Параметры полупроводников

Энергетические диаграммы примесных полупроводников. Концентрация носителей заряда и удельная проводимость, факторы, влияющие на нее. Инвертирующий усилитель: схема, принцип работы, коэффициент усиления, условия и факторы эффективного применения.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 11.03.2015
Размер файла 116,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Энергетические диаграммы примесных полупроводников. Концентрация носителей заряда и удельная проводимость

Энергетические диаграммы примесных полупроводников.

Донорные и акцепторные полупроводники

Уровни доноров ED и акцепторов EA расположены в запрещенной зоне:

уровни ED - вблизи дна зоны проводимости, уровни EА - вблизи потолка валентной зоны.

Отрыв лишнего электрона от донора или добавление недостающего электрона к акцептору требует затраты энергии ионизации. (Eион)

Энергетические уровни примесных атомов, расположенные вблизи разрешенных зон, называются мелкими. Ряд примесей дает глубокие уровни, находящиеся вблизи середины запрещенной зоны.

Энергетические уровни доноров и акцепторов могут быть как мелкими, так и глубокими. Более того, одна примесь может создавать несколько уровней в запрещенной зоне. Ловушками захвата являются дефекты решетки, нейтральные в условиях термодинамического равновесия и способные захватывать носители заряда одного знака и освобождать их. Энергетические уровни таких ловушек лежат вблизи разрешенных зон и не принимают участия в процессах рекомбинации, иногда их называют уровнями прилипания.

Ловушки, участвующие в процессах рекомбинации, называются рекомбинационными, они характеризуются глубокими уровнями.

Особую роль в любом реальном полупроводнике играет его поверхность. Структурные нарушения кристаллической решетки и наличие адсорбированных атомов создают вблизи поверхности дополнительные энергетические уровни, называемые поверхностными. Эти уровни могут занимать различное положение на энергетической диаграмме, чаще всего они находятся в пределах запрещенной зоны.

Концентрация носителей заряда и удельная проводимость.

Основные параметры полупроводниковых материалов

К важнейшим параметрам, которые характеризуют основные электрофизические свойства полупроводниковых веществ, относятся:

- удельное электрическое сопротивление (проводимость) материала;

- температурный коэффициент удельного сопротивления (проводимости) вещества;

- ширина запрещенной зоны и энергии активации примесей;

- концентрация, время жизни носителей заряда;

- коэффициенты диффузии электронов и дырок, диффузионная длина;

- подвижность основных носителей заряда в полупроводнике.

В ряде случаев специального применения к этим параметрам добавляются и другие, например, коэффициент термо-электродвижущей силы (при использовании термоэлектрических эффектов в полупроводниках), коэффициент Холла и т.д.

а) Концентрация и время жизни, носителей заряда в полупроводниках

Как уже отмечалась, между процессами генерации и рекомбинации носителей заряда при любой температуре устанавливается динамическое равновесие, которому соответствуют равновесные концентрации носителей заряда, обозначаемые обычно через n 0, p 0. В случае собственного полупроводника концентрация электронов в зоне проводимости равна концентрации дырок в валентной зоне: n 0,= p 0 = ni В состоянии термодинамического равновесия в невырожденном полупроводнике произведение равновесных концентраций основных и неосновных носителей заряда при заданной температуре является величиной постоянной, равной квадрату концентрации электронов (или дырок) в собственном полупроводнике при этой же температуре.

nn,* np = ni 2 = const

Концентрация носителей в полупроводнике, например n-типа, зависит от температуры и концентрации примесей (рис. 2). В области низких температур (область I) рост концентрации носителей заряда связан с интенсификацией процессов ионизации примеси. Наклон прямой в этой области определяется энергией активации примесей. С увеличением температуры число носителей, поставляемых примесями, возрастает до тех пор, пока не истощатся электронные ресурсы примесных атомов и не наступит область IIобласть истощения примесей.

Рис. 2

В этой области примеси полностью ионизированы, а электроны еще не переходят через запрещенную зону и концентрация электронов в зоне проводимости остается практически постоянной величиной. Дальнейший рост температуры приводит к быстрому росту концентрации носителей вследствие перехода электронов через запрещенную зону - область III. Наклон этого участка кривой характеризует ширину запрещенной зоны полупроводника, а полупроводник можно считать собственным, так как концентрация носителей заряда определяется ионизацией собственных атомов полупроводника. Температура, при которой это происходит, т.е. начинается область III, будет тем меньше, чем меньше ширина запрещенной зоны полупроводника, и эта температура является максимальной рабочей температурой полупроводникового прибора, изготовленного из полупроводника с концентрацией примеси Ng. Угол наклона участка кривой в области I с увеличением концентрации примесей уменьшается, так как с увеличением концентрации примесей из-за взаимодействия примесных атомов происходит расщепление примесных энергетических уровней и уменьшение энергии ионизации примесей (? Eg >? Eg '>? Eg «). При достаточно большой концентрации примесей Ng энергия ионизации примесей стремится к нулю, так как образовавшаяся примесная зона перекрывается зоной проводимости и полупроводник становится вырожденным.

