на всю лопасть и даже выходит за ее пределы - наступает так называемая вторая стадия кавитации, которая не представляет опасности для прочности винта, но зато несколько уменьшает его КПД. Чтобы устранить кавитацию, увеличивают ширину (площадь) лопастей и глубже погружают сам винт; кроме того, делают гребные винты переменного шага (уменьшая его к комлю и концам лопасти). При проектировании быстроходных винтов, если устранить кавитацию полностью по техническим причинам невозможно, создают условия полностью развитой кавитации (во второй стадии).

Для повышения эффективности гребных винтов применяют направляющие насадки и пропульсивные наделки на руль.

Рис. 9.29. Схема действия направляющей насадки

Рис.9.30. Пропульсивная наделка (/) на руль

Направляющие насадки бывают неподвижными и поворотными и применяются сейчас не только на малых судах и буксирах, где они особенно эффективны, но и на крупных транспортных судах типа "Крым" (Рис. 9.28). Насадка, имеющая в сечении профиль, аналогичный профилю крыла, создает при движении воды дополнительный упор, как это видно из схемы сил, приведенной на Рис. 9.29. Кроме того, насадка улучшает условия подтекания" воды к диску винта, в результате чего увеличивается скорость подтекающей воды,' уменьшаются концевые потери от перетекания воды через край лопасти и, следовательно, повышается КПД винта (до 20-30 %). Применение направляющей насадки увеличивает скорость на 2 - 4 %. Важным преимуществом насадки является выравнивание поля скоростей в диске винта, что уменьшает нагрузки на вало-провод.

Пропульсивная наделка на руль (Рис. 9.30) упорядочивает поток воды за ступицей и повышает КПД винта, а также улучшает условия работы руля.

Принятый шаг гребного винта является наивыгоднейшим только при работе винта в одном - расчетном - режиме. При работе в других, отличных от расчетного, режимах винт будет, как говорят, "тяжелым" или "легким" (при этом имеют в виду не весовые, а гидродинамические характеристики гребного винта). "Тяжелым" называют винт в том случае, если его шаг больше, чем наивыгоднейший шаг в данном режиме хода, например, если у судна увеличилось сопротивление из-за обрастания корпуса или волнения моря и ветра или если шаг винта был выбран большим, чем требовалось. "Легкий" винт, наоборот, имеет шаг, меньший требуемого. Так, винт, спроектированный для условий плавания судна с полным грузом, будет "легким" при плавании этого судна в балласте, когда его водоизмещение, а следовательно, сопротивление воды, меньше, чем при движении с полным грузом.

Обычно гребные винты проектируют несколько облегченными по сравнению с требуемыми для идеальных условий эксплуатации (при этом имеют в виду, что по мере обрастания корпуса и увеличения сопротивления в реальных эксплуа - тационных условиях винт становится "тяжелее" и более соответствует главному двигателю).

Правильный выбор шага винта важен потому, что "тяжелый" винт не дает возможности двигателю даже при достижении полной мощности развить полные обороты из-за перегрузки, и судно, затрачивая в единицу времени топливо на полную мощность, не разовьет запроектированной скорости. Иными словами, расход топлива на милю увеличится. "Легкий" же винт, наоборот, развивает полные обороты еще до того, как двигатель станет работать на полную мощность. Следовательно, судно и в этих условиях не сможет развить расчетную скорость.

В связи с тем, что принятый шаг винта отвечает только определенному режиму эксплуатации судна, на судах, которые часто меняют режим хода (траулерах, паромах, буксирах), вместо винтов фиксированного шага применяют более сложные гребные винты регулируемого шага.

Рис. 9.32. Схема ВРШ. / - ползун; 2 - шатун; 3 - кривошипный' диск; 4 - шток; 5 - поршень; 6 - золотниковый регулятор; 7 - привод управления; 5 - масляный насос; 9 - электродвигатель; 10 - масляная цистерна

