Электрические машины постоянного тока

Устройство и принцип действия двигателей постоянного тока. Технические данные двигателей. Сущность и специфика регулировочных, скоростных, механических и моментных характеристик работы двигателя. Описание изменения коэффициента полезного действия.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 28.03.2015
Размер файла 163,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Калининградский государственный университет

Кафедра «Энергетика и технология металлов»

КОНТРОЛЬНАЯ РАБОТА

дисциплина «Введение в специальность»

Быльцев Д.А.

Калинград 2009

Содержание

Введение

1. Устройство и принцип действия двигателей постоянного тока

2. Технические данные двигателей

3. Характеристики двигателя постоянного тока

3.1 Рабочие характеристики

3.2 Механическая характеристика

Список используемой литературы

Введение

Электрические машины постоянного тока широко применяются в различных отраслях промышленности.

Значительное распространение электродвигателей постоянного тока объясняется их ценными качествами: высокими пусковым, тормозным и перегрузочным моментами, сравнительно высоким быстродействием, что важно при реверсировании и торможении, возможностью широкого и плавного регулирования частоты вращения.

Электродвигатели постоянного тока используют для регулируемых приводов, например, для приводов различных станков и механизмов. Мощности этих электродвигателей достигают сотен киловатт. В связи с автоматизацией управления производственными процессами и механизмами расширяется область применения маломощных двигателей постоянного тока общего применения мощностью от единиц до сотен ватт.

В зависимости от схемы питания, обмотки возбуждения машины постоянного тока разделяются на несколько типов (с независимым, параллельным, последовательным и смешанным возбуждением).

Ежегодный выпуск машин постоянного тока в РФ значительно меньше выпуска машин переменного тока, что обусловлено дороговизной двигателей постоянного тока.

Вначале создавались машины постоянного тока. В дальнейшем они в значительной степени были вытеснены машинами переменного тока. Благодаря возможности плавного и экономичного регулирования скорости вращения двигатели постоянного тока сохраняют свое доминирующее значение на транспорте, для привода металлургических станков, в крановых и подъемно-транспортных механизмах. В системах автоматики машины постоянного тока широко используются в качестве исполнительных двигателей, двигателей для привода лентопротяжных самозаписывающих механизмов, в качестве тахогенераторов и электромашинных усилителей.

1. Устройство и принцип действия двигателей постоянного тока

Устройство машин постоянного тока (генераторов и двигателей) в упрощенном виде показано на рис.1. К стальному корпусу 1 статора машины прикреплены главные 2 и дополнительные 4 полюса. На главных полюсах расположена обмотка возбуждения 3, на дополнительных - обмотка дополнительных полюсов 5. Обмотка возбуждения создает магнитный поток Ф машины.

Рис.1. Устройство двигателей постоянного тока

На валу 10 двигателя закреплен цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7. Секции обмотки якоря присоединены к коллектору 9. К нему же прижимаются пружинами неподвижные щетки 8. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Для уменьшения потерь мощности магнитопровод якоря выполнен из отдельных стальных листов. Все обмотки изготовлены из изолированного провода. Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бьльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

Если двигатель включен в сеть постоянного напряжения, то при взаимодействии магнитного поля, созданного обмоткой возбуждения, и тока в проводниках якоря возникает вращающий момент, действующий на якорь:

(1)

(2)

где КМ - коэффициент, зависящий от конструктивных параметров машины; Ф - магнитный поток одного полюса; IЯ - ток якоря.

Если момент двигателя при n = 0 превышает тормозящий момент, которым нагружен двигатель, то якорь начнет вращаться. При увеличении частоты вращения n возрастает индуцируемая в якоре ЭДС. Это приводит к уменьшению тока якоря:

(3)

где rЯ - сопротивление якоря.

Следствием уменьшения тока IЯ является уменьшение момента двигателя. При равенстве моментов двигателя и нагрузки частота вращения перестает изменяться.

Направление момента двигателя и, следовательно, направление вращения якоря зависят от направления магнитного потока и тока в проводниках обмотки якоря. Чтобы изменить направление вращения двигателя, следует изменить направление тока якоря либо тока возбуждения.

2.Технические данные двигателей

В паспорте двигателя и справочной литературе на двигатели постоянного тока указаны следующие технические данные: номинальные напряжение Uи, мощность Pн, частота вращения nн, ток Iн, КПД.

