Явление поляризации. Механизмы поляризации

Поведение диэлектриков в электрическом поле, описание их макроскопических электрических свойств. Рассмотрение процесса смещения упруго связанных ионов. Подача напряжения в диэлектрике. Ориентация диполей в направлении поля, тепловое движение частиц.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 02.03.2015
Размер файла 69,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации ФГБОУ ВПО «Государственный университет - УНПК»

Кафедра "ЭВТИБ"

Реферат:

на тему: «Явление поляризации. Механизмы поляризации»

Выполнил студент группы 11-В-М:

Кашин Е.М.

Проверил преподаватель:

Косчинская Е.В.

Орел 2014

1. Поляризация диэлектриков

Диэлектрики - это вещества, которые практически не проводят электрический ток. Поведение диэлектриков в электрическом поле определяется их внутренним строением. Как известно, мельчайшей частицей вещества, сохраняющей его химические свойства, является молекула. Молекулы состоят из атомов, в состав которых входят положительно заряженные ядра и отрицательно заряженные электроны. В целом молекулы нейтральны. Согласно теории ковалентных связей устойчивость молекул достигается путем образования одной или нескольких пар электронов, которые становятся общими для соединяющихся атомов, т. е. входят одновременно в состав оболочек двух атомов.

Для каждого рода зарядов - положительных (ядер) и отрицательных (электронов) - можно найти такую точку, которая будет являться как бы их "электрическим центром тяжести".

Эти точки называются полюсами молекулы. Если в молекуле электрические центры тяжести положительных и отрицательных зарядов совпадут, то молекула будет неполярной.

Но если молекула построена несимметрично, например состоит из двух разнородных атомов, то общая пара электронов может быть в большей или меньшей степени смещена в сторону одного из атомов. Очевидно, что в этом случае, вследствие неравномерного распределения положительных и отрицательных зарядов внутри молекулы, их электрические центры тяжести не совпадут и получится молекула, называемая полярной.

Для описания макроскопических электрических свойств диэлектриков достаточно ограничиться представлением о том, что в них отсутствуют свободные носители заряда, и при помещении диэлектрика в электрическое поле в материале возбуждается множество микроскопических диполей. В случае неполярных молекул это происходит путем смещения в пределах молекул их положительных зарядов в направлении внешнего поля и отрицательных в противоположном направлении (рис. 1).

Рис. 1

Приобретаемый молекулой дипольный момент пропорционален напряженности поля, в котором находится молекула. В системе СИ он записывается, как

(5.1)

где коэффициент пропорциональности называется поляризуемостью молекулы.

Для вещества, состоящего из полярных молекул, под действием момента сил (3.9) происходит преимущественное выстраивание молекул в направлении внешнего поля.

В обоих случаях (неполярных и полярных молекул) в результате появляется дипольный момент и у всего объема диэлектрика. Средний дипольный момент, индуцированный полем в единице объема, называется поляризованностью диэлектрика:

где суммирование производится по всем молекулам, находящимся в объеме V, а дипольный момент p каждой молекулы определяется суммированием по всем заряженным частицам, входящим в молекулу:

где ei - заряд каждой частицы, а li - ее смещение под действием электрического поля.

Домножив и разделив правую часть (5.2) на число молекул N, находящихся в объеме V, получим еще одно выражение для поляризованности:

n = N / V

концентрация молекул, а < p > - средний диполный момент молекулы.

Вообще говоря, P меняется в диэлектрике от точки к точке, но для широкого класса веществ в каждой точке P ~ E.

Существуют вещества, обладающие поляризованностью и в отсутствие внешнего поля, однако здесь они не рассматриваются.

Поскольку в целом молекулы нейтральны, то именно дипольный момент и определяет электрическое поле, создаваемое самим материалом, когда его помещают во внешнее поле.