Температура, соответствующая переходу от примесной электропроводности к собственной, увеличивается с увеличением концентрации примесей (например, T 3 '> T 3). Это значит, что максимальная рабочая температура полупроводникового прибора, созданного на основе полупроводника с большей концентрацией примесей, будет также немного выше максимальной рабочей температуры такого же прибора из того же материала, но с меньшей концентрацией примесей.

Во многих случаях оказалось, что энергия, необходимая для перевода электрона с донорного уровня в зону проводимости, настолько мала, что при комнатных температурах все электроны с примесных уровней находятся уже в зоне проводимости. Если к тому же концентрация доноров намного превышает концентрацию собственных электронов, то количество носителей почти перестает зависеть от температуры и изменение электропроводности с температурой в этих условиях определяется, в основном, лишь температурной зависимостью подвижности.

Однако концентрацию носителей заряда в данном материале можно по желанию варьировать и при фиксированном содержании примесей. Одним из замечательных свойств полупроводников является наличие эффекта фотопроводимости. Это явление легко понять с помощью зонной модели. При поглощении кванта света, энергия которого достаточна для перевода электрона из состояния у потолка валентной зоны в зону проводимости, в обеих зонах появляются добавочные носители заряда и проводимость кристалла растет. Может иметь место также фотопроводимость, связанная с фотоионизацией примесных атомов, однако этот эффект менее значителен сравнительно с упомянутым выше в связи с тем, что концентрация примесей обычно во много раз меньше концентрации валентных электронов и, кроме того, примесные уровни заполнены лишь при низких температурах. Вместе с тем оказалось, что концентрация электронов и дырок в полупроводниках можно изменять и иными способами. Во-первых, путем инжекции носителей заряда в кристалл, например с помощью металлических электродов, и, во-вторых, при определенных условиях путем экстракции (удаления) носителей из кристалла электрическим полем.

Электропроводность полупроводников

Электропроводность полупроводников обусловлена дрейфом носителей обоих знаков: электронов и дырок.

Удельная электрическая проводимость собственного полупроводника определяется по формуле:

гсобствn p = q n мn + q p мp = qni *(мn + мp) (1)

где г n - электропроводность, обусловленная передвижением электронов в зоне проводимости; г p - электропроводность, обусловленная передвижением дырок в валентной зоне;мn, мp - их подвижность.

Удельная проводимость примесного полупроводника n-типа равна сумме собственной и примесной электропроводности:

гn = гпр + гсобств; гпр = n Д q мn (2)

Через n Д обозначена концентрация свободных электронов, образовавшихся за счет ионизации донорной примеси. В дырочном полупроводнике

г p = гпр + гсобств; гпр = pa q мp (3)

Через pa обозначена концентрация дырок, образовавшихся за счет ионизации акцепторной примеси.

Анализируя результаты хода температурной зависимости концентрации и подвижности носителей заряда в полупроводниках, можно представить и общие закономерности в изменении удельной проводимости полупроводниковых материалов от температуры.

В предыдущих параграфах было отмечено, что концентрации носителей заряда в широком диапазоне температур изменяются по экспотенциальному закону, в то время как подвижность - лишь по степенному. Следовательно, температурная зависимость электропроводности как в собственных, так и примесных полупроводниках определяется, в основном, температурной зависимостью концентрации свободных носителей заряда и может быть представлена в виде:

г i0 e - ДE /2 kT (4)

для собственных полупроводников,

г n0 e - ДEa /2 kT (5)

для примесных полупроводников (в данном случае для полупроводника n - типа). В выражениях (4), (5) - г0 - постоянная, определяемая природой материала.

В интервале средних значений температур (участок 2, рис. 3), соответствующих полному истощению примеси, концентрация основных носителей практически не меняется при увеличении температуры. Поэтому температурная зависимость г на этом участке определяется температурной зависимостью подвижности. Как видно из рисунка 3, температурный коэффициент удельного сопротивления полупроводниковых материалов в области I и II является отрицательной величиной, т.е. удельное электрическое сопротивление полупроводников уменьшается с ростом температуры в отличие от проводниковых материалов.

