О транзисторах для начинающих

Основные разновидности современных транзисторов, критерии и показатели их классификации. Внутреннее устройство и главные компоненты биполярного транзистора, режимы работы и схемы включения. Факторы, влияющие на усиление сигнала, его основные классы.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 09.04.2015
Размер файла 131,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

О транзисторах для начинающих

1. Основные разновидности современных транзисторов

Как известно, первый транзистор был сконструирован в 1947 году Дж. Бардином и У. Браттейном в США. За прошедшие после этого пять десятилетий было разработано множество разновидностей и технологий производства транзисторов, позволяющих получать приборы с самыми разнообразными свойствами и параметрами. В задачу настоящей книги не входит сколь-либо подробное описание всего этого «зверинца» и физических процессов, обусловливающих его работу. Мы ограничимся рассмотрением только некоторых наиболее известных (и, соответственно, наиболее распространенных и применяемых) «классических» приборов. Тем не менее разумным будет все-таки представить читателю следующую классификацию:

· биполярные транзисторы;

p-n-p-типа;

п-р-п-типа;

многоэлектродные (например, двухэмиттерные транзисторы);

· лавинные транзисторы;

· однопереходные транзисторы;

с р-базой;

с n-базой;

· полевые (униполярные) транзисторы

с управляющим переходом;

с управляющим p-n-переходом;

с каналом р-типа;

с каналом п-типа;

с управляющим переходом на основе контакта металл-полупроводник (переход Шоттки);

с управляющим гетеропереходом; статические индукционные транзисторы;

биполярные статические индукционные транзисторы;

· полевые транзисторы с изолированным затвором

(МДП-транзисторы);

со встроенным каналом

(МДП-транзисторы обедненного типа);

с каналом р-типа;

с каналом n-типа;

с индуцированным каналом

(МДП-транзисторы обогащенного типа);

с каналом p-типа;

с каналом n-типа (практически невстречаются);

многозатворные транзисторы (особенно распространены двухзатворные);

биполярные транзисторы

с изолированным затвором (IGBT);

поверхностно-зарядовые транзисторы.

В данной книге мы будем рассматривать только обычные биполярные транзисторы. Однако следует отметить, что описываемые здесь методики анализа схем, а в некоторых случаях и сами схемотехнические решения различных цепей, применимы и для транзисторов других типов. Например, при описании полевых транзисторов в следующей книге серии «Конструирование схем» мы очень часто будем ссылаться на всевозможные приводимые здесь понятия и математические выражения.

Безусловно, прежде чем изучать схемы включения и режимы работы биполярных транзисторов в реальных устройствах, читателю необходимо ознакомиться с физикой работы этих приборов, их параметрами и характеристиками, применяемыми для расчета и анализа схем. На эту тему выпускалось очень много разнообразной литературы (например, [5]). Поэтому автор нашел полезным включить в данную книгу только довольно упрощенные описания некоторых ключевых вопросов, связанных с работой транзисторов. Описания эти не всегда оказываются полными и корректными с физической точки зрения, но построены так, чтобы в краткой и доступной форме донести до читателя сущность основных процессов в транзисторах, сделавших эти приборы столь популярными в практической радиоэлектронике.

2. Как устроен биполярный транзистор

На заре развития радиоэлектроники в качестве основных усилительных элементов выступали разнообразные электровакуумные приборы. Они постоянно совершенствовались как в плане массогабаритных показателей, надежности и долговечности, так и со стороны улучшения их электрических характеристик. Работа таких приборов основывалась на управлении с помощью электрических полей потоками электронов в вакууме, что, как минимум, требовало наличия крепкого герметичного корпуса с соответствующими габаритами. Несмотря на бурное развитие в течение нескольких десятилетий технологий производства электровакуумных приборов, физикам с самого начала было ясно, что кардинальное решение проблем может быть найдено только при переходе к принципиально иному принципу генерации и управления потоками зарядов. Длительные поиски твердотельного аналога радиолампы принесли потрясающий результат, когда ученые обратились к таким достаточно известным и распространенным материалам как кремний (Si) и германий (Ge).