Схема поворота лопасти

Винт регулируемого шага (ВРШ) (Рис. 9.31) имеет лопасти, поворачивающиеся вокруг их вертикальной оси. Их можно устанавливать под любым углом, образуя шаг, необходимый для данного режима работы судна. ВРШ позволяет не только наивыгоднейшим образом использовать двигатель судна в разных условиях эксплуатации, но и удерживать его на месте, не выключая двигателя, если все лопасти расположены в плоскости диска винта в так называемом нейтральном положении, или осуществлять реверс (задний ход), не меняя направления вращения вала двигателя. Последнее обстоятельство особенно важно при использовании нереверсируемых главных двигателей (газовых и паровых турбин), так как позволяет отказаться от необходимых в этом случае турбин заднего хода или реверсивных муфт. ВРШ состоит из ступицы, поворотных лопастей, механизма поворота лопастей, расположенного в ступице, механизма изменения шага (МИШ) в кормовой оконечности судна и привода механизма поворота лопастей, располагаемого в валопроводе. Управляют МИШ дистанционно из рулевой рубки и с крыльев ходового

мостика.

Механизм поворота лопастей (Рис. 9.32) состоит из ползуна и шатунов, соединенных с кривошипными дисками, на которых закреплены лопасти. Усилие для поворота лопастей передается через шток в гребном валу на ползун, а от него через шатуны - кривошипным дискам, которые, вращаясь, поворачивают лопасти.

Рис. 9.33. Крыльчатый движитель и схема его работы

Движение штоку, на конце которого расположен поршень, передается давлением масла (его можно подавать под одну или другую сторону поршня, в зависимости от необходимого направления изменения шага). Рабочее давление масла создается масляным насосом высокого давления (2,0 МПа или 20 кгс/см2), работающим от гребного вала или специального электромотора. Направление подачи масла изменяется золотниковым устройством, привод которого связан с постом управления в рулевой рубке.

Применение ВРШ позволяет за счет повышения КПД двигателя в разных условиях эксплуатации снизить на 10-15 % расход топлива и увеличить в среднем на 2-3 % среднюю рейсовую скорость. Возможность быстрого перехода с переднего на задний ход улучшает маневренные качества судна и примерно в 1,5 раза сокращает выбег при экстренном торможении, повышая тем самым безопасность плавания. Важным преимуществом ВРШ является и то, что его съемные лопасти можно легко заменять, не выводя судно из эксплуатации.

К недостаткам ВРШ относятся сложность конструкции, более высокая стоимость и несколько меньший (на 1-3 %), чем у винтов фиксированного шага, КПД из-за большего диаметра ступицы, в которой размещается механизм поворота. Однако, несмотря на эти недостатки, ВРШ является перспективным типом движителя не только для промысловых и технических, но и для крупных транспортных судов: на крупнотоннажных танкерах типа "Крым" установлен ВРШ диаметром 7,5 м, на атомном лихтеровозе "Сев-морпуть" - 6,8 м, на сухогрузном газотурбоходе "Парижская коммуна" - диаметром 5,6 м. Диаметр наиболее крупных ВРШ достигает 9 м.

Крыльчатый движитель (Рис. 9.33) представляет собой диск, вмонтированный заподлицо с днищевой обшивкой и приводящийся во вращение вокруг вертикальной оси судовым двигателем. По окружности диска перпендикулярно к нему расположены четыре - восемь погруженных в воду лопастей, каждая из которых вращается вместе с диском, а также вокруг своей оси. Путем соответствующей установки привода управления поворотом каждой лопасти вокруг своей оси можно при неизменном направлении вращения диска создать упор в любом направлении (см. схему на Рис. 9.33). Поэтому суда, оборудованные крыльчатым движителем, не имеют рулей. Несмотря на сложность изготовления и невысокий КПД, крыльчатые движители незаменимы на тех судах, для которых необходима высокая маневренность при малых скоростях движения (на плавучих кранах, буксирах и пр.). Управление крыльчатым движителем осуществляется из ходовой рубки и с крыльев ходового мостика.

Вспомогательные механизмы

К вспомогательным судовым механизмам относятся механизмы и теплообменные аппараты, обслуживающие главную энергетическую установку, двигатели генераторов электрического тока, вспомогательные котлы, вспомогательные конденсаторы, опреснительные и испарительные установки и рефрижераторные машины.

К механизмам, обслуживающим главную энергетическую установку, относятся различные насосы, номенклатуру, тип и привод которых определяют в зависимости от типа главной энергетической установки, а также котельные и машинные вентиляторы, имеющие электро - или турбопривод.

