Биомасса - основные данные
Химический состав биомассы и её использование в качестве источника энергии в мире. Энергетическая емкость и экологические преимущества. Термохимическое и биологическое преобразование для получения топлива. Производство пара и получение электроэнергии.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 19.03.2015 |
Размер файла | 16,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
РЕФЕРАТ
БИОМАССА - ОСНОВНЫЕ ДАННЫЕ
Биомамсса (биоматерия) -- совокупная масса растительных и животных организмов, присутствующих в биогеоценозе, определённого размера или уровня. Биомасса, как производная энергии Солнца в химической форме, является одним из наиболее популярных и универсальных ресурсов на Земле. Она позволяет получать не только пищу, но и энергию, строительные материалы, бумагу, ткани, медицинские препараты и химические вещества. Биомасса используется для энергетических целей с момента открытия человеком огня. Сегодня топливо из биомассы может использоваться для различных целей - от обогрева жилищ до производства электроэнергии и топлив для автомобилей. биомасса энергия преобразование топливо
Химический состав биомассы может различаться в зависимости от ее вида. Обычно растения состоят из 25% лигнина и 75% углеводов или сахаридов. Углеводородная фракция состоит из множества молекул сахаридов, соединенных между собой в длинные полимерные цепи. К наиболее важным категориям углеводородов можно отнести целлюлозу. Природа использует длинные полимерные молекулы целлюлозы для образования тканей, обеспечивающих прочность растений. Лигнин представляет собой "клей", который связывает молекулы целлюлозы между собой.
Каким образом образуется биомасса?
Двуокись углерода из атмосферы и вода из грунта участвуют в процессе фотосинтеза с получением углеводов (сахаридов), которые и образуют "строительные блоки" биомассы. Таким образом, солнечная энергия, используемая при фотосинтезе, сохраняется в химической форме в биомассовой структуре. Если мы сжигаем биомассу эффективным образом (извлекаем химическую энергию), то кислород из атмосферы и углерод, содержащийся в растениях, вступают в реакцию с образованием двуокиси углерода и воды. Процесс является циклическим, потому что двуокись углерода может вновь участвовать в производстве новой биомассы.
Использование биомассы в качестве источника энергии в мире. Потребление биомассы растет быстрыми темпами и в развитых странах. В некоторых развитых странах биомасса используется весьма интенсивно. Например, Швеция и Австрия обеспечивают 15% потребности в первичных энергоносителях за счет биомассы. Швеция планирует увеличить потребление биомассы в будущем, сопроводив этот рост закрытием атомных и тепловых электростанций, использующих ископаемые виды топлива. В США, где 4% энергии получают из биомассы (почти столько же, как от атомных электростанций), сегодня работают установки, сжигающие биомассу для получения электроэнергии общей установленной мощностью 9000 МВт. Биомасса может с легкостью обеспечить более 20% энергетических потребностей страны. Другими словами, имеющиеся земельные ресурсы и инфраструктура сельского хозяйства позволяют заменить все работающие атомные станции без изменения цен на продовольственные товары. Более того, использование биомассы для производства этанола могло бы уменьшить импорт нефти на 50%.
Биомасса - основные данные
Общая масса живой материи (включая влажность) - 2000 миллиардов тонн
Общая масса наземных растений - 1800 миллиардов тонн
Общая масса леса -1600 миллиардов тонн
Количество наземной биомассы на одного жителя - 400 тонн
Количество энергии, накопленной наземной биомассой - 25 000 ЭДж (1 ЭДж=10+18 Дж)
Годовой прирост биомассы - 400 000 миллионов тонн
Энергетическая емкость
При рассмотрении энергетического потенциала к биомассе относят все формы материалов растительного происхождения, которые могут быть использованы для получения энергии: древесину, травяные и зерновые культуры, отходы лесного хозяйства и животноводства и т.д. Поскольку биомасса представляет собой твердое топливо, ее можно сравнивать с углем. Теплотворная способность сухой биомассы составляет около 14 МДж/кг. Аналогичное значение для каменного угля и лигнита составляет 30 МДж/кг и 10-20 МДж/кг (см. таблицу далее). В момент образования (сбора урожая) биомасса содержит большое количество воды, от 8 до 20% в пшеничной соломе, 30 - 60% в древесине, до 75 - 90% в навозе сельскохозяйственных животных и 95% в водном гиацинте. В противоположность этому, влажность каменного угля находится в диапазоне от 2 до 12%. Поэтому плотность энергии в биомассе на этапе возникновения ниже, чем у каменного угля. С другой стороны, биомасса имеет преимущества с точки зрения химического состава. Зольность биомассы значительно ниже, чем угля. Кроме того, в золе биомассы обычно не содержатся тяжелые металлы и другие загрязнители, поэтому она может вноситься в почву в качестве удобрения.