Эти элементы периодической таблицы относятся к группе так называемых полупроводников - материалов, чья электропроводность гораздо ниже электропроводности металлов, но гораздо выше электропроводности диэлектриков. Оказалось, что в кремниевых и германиевых кристаллических структурах можно порождать потоки носителей зарядов и управлять ими аналогично тому, как это делалось в электровакуумных приборах. Причем для этого не требовалось создавать какие-либо внешние по отношению к кристаллу электрические поля или обеспечивать полный вакуум, да и управляемость самих элементарных носителей зарядов получалась гораздо лучшей.

Физика полупроводников достаточно емкая и порой весьма сложная наука. Будем надеяться, что читатель хоть в какой-то мере знаком с основными понятиями этого предмета, поскольку для глубокого понимания работы любых транзисторов без такого знакомства не обойтись. Мы можем себе позволить лишь кратко коснуться данной темы, описав некоторые базовые понятия.

Итак, независимо от типа применяемого полупроводникового материала (кремний или германий) существует три основных подвида полупроводников: чистые (беспримесные) полупроводники или полупроводники с собственной электропроводностью, полупроводники с электронной электропроводностью (полупроводники n-типа), полупроводники с дырочной электропроводностью (полупроводники p-типа). Последние два подвида образуются путем введения в чистые полупроводники специальных примесей. Такие примеси существенно повышают электропроводность полупроводниковой структуры за счет появления в ней свободных электронов (электронная электропроводность) или так называемых дырок - элементарных положительных зарядов, обусловленных отсутствием электрона в положенном месте возле ядра атома вещества (дырочная электропроводность). В обоих случаях обеспечивается протекание через полупроводник электрического тока при приложении к нему некоторого внешнего напряжения.

Оказывая некоторые дополнительные электрические воздействия на полупроводниковую структуру, можно управлять протекающим через нее током. На данном принципе основана работа большинства полевых транзисторов. Однако сложилось так, что на начальном этапе развития полупроводниковой электроники предпочтение было отдано биполярным транзисторам. В этих приборах используются свойства так называемых электронно-дырочных переходов (p-n-переходов) - структур, состоящих из двух имеющих четкую границу полупроводников с различными типами электропроводности: полупроводника n-типа и полупроводника p-типа.

Оказалось, что через такое соединение полупроводников электрический ток может протекать только в одном направлении - когда поток электронов через полупроводник п-типа поступает с отрицательного полюса внешнего источника напряжения, а поток дырок через полупроводник р-типа поступает с положительного полюса этого же источника (режим прямого смещения перехода). Встречаясь на границе раздела полупроводников с различной электропроводностью, эти потоки как бы накладываются друг на друга (т.е. электроны, встречаясь с дыркой, перемещаются и просто становятся на отведенные им места в кристаллической структуре, уничтожая старую дырку и порождая новую там, где они ранее находились; таким образом обеспечивается перетекание дырок далее к отрицательному полюсу, а электронов - к положительному). При изменении полярности внешнего напряжения (обратное смещение перехода) указанные условия не выполняются и электронно-дырочные потоки не могут возникнуть в полупроводниковой p-n-структуре. Конечно, в реальных полупроводниках имеет место и масса других физических процессов, которые влияют на их свойства (тепловые процессы, паразитные утечки, явления пробоя и т.п.), но это влияние в большинстве случаев не оказывается определяющим, а лишь несколько уточняет представленную здесь картину.