Под номинальным Uн понимают напряжение, на которое рассчитаны обмотка якоря и коллектор, а также в большинстве случаев и параллельная обмотка возбуждения. С учетом номинального напряжения выбирают электроизоляционные материалы двигателя.

Номинальный ток Iн - максимально допустимый ток (потребляемый из сети), при котором двигатель нагревается до наибольшей допустимой температуры, работая в том режиме (длительном, повторно-кратковременном, кратковременном), на который рассчитан:

где Iян -- ток якоря при номинальной нагрузке; Iвн - ток обмотки возбуждения при номинальном напряжении.

Следует отметить, что ток возбуждения Iвн двигателя параллельного возбуждения сравнительно мал, поэтому при номинальной нагрузке обычно принимают

Номинальная мощность Рн - это мощность, развиваемая двигателем на валу при работе с номинальной нагрузкой (моментом) и при номинальной частоте вращения nн.

Частота вращения nн, и КПД соответствуют работе двигателя с током Iн, напряжением Uн без дополнительных резисторов в цепях двигателя.

В общем случае мощность на валу P2, момент М и частота вращения n связаны соотношением:

Потребляемая двигателем из сети мощность Р1, величины P2, КПД, U, I связаны соотношениями:

где

Очевидно, что эти соотношения справедливы также и для номинального режима работы двигателя.

3. Характеристики двигателей постоянного тока

3.1 Рабочие характеристики

Рабочими называются регулировочная, скоростная, моментная и к.п.д. характеристики.

Регулировочная характеристика.

Регулировочная характеристика представляет зависимость скорости вращения П от тока Iв возбуждения в случае, если ток Iа якоря и напряжение U сети остаются неизменными, т. е. n=f(Iв) при Ia=const и U=const.

До тех пор, пока сталь магнитопривода машины не насыщена, поток Ф изменяется пропорционально току возбуждения Iв. В этом случае регулировочная характеристика является гиперболической. По мере насыщения при больших токах Iв характеристика приближается к линейной (рис. 2). При малых значениях тока Iв скорость вращения резко возрастает. Поэтому при обрыве цепи возбуждения двигателя (Iв = 0) с параллельным возбуждением скорость его вращения достигает недопустимых пределов, как говорят: «Двигатель идет вразнос». Исключение могут составлять микродвигатели, которые имеют относительно большой момент М0 холостого хода.

Рис. 2. Регулировочная характеристика двигателя

В двигателях последовательного возбуждения Iв = Iа. При малых нагрузках ток якоря Iа мал и скорость вращения может быть слишком большой, поэтому пуск и работа при малых нагрузках недопустимы. Микродвигатели так же, как и. в предыдущем случае, могут составлять исключение.

Скоростные характеристики.

Скоростные характеристики дают зависимость скорости вращения п от полезной мощности Р2 на валу двигателя в случае, если напряжение U сети и сопротивление rв регулировочного реостата цепи возбуждения остаются неизменными, т. е. n=f(P2), при U=const и rв = const.

Рис. 3. Скоростные характеристики

С возрастанием тока якоря при увеличении механической нагрузки двигателя параллельного возбуждения одновременно увеличивается падения напряжения в якоре и появляется реакция якоря, которая обычно действует размагничивающим образом. Первая причина стремится уменьшить скорость вращения двигателя, вторая -- увеличить. Действие падения напряжения в якоре обычно оказывает большее влияние. Поэтому скоростная характеристика двигателя параллельного возбуждения имеет слегка падающий характер (кривая 1, рис. 3).

В двигателе последовательного возбуждения ток якоря является током возбуждения. В результате скоростная характеристика двигателя с последовательным возбуждением имеет характер, близкий к гиперболическому. При увеличении нагрузки по мере насыщения магнитной цепи характеристика приобретает более прямолинейный характер (кривая 3 на рис. 3).

В компаундном двигателе при согласном включении обмоток скоростная характеристика занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения (кривая 2).

Моментные характеристики.

Моментные характеристики показывают, как изменяется момент М при изменении полезной мощности Р2 на валу двигателя, если напряжение U сети и сопротивление rв регулировочного реостата в цепи возбуждения остаются неизменными, т. е. М = f(P2), при U=const, rв=const.