Зависимость удельной проводимости от напряженности электрического поля показана на рис. 4. В области I выполняется закон Ома, и электропроводность полупроводника не изменяется с ростом напряженности электрического поля. При превышении некоторого критического значения Екр (примерно 104-106 В/м) наблюдается отклонение от закона Ома на участке II вследствие термоэлектронной ионизации, в области III - вследствие ударной и электростатической ионизации, IV - вследствие пробоя.

Явление термоэлектронной ионизации заключается в том, то электрическое поле большой напряженности изменяет энергетическое состояние электронов так, что энергия, необходимая для перевода электронов в зону проводимости, уменьшается, а следовательно, возрастает вероятность тепловой генерации пар носителей заряда. В этом случае изменение концентрации носителей с ростом поля происходит по экспоненциальному закону.

Процесс ударной ионизации сводится к тому, что в сильных электрических полях носители заряда на длине свободного пробега могут приобрести энергию, достаточную для ионизации вещества. Это означает, что при столкновении носителей с атомами происходит генерация электронно-дырочных пар. В электрических полях большой напряженности (более 108 В/м) может наблюдаться туннельный эффект, при котором благодаря волновым свойствам электронов возможен прямой переход их из валентной зоны в зону проводимости без увеличения энергии. Рассмотренные процессы термоэлектронной, ударной и электростатической ионизации, увеличивая концентрацию носителей заряда, не носят лавинообразного характера, так как уравновешиваются процессами рекомбинации. Однако в электрических полях напряженностью более 108 В/м наблюдается лавинообразное нарастание числа носителей, приводящее к электрическому пробою.

Воздействие сильного электрического поля приводит не только к изменению концентрации свободных носителей заряда, но и к значительному изменению их подвижности. С изменением подвижности носителей заряда связаны явление разогрева электронно-дырочного газа и эффект Ганна.

Первое заключается в том, что свободные носители за счет увеличения скорости во внешнем электрическом поле обладают энергией, большей, чем равновесная тепловая энергия решетки. Такие носители называют «горячими». Под эффектом Ганна понимают явление, наблюдаемое в постоянном электрическом поле большой напряженности в некоторых полупроводниковых материалах и сводящееся к возникновению периодических колебаний тока, протекающего через образец.

2. Инвертирующий усилитель на (ОУ). Схема, принцип работы, коэффициент усиления

Принципиальная схема, показанная на рисунке является наиболее распространенной схемой включения ОУ. (справа - схема в американском стандарте обозначений)

полупроводник инвертирующий усилитель

и

Резистор R2 в цепи обратной связи служит для передачи части выходного сигнала обратно на вход. При подаче входного напряжения (U1) через резистор R1 протекает входной ток i1. Напомним, что входное напряжение ОУ (DU) имеет дифференциальный характер, т.е. фактически это разность напряжений на неинвертирующем и инвертирующем входах усилителя. Неинвертирующий вход чаще всего заземляют. Чтобы получить передаточную характеристику, учтем тот факт, что потенциал U1практически равен нулевому потенциалу.

Входная цепь: i1 =U1/R1, выходная цепь: i2 = - U2 / R2

Т.к. ОУ - идеальный (Rвх - очень большое): i1 = - i2, отсюда

U1/R1=U2/R2

Коэффициент усиления k ус = - U2/U1= - R2/R1

Тогда выходное напряжение будет равно U2 = - (R2 / R1) U1

Отношение номинальных значений резисторов R2/ R1 называется коэффициентом передачи усилителя, охваченного обратной связью, а знак минус означает, что выходной сигнал инвертирован. Следует обратить внимание, что коэффициент усилителя, охваченного обратной связью, можно установить посредством выбора сопротивлений двух резисторов, R1 и R2.

Размещено на Allbest.ru

...

Подобные документы

  • Удельное сопротивление полупроводников. Строение кристаллической решетки кремния. Дефекты точечного типа и дислокации. Носители заряда и их движение в электрическом поле. Энергетические уровни и зоны атома. Распределение носителей в зонах проводимости.

    презентация [150,3 K], добавлен 27.11.2015

  • Поглощение света свободными носителями заряда. Электрография и фотопроводимость полупроводников. Влияние сильных электрических попей на электропроводность полупроводников. Подвижность носителей в ионных кристаллах и полупроводниках с атомной решеткой.

    реферат [1,6 M], добавлен 28.03.2012

  • Основы и содержание зонной теории твердого тела. Энергетические зоны полупроводников, их типы: собственные и примесные. Генерация и рекомбинация носителей заряда. Исследование температурной зависимости электрического сопротивления полупроводников.

    курсовая работа [1,8 M], добавлен 09.06.2015

  • Сведения о полупроводниках их классификация. Собственная и примесная проводимость полупроводников. Характеристика группы органических полупроводников. Электропроводность низкомолекулярных органических полупроводников. Электрические свойства полимерных.