На описанном принципе основана работа полупроводниковых диодов. Биполярные транзисторы представляют собой несколько более сложную структуру, имеющую в своем составе не один, а два p-n - перехода и позволяющую не просто различать электрические сигналы по их полярности, но и усиливать их. Такая полупроводниковая структура изображена на рис. 1.1, а. В ней чередуются три области с различными типами электропроводности, причем средняя область выполнена очень узкой. Это позволяет потоку носителей зарядов, порожденному в первой области (на рис. 1.1, о слева), проникать через барьер в виде полупроводника с иным типом электропроводности в третью область (на рис. 1.1, а справа) с незначительными потерями (как будет показано в дальнейшем, величиной этих потерь мы можем эффективно управлять, воздействуя на среднюю область). В зависимости от комбинации применяемых полупроводников возможны два вида структуры биполярного транзистора: p-n-p и n-p-п. Кроме того, первая и третья области полупроводниковой структуры ввиду конструктивных особенностей биполярных транзисторов не являются одинаковыми, из чего следует, что и свойства транзисторов не симметричны относительно центральной области (хотя и довольно похожи).

Плоская одномерная модель биполярного транзистора (а) и его условные обозначения (б)

Каждая из областей приведенной на рис. 1.1, а полупроводниковой структуры биполярного транзистора имеет отдельный внешний вывод (электрод), а также определенное название, во многом отражающее ее функцию (заметим, что эти функции не зависят от типа транзистора - p-n-p или n-p-n). Область, в которой порождается поток носителей зарядов (на рис. 1.1, а изображена слева), называется эмиттером (Э). Средняя область, через которую происходит управление этим потоком, носит название базы (Б). И, наконец, третья область, в которую поступает урезанный управляемый поток, называется коллектором (К). Два p-n-перехода, имеющиеся в биполярном транзисторе, также получили конкретные имена. Переход между базой и эмиттером называется эмиттерным переходом (ЭП), а переход между коллектором и базой - коллекторным переходом (КП). Внешние электроды транзистора называются так же, как и области полупроводниковой структуры, с которыми они соединены. Схемные обозначения биполярных транзисторов типов p-n-p и n-p-n показаны на рис. 1. 1,6.

В качестве исходного полупроводникового материала при производстве транзисторов чаще всего используются: кремний (Si), германий (Ge), арсенид галлия (GaAs) или фосфид индия (InP). Конструктивное исполнение дискретных биполярных транзисторов может быть самым разнообразным. Существует довольно много технологий их изготовления (в настоящее время преобладают различные подвиды планарно-эпитаксиальной технологии) и еще больше видов корпусов, в которые они могут помещаться (металлокерами-ческие, пластмассовые, керамические и т.д.). Внешние габаритные размеры транзисторов определяются в основном требованиями к допустимым электрическим и тепловым режимам при работе и монтаже прибора. Транзисторы большой мощности имеют большие габариты и специальные средства для крепления внешних теплоотводящих радиаторов, транзисторы малой мощности могут выполняться вообще без корпусов или в корпусах минимальных размеров с очень слабыми теплоотводящими свойствами, защищающими транзистор не столько от перегрева кристалла полупроводника при работе, сколько от перегрева подведенных к нему контактов при пайке транзистора, а также от воздействия на кристалл агрессивной окружающей среды.

3. Почему биполярный транзистор может усиливать сигналы

Итак, мы уже знаем, что усиление электрических сигналов возможно в приборах с управляемыми потоками электрических зарядов. Однако сама по себе данная фраза ничего не значит. Возникает естественный вопрос: как, имея управляемый поток зарядов и подавая на вход слабый сигнал, на выходе прибора получить сильный сигнал?

Для начала, видимо, следует разобраться в том, что же такое усиление электрических сигналов. Предположим, что мы имеем источник электрического сигнала, который при определенном сопротивлении нагрузки может обеспечить некоторые ток и напряжение сигнала на ней. Если нас не удовлетворяет напряжение на нагрузке, то, используя простейшие пассивные элементы (например, трансформатор), мы можем легко поднять его до необходимого уровня. Расплатой за это будет падение сигнального тока. И наоборот, если мы увеличим ток - снизится напряжение. В любом случае полезная мощность сигнала , передаваемая в нагрузку, при добавлении любых пассивных компонентов в схему может только снижаться. Для увеличения этой мощности нужны так называемые активные компоненты - усилители. Именно они позволяют из слабых входных воздействий получать мощные сигналы на выходе устройства.