В силу принципа суперпозиции поле внутри диэлектрика есть сумма внешнего поля и поля от всех диполей, индуцированных в диэлектрике:

где E0 - напряженность поля сторонних зарядов, а E' - связанных зарядов. Связанными зарядами называются нескомпенсированные заряды, появляющиеся в результате поляризации молекул диэлектрика, тогда как сторонними - свободные заряды, находящиеся в диэлектрике или вне его. E0 и E' представляют собой макрополя, т.е. усредненные по некоторому малому объему микрополя, создаваемые сторонними и связанными зарядами, соответственно.

Так как каждая молекула поляризуется под воздействием как поля сторонних зарядов, так и поля, создаваемого всеми другими поляризованными молекулами, то поляризованность диэлектрика пропорциональна напряженности именно суммарного поля (5.5):

где греческой буквой "каппа" обозначена, так называемая, диэлектрическая восприимчивость. Для изотропных диэлектриков - просто коэффициент, и векторы P и E в этом случае совпадают по направлению. В общем случае это не так. Заметим, что пропорциональность поляризованности напряженности поля имеет место для широкого класса диэлектриков, однако существуют вещества (сегнетоэлектрики) для которых зависимость P от E имеет гораздо более сложный характер, чем (5.6). Здесь они не рассматриваются.

Рис. 2

При поляризации однородного диэлектрика (см. рис. 5.1) смещения зарядов внутри любого выбранного слоя внутри диэлектрика происходят таким образом, что количество связанного заряда, покидающего слой, равно заряду, входящему в него. Таким образом объемный заряд внутри диэлектрика не образуется. В поверхностных же слоях образуется связанный поверхностный заряд. В случае же неоднородного диэлектрика в каждый слой, мысленно выделенный внутри материала, с одной стороны входит больше заряда, чем выходит с другой, и связанный заряд образуется не только на поверхности, но и в объеме диэлектрика, как это показано на рис. 2.

Рассматривая явления поляризации необходимо отметить две группы:

· упругая поляризация, протекающая практически мгновенно под действием электрического поля, не сопровождающаяся рассеянием (потерями) энергии в диэлектрике (выделением теплоты);

· релаксационная поляризация, нарастающая и убывающая в течение некоторого промежутка времени и сопровождающаяся рассеянием энергии в диэлектрике, т.е. его нагреванием

Различают следующие виды поляризации.

1.1 Электронная поляризация

При подаче напряжения в диэлектрике создается электрическое поле, и электроны в атомах смещаются относительно ядра к положительному электроду.

Смещенные электроны с положительными зарядами ядер атомов образуют пары связанных друг с другом электрических зарядов, которые называются упругими диполями. Образование их происходит мгновенно (10-15 с). Они исчезают, если с диэлектрика снято напряжение. Этот процесс образования упругих диполей называется электронной поляризацией.

Величина зависит от концентрации атомов (молекул) в диэлектрике и их структуры, определяющей поляризуемость бэ атома (молекулы), и описывается выражением

= 1 + nбэ,

где е - диэлектрическая проницаемость; n - концентрация частиц (атомов, молекул) в диэлектрике; бэ - электронная поляризуемость, определяемая структурой молекулы или атома. Если диэлектрик кристалл, то у него е больше, чем у аморфного диэлектрика, т.к. плотность упаковки атомов и молекул больше в кристаллическом состоянии. Диэлектрическая проницаемость вещества с чисто электронной поляризацией численно равна квадрату показателя преломления света n.

е = n2.

Хотя деформация электронных орбит не зависит от температуры, электронная поляризация, а, следовательно, диэлектрическая проницаемость е с увеличением температуры диэлектрика уменьшается, т.к. увеличивается его объем и уменьшается число частиц в единице объема.

1.2 Ионная поляризация (или поляризация ионного смещения)

Поляризация обусловлена смещением упруго связанных ионов. Характерна для твердых тел с ионным строением, т.е. для кристаллических диэлектриков. Всякий ионный кристалл состоит из положительных и отрицательных ионов, расположенных в узлах кристаллической решетки. При наложении напряжения в нем начинают действовать электрические силы, и ионы смещаются: положительные - в одном направлении, отрицательные - в противоположном. Каждая пара ионов образует упругий диполь. Время установления ионной поляризации 10-13 с. Наряду с процессом поляризационного смещения протекает электронная поляризация. Интенсивность этих процессов у кристаллических диэлектриков велика, поэтому больше е = 7 ч 12 и выше.