Насосами называют механизмы, предназначенные для перекачивания жидкостей по трубопроводам. Работа насоса заключается в двух, следующих один за другим, процессах: всасывании и нагнетании. Всасывание происходит только в том случае, если давление внутри приемной полости насоса меньше, чем давление, под которым находится всасываемая жидкость. Поэтому насос, приемная полость которого находится выше уровня всасываемой жидкости, должен создавать в приемной полости разрежение, т.е. работать с подсосом.

Судовые насосы различают: по конструктивным признакам и способу перемещения жидкости - поршневые, центробежные, осевые, шестеренчатые, винтовые, струйные (Рис. 9.34); по типу двигателя, приводящего в действие насос, - паровые, турбинные, электрические; по роду перекачиваемой жидкости - водяные, топливные, масляные.

Рис. 9.34. Судовые насосы (схемы): а - поршневой; б - центробежный; в - осевой; г - шестеренчатый; д - винтовой; е - струйный

Для прокачивания воды через различные теплообменники - конденсаторы, охладители, парогенераторы - используют циркуляционные насосы, обычно центробежного типа с электроприводом. Подается котельно-питательная вода в главные паровые котлы питательными турбонасосами центробежного типа. Топливная система и система смазки обслуживаются насосами поршневого, шестеренчатого, кулачкового или червячного типа. У двигателей внутреннего сгорания некоторые топливные и масляные насосы имеют привод от коленчатого вала главного двигателя. Такие механизмы называют навешенными. Навешивание вспомогательных механизмов начинают применять и в паротурбинных установках (питательные насосы, валогенераторы и пр.).

Котельные вентиляторы - вдувные центробежного типа осуществляют дутье воздуха в топку котла.

Машинные вентиляторы, обеспечивающие воздухообмен в МКО, бывают вдувными или вытяжными. Вдувные предназначены для подачи в МКО свежего воздуха, вытяжные - для удаления нагретого воздуха из верхней части помещения. Машинные вентиляторы бывают центробежными или осевыми.

Компрессоры служат для получения сжатого воздуха, применяемого для пуска двигателей внутреннего сгорания, а также для работы пневматического инструмента в судовых мастерских и других целей. На судах потребляют сжатый воздух низкого давления (для инструмента) - 0,4-0,6 МПа (4 - 6 кгс/см2); среднего давления (для пуска двигателей) - 2,0 - 3,0 МПа (20-30 кгс/см2); высокого давления (для специальных целей) - 15,0-20,0 МПа (150-200 кгс/см2).

По конструкции компрессоры могут быть поршневыми, лопастными (турбокомпрессоры) и струйными, одноступенчатыми и многоступенчатыми (последние - для получения сжатого воздуха высокого давления). Приготовленный компрессором сжатый воздух поступает в баллоны, откуда расходуется по назначению.

В качестве двигателей генераторов электрического тока на

судах используют четырехтактные двигатели внутреннего сгорания, паровые и газовые турбины мощностью от 35 до 1500 кВт.

Вспомогательные котлы предназначены для подачи пара на бытовые нужды - к вспомогательным механизмам с паровым приводом, к теплообменным аппаратам, для мойки и пропаривания танков и цистерн, в систему парового пожаротушения и т.д. (см. с.259).

Опреснительная и испарительная установки служат для приготовления пресной воды из морской воды; первая - для бытовых нужд экипажа, вторая - для питания котлов.

Наличие на судне опреснительной установки позволяет отказаться от приема больших запасов пресной воды (до 100 л на человека в день), что дает экономию в массе и габаритах и увеличивает полезную грузоподъемность судна, так как для получения 9-10 кг пресной воды требуется 1 кг топлива.

Опреснение морской воды происходит по принципу дистилляции (выпаривания), а испарение - путем нагрева ее паром от главных или вспомогательных котлов до температуры кипения (в испарительных установках вакуумного типа температура кипения ниже 100°, в опреснительных - выше 100°, так как только при этой температуре уничтожаются вредные микробы). Пар может быть или первичный, или отработавший во вспомогательных механизмах; на дизельных судах для этой цели используют тепло охлаждающей воды. На судах применяют опреснительные (или испарительные) установки производительностью от 2 до 15 - 20 т/ч (на турбоходах - до 40-50 т/ч) одноступенчатые. Многоступенчатые благодаря более рациональному использованию тепла экономичнее применять на установках очень большой производительности.