Что же необходимо для работы усилительного устройства? Рассмотрим простой пример. Водитель автомобиля давит на педаль газа, и чем большее усилие он прикладывает к маленькой педали, тем быстрее едет большой и тяжелый автомобиль. Однако всем известно, что автомобиль двигает не слабый водитель, а мощный двигатель. Т.е. педаль - это лишь средство воздействия на двигатель, который и выполняет всю работу. На таком же принципе основано действие и усилителей электрических сигналов. В них создается отдельный мощный сигнал, который и попадает на выход усилителя, а слабый входной сигнал лишь воздействует на этот мощный сигнал, заставляя его изменяться по тому же закону.

Как уже говорилось, в полупроводниках могут существовать потоки электрических зарядов. Если такой поток протекает от одного электрода полупроводникового прибора к другому, то между этими двумя электродами возникает электрический ток, абсолютная величина которого пропорциональна мощности потока (количеству перемещаемых за единицу времени зарядов). Очевидно, что при определенных условиях с помощью мощного внешнего источника питания мы можем создавать в полупроводниковых структурах самые разнообразные потоки зарядов. Вопрос, однако, заключается в том, как обеспечить воздействие на эти потоки слабого сигнала, который мы хотим усилить. Вернемся теперь к рассмотрению биполярного транзистора.

сигнал транзистор биполярный

На рис. показана схема, в которой на выводы эмиттера и коллектора транзистора п-р-п-типа, подано достаточно большое напряжение от внешнего мощного источника питания плюсом к коллектору и минусом к эмиттеру. Если бы между эмиттерной и коллекторной п-областями транзистора не было тонкой базовой прослойки с проводимостью p-типа, то очевидно, что в полупроводнике возник бы мощный поток электронов от эмиттера к коллектору. Однако на практике даже весьма тонкой базовой прослойки оказывается достаточно, чтобы предотвратить это явление. Все изменяется, если мы приложим к базе транзистора некоторое незначительное по величине и положительное относительно эмиттера напряжение (рис. 1.2). При этом эмиттерный р-п-переход транзистора оказывается под напряжением, соответствующим его проводящему состоянию, и в р-п-структуре эмиттер-база образуется поток электронов в том же направлении, в котором он мог бы возникнуть при отсутствии базовой области. Электроны, достигая базовой области, по логике должны уходить в базовый электрод, обеспечивая прохождение тока в цепи база-эмиттер транзистора, но на практике происходит другое. Подгоняемые большим напряжением, приложенным между коллектором и эмиттером, электроны быстро пролетают через узкую базовую область и уходят к коллекторному электроду, т.е. возникает тот самый мощный поток зарядов между эмиттером и коллектором, который мы не могли получить ранее. Только крайне незначительная часть электронов попадает в базовый электрод. Таким образом, мы имеем слабый ток в цепи эмиттер-база и сильный ток в цепи эмиттер-коллектор (напомним, что направление электрического тока считается противоположным направлению движения отрицательных зарядов, в нашем случае - электронов). Повышая напряжение на базе транзистора, мы будем наращивать мощность потока электронов, при этом токи в цепях будут расти соответственно.

Итак, оказывается, что в биполярном транзисторе можно создать сильный электрический ток в цепи «коллектор - эмиттер - внешний мощный источник питания» при достаточно слабом токе в цепи «база - эмиттер - маломощный источник сигнала». Причем данное слабое воздействие на базу оказывает управляющее действие на ток в коллекторно-эмиттерной цепи. Если далее в коллекторную или эмиттерную цепь транзистора (рис. 1.2) включить некоторое; сопротивление (нагрузку), то окажется, что ток и напряжение на нем повторяют форму входного сигнала на базе транзистора, но мощность, подаваемая на него, гораздо выше мощности входного сигнала, т.е. происходит усиление.