Электронная и ионная поляризации относятся к упругой поляризации. Остальные, рассматриваемые далее, являются различными проявлениями релаксационной поляризации.

1.3 Дипольная релаксационная поляризация (ориентационная)

Поляризация определяется поворотом и ориентацией диполей в направлении поля и связана с тепловым движением частиц. Диэлектрик может состоять из полярных молекул. Такая молекула состоит из положительных и отрицательных ионов и ее дипольный электрический момент

м = q·l,

q - заряд одного из ионов; l - расстояние между центрами ионов. Такая система зарядов называется твердым диполем, а диэлектрик, состоящий из полярных молекул - полярным.

Дипольные молекулы, находящиеся в хаотическом тепловом движении, частично ориентируются под действием поля, что и является причиной поляризации.

Поворот диполей в направлении поля протекает в вязкой среде и связан с совершением работы по преодолению сил вязкого сопротивления среды, поэтому дипольная поляризация связана с потерями энергии

Под действием поля ориентируются и радикалы (группы атомов) - это дипольно - радикальная поляризация.

С увеличением температуры вязкость среды уменьшается, и дипольная поляризация возрастает, пока велика вязкость.

Но постепенно нарастает хаотичность теплового движения и становится преобладающей над ориентацией диполей, т.е. дипольная ориентация с ростом температуры начинает падать. Эта поляризация свойственна газам и жидкостям, а также твердым полярным органическим веществам, имеющим в составе радикалы. Совершается за время 10-2 с. После снятия поля ориентация ослабевает (происходит релаксация).

1.4 Электронно-релаксационная поляризация

Поляризация возникает за счет возбужденных тепловой энергией избыточных «дефектных» электронов или дырок. Характерна для диэлектриков с высоким показателем преломления и электронной электропроводностью, а также полупроводников.

1.5 Упруго-дипольная поляризация

Поляризация наблюдается у дипольных молекул некоторых кристаллов, закрепленных и только ограниченно поворачивающихся на небольшой угол.

1.6 Междуслойная поляризация

Поляризация обусловлена проводящими и полупроводящими включениями и наличием слоев с различной проводимостью. Поляризация проявляется в твердых телах неоднородной структуры (слоистые пластики) в области низких частот, и связана со значительными потерями электрической энергии.

1.7 Самопроизвольная (спонтанная) поляризация

диэлектрик макроскопический ион частица

Поляризация характерна для сегнетоэлектриков, веществ, разбивающихся на области (домены), обладающие спонтанным дипольным моментом в отсутствие внешнего поля. Взаимная ориентация дипольных моментов доменов в отсутствие поля такова, что суммарный дипольный момент вещества равен нулю. Наложение поля ориентирует дипольные моменты доменов, что вызывает очень сильную поляризацию. Поляризация нелинейно зависит от напряжения электрического поля и достигает насыщения при некотором значении напряженности электрического поля. Поэтому диэлектрическая проницаемость сегнетоэлектрика нелинейно зависит от напряженности электрического поля, достигая максимума при определенном его значении. Температурная зависимость диэлектрической проницаемости также имеет один или несколько максимумов при определенных температурах (титанаты бария и стронция). Спонтанная поляризация в сегнетоэлектриках проявляется в определенной области температур, исчезая выше некоторой температуры, называемой температурой Кюри. При этой температуре в сегнетоэлектрике наблюдается фазовый переход второго рода, т.е. изменяется тип кристаллической структуры.

1.8 Остаточная поляризация

Поляризация существует длительное время в диэлектрике после снятия напряжения. Этот тип поляризации наблюдается в электретах. Обладает сильной зависимостью от напряженности электрического поля и температуры.