Полезный момент на валу двигателя

Если скорость вращения двигателя параллельного возбуждения не изменялась бы с нагрузкой, то зависимость момента Ммех от полезной мощности графически представляла бы прямую линию, проходящую через начало координат. В действительности скорость вращения с увеличением нагрузки падает. Поэтому характеристика полезного момента несколько загибается кверху (кривая 2, рис. 4). При этом кривая электромагнитного момента М проходит выше кривой полезного момента Ммех на постоянную величину, равную моменту холостого хода М0 (кривая 1).

двигатель ток скоростной механический

Рис. 4. Моментные характеристики

В двигателе последовательного возбуждения вид моментной характеристики приближается к параболическому, так как изменение момента от тока нагрузки происходит, по закону параболы, пока сталь не насыщена. По мере насыщения зависимость приобретает более прямолинейный характер (кривая 4). В компаундном двигателе моментная характеристика (кривая 3) занимает промежуточное положение между характеристиками двигателя параллельного и последовательного возбуждения.

Характеристика изменения коэффициента полезного действия.

Кривая зависимости к. п. д. от нагрузки имеет характерный для всех двигателей вид (рис 5). Кривая проходит через начало координат и быстро растет при увеличении полезной мощности до 1/4 номинальной. При мощности Р2, равной примерно 2/3 номинальной, к. п. д. обычно достигает максимального значения. При увеличении нагрузки до номинальной к. п. д. остается постоянным или незначительно падает.

Рис. 5. Изменение к. п. д. двигателя

3.2 Механическая характеристика

Важнейшей характеристикой двигателя является механическая n(M). Она показывает, как зависит частота вращения двигателя от развиваемого момента. Если к обмоткам двигателя подведены номинальные напряжения и отсутствуют дополнительные резисторы в его цепях, то двигатель имеет механическую характеристику, называемую естественной. На естественной характеристике находится точка, соответствующая номинальным данным двигателя (Мн, Ря и т.д.). Если же напряжение на обмотке якоря меньше номинального, либо Iв < Iвн, то двигатель будет иметь различные искусственные механические характеристики. На этих характеристиках двигатель работает при пуске, торможении, реверсе и регулировании частоты вращения.

Преобразовав выражение (3) относительно частоты вращения, получим уравнение электромеханической характеристики n(Iя):

(7)

После замены в уравнении (7) тока Iя согласно формуле (1), получим уравнение механической характеристики n(М):

(8)

При Ф = соnst, электромеханическая n(Iя) и механическая n(М) характеристики двигателя параллельного возбуждения представляют собой прямые линии. Так как за счет реакции якоря магнитный поток немного изменяется, то характеристики в действительности несколько отличаются от прямых.

При работе вхолостую (М = 0) двигатель имеет частоту вращения холостого хода, определяемую первым членом уравнения (8). С увеличением нагрузки n уменьшается. Как следует из уравнения (8), это объясняется наличием сопротивления якоря rя.

Поскольку rя не велико, частота вращения двигателя при увеличении момента изменяется мало, и двигатель имеет жесткую естественную механическую характеристику (рис.6, характеристика 1).

Из уравнения (8) следует, что регулировать частоту вращения при заданной постоянной нагрузке (М = const) можно тремя способами:

а) изменением сопротивления цепи якоря;

б) изменением магнитного потока двигателя;

в) изменением напряжения на зажимах якоря.

Рис. 6. Механические характеристики

Для регулирования частоты вращения первым способом в цепь якоря. должно быть включено добавочное сопротивление rд. Тогда сопротивление в уравнении (8) необходимо заменить на rя + rд.

Как следует из уравнения (8), частота вращения n связана с сопротивлением цепи якоря rя + rд при постоянной нагрузке (М = const) линейной зависимостью, т.е. при увеличении сопротивления частота вращения уменьшается. Разным сопротивлениям rд соответствуют различные искусственные механические характеристики, одна из которых приведена на рис.2 (характеристика 2). С помощью характеристики 2 при заданном моменте М1 можно получить частоту вращения n2.

Изменение частоты вращения вторым способом осуществляется с помощью регулируемого источника напряжения UD2. Изменяя его напряжение регулятором R2, можно изменить ток возбуждения IВ и тем самым магнитный поток двигателя. Как видно из уравнения (8), при постоянной нагрузке (М = соnst) частота вращения находится в сложной зависимости от магнитного потока Ф. Анализ уравнения (8) показывает, что в некотором диапазоне изменения магнитного потока Ф уменьшение последнего приводит к увеличению частоты вращения. Именно этот диапазон изменения потока используют при регулировании частоты вращения.