Мы описали работу биполярного транзистора п-р-п-типа. Для приборов р-п-р-типа все выглядит совершенно аналогично. Только здесь мы должны рассматривать не потоки электронов, а потоки положительных зарядов - дырок. При этом полярности всех внешних напряжений меняются на обратные. Других отличий нет.

4. Режимы работы и схемы включения биполярных транзисторов

Анализируя возможность использования биполярных транзисторов для усиления электрических сигналов, мы ограничивались только одним частным случаем подачи на электроды транзистора определенных напряжений и не рассматривали некоторые достаточно важные физические процессы в полупроводнике. Но помимо уже описанной ситуации возможны и другие, приводящие, например, к протеканию в n-p-n-структуре тока не от коллектора к эмиттеру, а, наоборот, от эмиттера к коллектору и т.п. В общем случае для биполярноголярного транзистора возможны четыре устойчивых состояния (режима). Они отличаются друг от друга тем, в каком состоянии (прямое или обратное смещение) находятся эмиттерный и коллекторный переходы транзистора. Приведем их полное описание.

Активный режим - соответствует случаю, рассмотренному при анализе усилительных свойств транзистора. В этом режиме прямосмещенным оказывается эмиттерный переход, а на коллекторном присутствует обратное напряжение, именно в активном режиме транзистор наилучшим образом проявляет свои усилительные свойства. Поэтому часто такой режим называют основным или нормальным.

Инверсный режим - полностью противоположен активному режиму, т.е. обратносмещенным является эмиттерный переход, а прямосмещенным - коллекторный. В таком режиме транзистор также может использоваться для усиления. Однако из-за конструктивных различий между областями коллектора и эмиттера усилительные свойства транзистора в инверсном режиме проявляются гораздо хуже, чем в режиме активном. Поэтому на практике инверсный режим практически не используется.

Режим насыщения (режим двойной инжекции) - оба перехода транзистора находятся под прямым смещением. В этомом случае выходной ток транзистора не может управлять его входным током, т.е. усиление сигналов невозможно. Режим насыщения используется в ключевых схемах, где в задачу транзисторов входит не усиление сигналов, а замыкание / размыкание разнообразных электрических цепей.

Режим отсечки - к обоим переходам подведены обратные напряжения. Такой режим также используется в ключевых схемах. Поскольку в нем выходной ток транзистора практически равен нулю, то он соответствует размыканию транзисторного ключа.

Заметим, что кроме названных основных рабочих режимов в транзисторе возможен режим пробоя на различных переходах. Обычно он возникает только в случае аварии и не используется в работе, однако существуют специальные лавинные биполярные транзисторы, в которых режим пробоя является как раз основным рабочим режимом.

Помимо режима работы для эксплуатации биполярных транзисторов имеет значение то, каким образом транзистор включен в каскад усиления (как поданы питающие напряжения на его электроды, в какие цепи включены нагрузка и источник сигнала). Различают три основных способа (рис. 1.3): схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ).

Схемы включения биполярных транзисторов (направлении работы соответствует активному режиму работы).

5. Классы усиления

В процессе работы транзисторного усилительного каскада напряжение и ток на его входе изменяются по закону изменения усиливаемого сигнала. Если транзистор все это время находится в активном режиме, то данные изменения передаются на выход и в усиленном виде повторяются в выходном сигнале каскада. Однако сами колебания входного сигнала (например, гармонического) могут периодически выводить транзистор из активного режима в режим насыщения или отсечки в зависимости от того, каков точный уровень напряжения и тока на входе в каждый конкретный момент времени. Может показаться, что указанные колебания режимом совершенно бесполезны в реальных схемах и их нужно всячески избегать, но это не так. Существуют схемы, в которых необходимо обеспечить усиление сигнала только при условии, что его мгновенное значение лежит выше или ниже некоторого порога. Иногда эти схемы комбинируются так, чтобы каждая отвечала за свой диапазон значений входного сигнала, а на выходе многокаскадного усилителя восстанавливается полный усиленный сигнал (например, двухтактные усилители мощности). За счет такого включения становится возможным существенно повысить общий КПД усилительной схемы.