Рефрижераторные установки служат для охлаждения помещений, в которых хранятся скоропортящиеся продукты, - рефрижераторных кладовых (на всех судах), рефрижераторных трюмов (на специальных судах), а также для охлаждения воздуха в системе кондиционирования. Рефрижераторная установка состоит из холодильной машины, трубопроводов охлаждения и холодильных камер (трюмов) или кондиционеров.

Холодильные машины компрессорного типа состоят из компрессора, конденсатора, испарителя, электромотора, водяного насоса, термостата, различных трубопроводов и контрольно-регулирующих приборов. В качестве хладагентов в судовых машинах используют аммиак, углекислоту и, чаще всего, фреон. При работе установки пары фреона сжимаются в компрессоре, откуда уже сжатый фреон поступает в конденсатор; здесь он отдает образовавшееся при сжатии тепло циркулирующей в конденсаторе воде, конденсируется и превращается в жидкость. Затем жидкий фреон поступает в испаритель, где он превращается в газ. Это сопровождается поглощением тепла, которое фреон отбирает от стенок испарителя, охлаждая его. После этого газообразный фреон снова поступает в компрессор, и процесс повторяется. В связи с тем, что в каждом цикле постепенно понижается температура, в холодильных машинах предусматривают специальные термостаты и другие контрольно-регулирующие приборы, автоматически выключающие и включающие установку.

Судовые холодильные установки, у которых испаряющийся хладагент циркулирует по трубам батарей охлаждаемого помещения, называют установками с непосредственным охлаждением. Если проникновение хладагента в охлаждаемое помещение нежелательно (например, при применении токсичных хладагентов), то применяют установки с рассольным охлаждением. В этом случае помещения охлаждаются циркулирующим в батареях холодным рассолом, имеющим низкую температуру замерзания. Пройдя по трубам помещения, нагретый рассол поступает в испаритель, где отдает полученное тепло, и вновь поступает в охлаждаемое помещение.

В установках кондиционирования воздуха иногда применяют пароэжекторные холодильные установки, в которых рабочим телом является вода. Эти установки безопасны в токсическом отношении, но они менее экономичны и не позволяют охлаждать помещение ниже - 15°С.

Размещено на Allbest.ru

...

Подобные документы

  • Источники тепловой энергии. Котельные установки малой и средней мощности. Основные и вспомогательные элементы котельных установок. Паровые и водогрейные котлы. Схема циркуляции воды в водогрейном котле. Конструкция и компоновка котельных установок.

    контрольная работа [10,0 M], добавлен 17.01.2011

  • Промышленное применение электроэнергии. Совершенствование паровых двигателей и котельных установок. Новые тепловые двигатели. Паровые турбины. Двигатели внутреннего сгорания. Водяные турбины. Идея использования атомной энергии.

    реферат [17,8 K], добавлен 03.04.2003

  • Характеристика дизельной установки. Выбор главного двигателя и предварительный расчет винта. Принципиальные схемы энергетических систем судовых установок. Расчет судовой электростанции и энергетических запасов. Подбор соответствующего оборудования.

    курсовая работа [2,9 M], добавлен 24.10.2011

  • Назначение, перечень узлов и принцип работы оборудования бойлерной установки. Анализ и оценка эффективности работы бойлерной установки турбины. Проект реконструкции бойлерной установки Конструкция и преимущества пластинчатых теплообменных аппаратов.

    дипломная работа [3,1 M], добавлен 07.03.2009

  • Проектирование контактной газотурбинной установки. Схема, цикл, и конструкция КГТУ. Расчёт проточной части турбины. Выбор основных параметров установки, распределение теплоперепадов по ступеням. Определение размеров диффузора, потерь энергии и КПД.

    курсовая работа [2,0 M], добавлен 02.08.2015

  • Определение состава топлива для котельной установки, расчёт объёмов и энтальпий воздуха и продуктов сгорания. Определение геометрических характеристик топочной камеры, расчёт конвективного парогенератора, конвективных поверхностей нагрева топок.