Обычно биомассу ошибочно причисляют к низкосортным видам топлива, поэтому во многих странах ее использование даже не отражается в статистических отчетах. Однако она обеспечивает большую гибкость снабжения энергоносителями ввиду большого количества видов топлива, которые могут быть из нее получены. Энергия биомассы может использоваться для производства тепловой и электрической энергии посредством сжигания в современных устройствах - от миниатюрных домашних котлов до многомегаваттных электростанций, использующих газовые турбины. Системы, использующие биомассу в энергетических целях, обеспечивают экономическое развитие без увеличения парникового эффекта, поскольку биомасса является нейтральной по отношению к выбросам СО2 в атмосферу в случае, если ее производство и использование осуществляется разумным образом. Биомасса обладает другими щадящими экологическими свойствами (малой эмиссией серы и оксидов азота) и может способствовать реабилитации деградированных земель. Растет понимание того, что использование биомассы в больших коммерческих системах основано на устойчивых, аккумулированных ресурсах и отходах и может улучшить управление природными ресурсами в целом.
Преимущества биомассы как источника энергии
Экономическое развитие сельскохозяйственных районов как в развитых, так и развивающихся странах является одним из преимуществ использования биомассы. Увеличение доходов фермеров и диверсификация рынка, уменьшение аграрного перепроизводства и дополнительные денежные поступления, увеличение конкурентоспособности на международном рынке, общее оживление экономики в сельских районах, уменьшение негативного воздействия на окружающую среду - все это является важными факторами использования биомассы в качестве источника энергии.
Улучшение использования аграрных ресурсов часто предлагается в ЕС. Развитие альтернативного рынка сельскохозяйственных продуктов приводит к более эффективному использованию посевных площадей, которые недостаточно используются во многих странах ЕС. В 1991 году 128 миллионов га в ЕС использовалось для выращивания зерновых. Примерно 0.8 млн га были выведены из использования в рамках программы сокращения производства. Значительно большее количество земли планируется вывести из производства в будущем. Ясно, что переориентация части этих земель для непродуктовой утилизации (например, биомасса для производства энергии) помогла бы избежать нерационального использования аграрных ресурсов. Европейское сельское хозяйство основано на производстве ограниченного количества культур, в основном использующихся в качестве пищи для людей и животных, и многие из этих культур производятся с избытком. Падение цен привело к снижению и нестабильности доходов европейских фермеров. Выращивание энергетических культур может уменьшить перепроизводство. Такие культуры могут быть конкурентоспособны по отношению к выращиванию избыточных пищевых сортов растений.
Экологические преимущества
Использование энергии биомассы обладает многими уникальными качествами, которые обеспечивают его экологические преимущества. Оно может способствовать смягчению проблемы изменения климата, уменьшить количество кислотных дождей, эрозию почвы, загрязнение водоемов и нагрузку на полигоны ТБО, обеспечить среду для существования диких видов животных и помочь поддерживать здоровые условия существования лесов с помощью лучшего менеджмента.
Методы получения энергии из биомассы
Практически все виды "сырой" биомассы достаточно быстро разлагаются, поэтому немногие пригодны для долговременного хранения. Из-за относительно низкой энергетической плотности транспортировка биомассы на большие расстояния нецелесообразна. Поэтому в последние годы значительные усилия были предприняты для поисков оптимальных методов ее использования.
Методы получения энергии из биомассы основаны на следующих процессах:
Прямое сжигание биомассы.
Термохимическое преобразование для получения обогащенного топлива. Процессы этой категории включают пиролиз, газификацию и сжижение.
Биологическое преобразование. Такие естественные процессы, как анаэробное сбраживание и ферментация приводят к образованию полезного газообразного или жидкого топлива.
В некоторых из перечисленных процессов побочным продуктом является тепло. Оно обычно используется на месте образования или на небольшом удалении для теплоснабжения, в химических процессах или для производства пара и последующего получения электроэнергии. Основным продуктом процессов является твердое, жидкое или газообразное топливо: древесный уголь, заменители или добавки к бензину, газ для продажи или производства электроэнергии с использованием паровых или газовых турбин.