    курсовая работа [779,2 K], добавлен 24.07.2010

  • Полупроводники - вещества, обладающие электронной проводимостью, занимающие промежуточное положение между металлами и изоляторами. История открытия, распространенность полупроводников в природе и человеческой практике, их применение в наноэлектронике.

    реферат [51,6 K], добавлен 10.01.2012

  • Основы физики полупроводников, их энергетические зоны, уровни. Распределение носителей в зонах, их рекомбинация. Движение носителей и контактные явления в данных устройствах. Особенности контактов между полупроводниками с одинаковыми типами проводимости.

    контрольная работа [780,1 K], добавлен 19.08.2015

  • Понятие и свойства полупроводника. Наклон энергетических зон в электрическом поле. Отступление от закона Ома. Влияние напряженности поля на подвижность носителей заряда. Влияние напряжённости поля на концентрацию заряда. Ударная ионизация. Эффект Ганна.

    реферат [199,1 K], добавлен 14.04.2011

  • Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.

    книга [3,8 M], добавлен 21.02.2009

  • Понятие о полупроводниках, их свойства, область применения. Активные диэлектрики. Рождение полупроводникового диода. Открытие сегнетоэлектриков и пьезоэлектриков. Исследования проводимости различных материалов. Физика полупроводников и нанотехнологии.

    курсовая работа [94,4 K], добавлен 14.11.2010

  • Исследование формирования катодолюминесцентного излучения, генерации, движения и рекомбинации неравновесных носителей заряда. Характеристика кинетики процессов возгорания и гашения люминесценции, концентрации легирующих примесей в ряде полупроводников.

    курсовая работа [1,6 M], добавлен 10.06.2011

  • Строение полупроводников - материалов, которые по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Электронная проводимость, обусловливаемая наличием у полупроводника свободных электронов. Донорные примеси.

    дипломная работа [676,6 K], добавлен 24.09.2015

  • Классификация веществ по электропроводности. Расчёт эффективной массы плотности состояний электронов в зоне проводимости и дырок в валентной зоне, концентраций свободных носителей заряда. Определение зависимости энергии уровня Ферми от температуры.

    курсовая работа [913,5 K], добавлен 14.02.2013

  • Как устроен пьезоэлектрический полупроводник. Поглощение и усиление звука. Нелинейные эффекты при усилении звука. Усиление акустических шумов и связанные с этим явления. Звукоэлектрический эффект. Пьезоэлектрический эффект.

    реферат [29,3 K], добавлен 11.01.2004

  • Строение, электрические свойства полупроводников и их отличия от металлов. Собственная и примесная проводимость. Полупроводниковые приборы: диод, фотодиод, транзистор, термистор. Коэффициент тепловой связи. Статические вольт-амперные характеристики.

    курсовая работа [2,1 M], добавлен 15.02.2014

  • Определение длины проволоки для намотки резистора. Концентрация электронов и дырок в собственном и примесном полупроводнике. Диффузионная длина движения неравновесных носителей заряда в полупроводниковом материале. Проводимость конденсаторной керамики.

    контрольная работа [89,8 K], добавлен 12.11.2013

  • Классификация и типы полупроводников, их характеристики и свойства. Контактные явления на границе раздела полупроводников различных типов. Изучение работы соответствующих устройств, резонанс токов и напряжений. Изучение вольтмперной характеристики диода.

    дипломная работа [608,0 K], добавлен 03.07.2015

  • Общие сведения о полупроводниках. Методы очистки и переплавки полупроводниковых материалов. Металлургия германия и кремния. Применение полупроводников. Тепловые сопротивления. Фотосопротивления. Термоэлементы. Холодильники и нагреватели.

    реферат [26,8 K], добавлен 25.06.2004

  • Физика полупроводников. Примесная проводимость. Устройство и принцип действия полупроводниковых приборов. Способы экспериментального определения основных характеристик полупроводниковых приборов. Выпрямление тока. Стабилизация тока.

    реферат [703,1 K], добавлен 09.03.2007

  • Электрические методы исследования электрофизических и фотоэлектрических свойств полупроводников. Метод нестационарной спектроскопии глубоких уровней, фотопроводимость. Шумовые свойства фоторезисторов при совместном действии напряжения и фоновой засветки.

    дипломная работа [1,1 M], добавлен 02.10.2015

  • Описание полупроводников, характеристика их основных свойств. Физические основы электронной проводимости. Строение кристалла кремния. Направленное движение электронов и дырок под действием электрического поля, p-n переход. Устройство транзисторов.

    презентация [2,4 M], добавлен 20.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.