    курсовая работа [488,4 K], добавлен 27.10.2011

  • Электростанции с комбинированным производством электроэнергии и тепла, экономическая эффективность ее использования и основные преимущества. Средства автоматики мини-ТЭЦ. Микротурбины как крышные котельные. Газопоршневые установки и газовые турбины.

    презентация [2,2 M], добавлен 18.12.2013

  • Особенности разработки судовой реакторной установки ВБЭР-300 мощностью 300 МВт (эл.) с использованием технологий судовых блочных реакторов. Направления оптимизации структуры и масштаба строительства АС с РУ ВБЭР-300 атомной паропроизводящей установки.

    дипломная работа [1023,0 K], добавлен 26.03.2015

  • Понятие о смесеобразовании. Основные классификации двигателей внутреннего сгорания. Смесеобразование и сгорание топлива в цилиндрах дизеля. Фракционный состав топлива, вязкость, температурные характеристики. Задержка самовоспламенения и распыливание.

    курсовая работа [1,9 M], добавлен 11.03.2015

  • Основные принципы работы парогазотурбинной установки. Расчет удельной работы, затрачиваемой на сжатие воздуха в компрессоре, температуры газов после турбины газогенератора, мощности и удельной работы силовой турбины. Расчет паротурбинной части установки.

    курсовая работа [99,2 K], добавлен 30.08.2011

  • Назначение и основные типы котлов. Устройство и принцип действия простейшего парового вспомогательного водотрубного котла. Подготовка и пуск котла, его обслуживание во время работы. Вывод парового котла из работы. Основные неисправности паровых котлов.

    реферат [643,8 K], добавлен 03.07.2015

  • Паровая турбина как один из элементов паротурбинной установки. Паротурбинные (конденсационные) электростанции для выработки электрической энергии, их оснащение турбинами конденсационного типа. Основные виды современных паровых конденсационных турбин.

    реферат [1,3 M], добавлен 27.05.2010

  • Принципиальная схема двухконтурной утилизационной парогазовой установки. Определение теплофизических характеристик уходящих газов. Приближенный расчет паровой турбины. Определение экономических показателей парогазовой установки. Процесс расширения пара.

    курсовая работа [1,1 M], добавлен 26.06.2014

  • Краткое описание, принципиальная тепловая схема и основные энергетические характеристики паротурбинной установки. Моделирование котла-утилизатора и паровой конденсационной турбины К-55-90. Расчет тепловой схемы комбинированной энергетической установки.

    курсовая работа [900,4 K], добавлен 10.10.2013

  • Термодинамический расчет простейшей теплофикационной паротурбинной установки, необходимый при проектировании теплоэнергетических установок. Отображение процессов в соответствующих диаграммах, анализ различных способов оптимизации данной установки.

    курсовая работа [2,2 M], добавлен 21.09.2014

  • Газовые смеси, теплоемкость. Расчет средней молярной и удельной теплоемкости. Основные циклы двигателей внутреннего сгорания. Термический коэффициент полезного действия цикла дизеля. Водяной пар, паросиловые установки. Общее понятие о цикле Ренкина.

    курсовая работа [396,8 K], добавлен 01.11.2012

  • Выбор котла и турбины. Описание тепловой схемы паротурбинной установки. Методика и этапы определения параметров основных точек термодинамического цикла. Тепловой баланс паротурбинной установки, принципы расчета главных показателей и коэффициентов.

    курсовая работа [895,5 K], добавлен 03.06.2014

  • Характеристика ядерных энергетических установок, преимущества их использования на морских судах. Первое гражданское атомное судно, схема энергетической установки ледокола. Разработка новой реакторной установки в связи с модернизацией транспортного флота.

    контрольная работа [54,7 K], добавлен 04.03.2014

  • Обоснование и выбор параметров газотурбинной энергетической установки. Расчёт на номинальной мощности и частичных нагрузках. Зависимость работы от степени повышения давления. Зависимость относительных расходов топлива установки от относительной мощности.

    контрольная работа [1,3 M], добавлен 25.11.2013

  • Расчет паровой турбины, параметры основных элементов принципиальной схемы паротурбинной установки и предварительное построение теплового процесса расширения пара в турбине в h-s-диаграмме. Экономические показатели паротурбинной установки с регенерацией.

    курсовая работа [2,4 M], добавлен 16.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.