Размещено на Allbest.ru
...Подобные документы
Понятие альтернативной энергии: биогаз, биодизель и другие углеводороды, полученные в результате переработки биомассы. Сбраживание биомассы и получение в результате жизнедеятельности бактерий биотоплива и побочных продуктов (удобрений, витаминов).
реферат [13,8 K], добавлен 14.05.2009Использование энергии биомассы для получения альтернативных видов моторных топлив для двигателей внутреннего сгорания, их преимущество; технология производства биогазов, биоэтанола и биодизеля из сельскохозяйственных и бытовых отходов; зарубежный опыт.
контрольная работа [479,8 K], добавлен 16.01.2011Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.
курсовая работа [3,9 M], добавлен 30.07.2012Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.
презентация [1,2 M], добавлен 15.05.2016Биогаз, сырье для получения биотоплива. Достоинства получения топлива из органических отходов. Комплексное использование биогазовой установки. Способ сбраживания биомассы в промышленных реакторах. Схема бокса для ферментации. Торговая марка Zorg Biogas.
презентация [1,2 M], добавлен 15.12.2015Энергетическая проблема в современном мире. Понятие биоэнергетики, достижения в данной области. Биологическое топливо как продукт биоэнергетики, преимущества его использования. Механизмы преобразования энергии в процессе жизнедеятельности организмов.
реферат [41,3 K], добавлен 19.10.2012История использования и современные методы генерации электроэнергии из энергии ветра. Перспективы развития ветроэнергетики в мире, экономические и экологические аспекты, себестоимость электроэнергии. Проект "Джунгарские ворота" в Казахстане, его цель.
реферат [835,1 K], добавлен 01.03.2011Преимущества использования вечных, возобновляемых источников энергии – текущей воды и ветра, океанских приливов, тепла земных недр, Солнца. Получение электроэнергии из мусора. Будущее водородной энергетики, минусы использования ее в качестве топлива.
реферат [28,3 K], добавлен 10.11.2014Мировые лидеры в производстве ядерной электроэнергии. Классификация атомных электростанций. Принцип их действия. Виды и химический состав ядерного топлива и суть получения энергии из него. Механизм протекания цепной реакции. Нахождение урана в природе.
презентация [4,3 M], добавлен 07.02.2016Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.
курсовая работа [317,6 K], добавлен 19.03.2013Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.
курсовая работа [3,9 M], добавлен 30.07.2012Генерация электроэнергии из энергии ветра, история ее использования. Ветровые электростанции и их основные типы. Промышленное и частное использование ветровых электростанции, их преимущества и недостатки. Использование ветровых генераторов в Украине.
реферат [199,3 K], добавлен 24.01.2015История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.
реферат [27,1 K], добавлен 02.08.2012Использование солнечного излучения для получения энергии. Преобразование ее в теплоту и холод, движущую силу и электричество. Применение технологий и материалов для обогрева, охлаждения, освещения здания и промышленных предприятий за счет энергии Солнца.
презентация [457,4 K], добавлен 25.02.2015Солнечная энергетика — использование солнечного излучения для получения энергии; общедоступность и неисчерпаемость источника, полная безопасность для окружающей среды. Применение нетрадиционной энергии: световые колодцы; кухня, транспорт, электростанции.
презентация [4,5 M], добавлен 05.12.2013Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.
реферат [27,7 K], добавлен 16.09.2010Физические основы преобразования солнечного излучения в тепло. Вольт-амперная характеристика солнечного элемента. Типы солнцеприемников систем отопления. Энергетический баланс теплового аккумулятора. Производство биомассы для энергетических целей.
диссертация [2,4 M], добавлен 19.11.2012Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.
презентация [316,3 K], добавлен 22.12.2011Исследование технологических процессов производства тепловой и электрической энергии с использованием древесного топлива. Характеристика технологии высокоэффективной энергетической утилизации твердых отходов методом сверхкритических флюидных технологий.
статья [20,3 K], добавлен 09.11.2014Использование солнечной энергии в Республике Беларусь, тепловые гелиоустановки. Биомасса как аккумулятор солнечной энергии, получение энергии из когенерационных установок. Описание работы гидроэлектростанций. Принцип действия ветроэлектрических установок.
курсовая работа [2,2 M], добавлен 11.03.2010