Механизмы поляризации

Значение емкости конденсатора с диэлектриком и накопленный в нем электрический заряд обусловлены несколькими механизмами поляризации, которые различны у разных диэлектриков и могут иметь место одновременно у одного и того же материала.

Эквивалентную схему диэлектрика, в котором существуют различные механизмы поляризации, можно представить в виде ряда подключенных параллельно к источнику напряжения  конденсаторов, как показано на рис. 1.2:

Рис. 3 Эквивалентная схема диэлектрика

Емкость  и заряд  соответствуют собственному полю электродов, если в пространстве между ними нет диэлектрика (вакуум). Все остальные значения  и  соответствуют различным механизмам поляризации: электронной, ионной, дипольно-релаксационной, ионно-релаксационной, электронно-релаксационной, миграционной, резонансной и спонтанной;  означает сопротивления, эквивалентные потерям энергии при этих механизмах поляризации.

Емкости конденсаторов эквивалентной схемы рис. 1.2 шунтированы сопротивлением изоляции , представляющим собой сопротивление диэлектрика току сквозной электропроводности [2].

Литература

1. Трофимова Т.И. Курс физики.- М.: Высшая школа, 1990.

2. Савельев И.В. Курс общей физики.- М.: Наука, 1978.- Т.2.

Размещено на Allbest.ru

...

Подобные документы

  • Рассмотрение понятия и видов диэлектриков, особенностей их поляризации. Описание потока вектора электрического смещения. Изучение теоремы Остроградского-Гаусса. Расчет электрических полей в различных аппаратах, кабелях. Изменение вектора и его проекций.

    презентация [2,3 M], добавлен 13.02.2016

  • Вращение плоскости поляризации света и естественная циркулярная анизотропия. Дополнительный поворот плоскости поляризации света. Явление намагничивания диэлектриков, помещаемых во вращающееся электрическое поле. Намагничивание изотропной среды.

    курсовая работа [52,0 K], добавлен 13.03.2014

  • Электрические, тепловые, влажностные и химические свойства диэлектриков. Поляризация мгновенная и протекающая замедленно. Дипольно-релаксационная поляризации. Общее понятие о доменах, сопротивление изоляции. Классификация диэлектриков по виду поляризации.

    презентация [964,7 K], добавлен 28.07.2013

  • Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.

    контрольная работа [5,6 M], добавлен 14.12.2009

  • Двойное лучепреломление под влиянием внешних воздействий: механических деформациях тел, электрического поля (эффект Керра), магнитного поля (явление Коттон-Мутона). Явление вращения плоскости поляризации в теории Френеля, сущность эффекта Фарадея.

    реферат [39,9 K], добавлен 17.04.2013

  • Понятие диэлектрических потерь. Нагревание диэлектриков в электрическом поле, рассеивание части энергии поля в виде тепла как его следствие. Ухудшение свойств и ускорение процессов старения диэлектриков. Количественная оценка диэлектрических потерь.

    презентация [794,0 K], добавлен 28.07.2013

  • Явление перемещения жидкости в пористых телах под действием электрического поля. Электрокинетические явления в дисперсных системах. Уравнение Гельмгольца–Смолуховского для электроосмоса. Движение частиц дисперсной фазы в постоянном электрическом поле.

    реферат [206,2 K], добавлен 10.05.2009

  • Сущность электростатического поля, определение его напряженности и графическое представление. Расчет объемной и линейной плотности электрического заряда. Формулировка теоремы Гаусса. Особенности поляризации диэлектриков. Уравнения Пуассона и Лапласа.

    презентация [890,4 K], добавлен 13.08.2013

  • Конструкция и область применения различных типов кабеля. Тепловой пробой твердых диэлектриков. Зависимость пробивного напряжения в твердом диэлектрике от частоты. Классификация магнитных материалов и требования к ним. Основные виды поляризации.

    реферат [1,3 M], добавлен 04.12.2014

  • Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.

    контрольная работа [27,3 K], добавлен 20.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.