Каждому значению магнитного потока соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2 (характеристика 4). С помощью характеристики 4 при моменте М1 можно получить частоту вращения n4.

Чтобы регулировать частоту вращения изменением напряжения на зажимах якоря, необходимо иметь относительно мощный регулируемый источник напряжения. Каждому значению напряжения соответствует искусственная механическая характеристика двигателя, одна из которых приведена на рис.2(характеристика 3). С помощью характеристики 3 при заданном моменте М1 можно получить частоту вращения n3.

Список используемой литературы

1. Кацман М.М. Электрические машины. -М.: Высш. шк., 1993.

2. Копылов И.П. Электрические машины. -М.: Энергоатомиздат, 1986

3. http://www.bestreferat.ru/referat-184375.html

Размещено на Allbest.ru

...

Подобные документы

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

    реферат [3,2 M], добавлен 12.11.2009

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

    курсовая работа [2,5 M], добавлен 30.03.2014

  • Приведение переменных и параметров рабочего механизма к валу исполнительного двигателя. Основные характеристики и параметры электропривода. Силовые полупроводниковые преобразователи, принцип их действия и структура. Схемы двигателей постоянного тока.

    дипломная работа [1,0 M], добавлен 30.04.2011

  • Основные определения и технические данные электрических машин. Электрические двигатели постоянного тока: устройство, краткие теоретические основы. Электрические генераторы постоянного тока. Обеспечение безыскровой коммутации. Электрическое равновесие.

    реферат [37,4 K], добавлен 24.12.2011

  • Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.

    контрольная работа [167,2 K], добавлен 29.02.2012

  • Конструкция и принцип действия электрических машин постоянного тока. Исследование нагрузочной, внешней и регулировочной характеристик и рабочих свойств генератора с независимым возбуждением. Особенности пуска двигателя с параллельной системой возбуждения.

    лабораторная работа [904,2 K], добавлен 09.02.2014

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Расчет двигателя постоянного тока: главные размеры машины; параметры обмотки якоря, коллектор и щеточный аппарат; геометрия зубцовой зоны. Магнитная система машины: расчет параллельной обмотки возбуждения; потери и коэффициент полезного действия.

    курсовая работа [2,7 M], добавлен 06.09.2012

  • Расчет регулировочных характеристик двигателя постоянного тока (ДПТ) при различных способах регулирования скорости. Электромеханические и механические характеристики ДПТ при измененных токах возбуждения. Кривая намагничивания ДПТ в относительных единицах.

    лабораторная работа [49,7 K], добавлен 12.01.2010

  • Электрический привод с тиристорными преобразователями и двигателями постоянного тока как основной тип привода станков с ЧПУ. Основные характеристики электропривода и тип двигателя постоянного тока. Достоинства и недостатки высокомоментных двигателей.

    курсовая работа [1,5 M], добавлен 14.12.2012

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

  • Конструкция и принцип действия машины постоянного тока. Характеристики генератора независимого возбуждения. Внешняя характеристика генератора параллельного возбуждения. Принцип обратимости машин постоянного тока. Электромагнитная обмотка якоря в машине.

    презентация [4,1 M], добавлен 03.12.2015

  • Пример расчета механических характеристик для исполнительного двигателя постоянного тока с независимым возбуждением. Указание на графиках области, соответствующей двигательному режиму работы, генераторному режиму и режиму электромагнитного тормоза.

    контрольная работа [1,1 M], добавлен 08.01.2011

  • Изучение механических характеристик электродвигателей постоянного тока с параллельным, независимым и последовательным возбуждением. Тормозные режимы. Электродвигатель переменного тока с фазным ротором. Изучение схем пуска двигателей, функции времени.

    лабораторная работа [1,3 M], добавлен 23.10.2009

  • Принцип действия и структура синхронных машин, основные элементы и их взаимодействие, сферы и особенности применения. Устройство и методика использования машин постоянного тока, их разновидности, оценка Э.д.с., электромагнитного момента этого типа машин.

    учебное пособие [7,3 M], добавлен 23.12.2009

  • Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

    презентация [443,8 K], добавлен 12.01.2010

  • История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация [419,0 K], добавлен 05.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.