Чтобы различать динамику изменений режимов работы транзистора (а это имеет значение при расчете их энергопотребления и тепловыделения) вводится понятие класса усиления. Различают пять основных классов усиления, которые обозначаются прописными латинскими буквами: А, В, АВ, C, D.

Класс усиления А. При работе в данном классе усиления транзистор все время находится в активном режиме. Колебания переменного сигнала на его входе никогда не должны выводить транзистор в режим насыщения или отсечки, т.е. их амплитуда ограничена некоторой областью, определяемой тек электрическими характеристиками конкретного транзистора, напряжением питания и начальным постоянным смещением на входе каскада. Заметим, что постоянное протекание значительных токов через транзистор приводит, во-первых, к большому энергопотреблению, а во-вторых, к разогреву полупроводниковой структуры (итоговый КПД каскада усиления в классе А теоретически не может превышать 50%, а реальные его значения и того ниже). Это является неизбежной платой за высокую линейность усиления, достижимую в классе А.

Класс усиления В. Предполагает, что транзистор находится в активном режиме, т.е. усиливает входной сигнал только половину периода его действия. Вторую половину периода изменения напряжения входного гармонического сигнала транзистор находится в режиме отсечки. Основными достоинствами класса В являются: высокий КПД (до 70%) и малая мощность тепловых потерь, рассеиваемых в транзисторе, что крайне важно для усилителей большой и средней мощности. Однако у усилителей в классе В есть и существенный недостаток - большой уровень нелинейных искажений, что; вызвано повышенной нелинейностью усиления транзистора, когда он находится вблизи режима отсечки.

Класс усиления АВ. Данный класс усиления является промежуточным между классами А и В. В этом случае транзистор также переключается между режимом отсечки и активным режимом, но преобладающим является все-таки именно активный режим. Незначительное понижение КПД усилительного каскада в классе АВ компенсируется существенным уменьшением нелинейных искажений при усилении одного из полупериодов входного сигнала. Схемы усилителей мощности строятся так, что участок со значительными нелинейностями, когда транзистор переходит из режима отсечки в активный режим и наоборот, просто не оказывает влияния на выходной сигнал.

Класс усиления С. В классе усиления С транзистор большую часть периода изменения напряжения входного сигнала находится в режиме отсечки, а в активном режиме - меньшую часть. Этот класс часто используется в выходных каскадах мощных резонансных усилителей (например, в радиопередатчиках).

Класс усиления D. Предназначен для обозначения ключевого режима работы, при котором биполярный транзистор может находиться только в двух устойчивых состояниях: или полностью открытом (режим насыщения), или полностью закрытом (режим отсечки).

Размещено на Allbest.ru

...

Подобные документы

  • Устройство и принцип действия биполярного транзистора, униполярного транзистора. Силовые полупроводниковые приборы, основные требования, предъявляемые к ним. Характеристика динисторов и транзисторов. Параметры предельных режимов работы транзисторов.

    лекция [424,0 K], добавлен 14.11.2008

  • Принцип действия биполярного транзистора. Его статические характеристики и эксплуатационные параметры. Температурные и частотные свойства транзистора. Эквивалентные схемы полевых транзисторов. Схематическое изображение ПТ с изолированным затвором.

    лекция [460,9 K], добавлен 15.03.2009

  • Изучение методов построения зависимости прямого коэффициента усиления по току и анализ зависимости предельной частоты от тока эмиттера для кремниевого биполярного дрейфового транзистора. Этапы расчета частотных свойств биполярного дрейфового транзистора.

    лабораторная работа [68,3 K], добавлен 06.02.2010

  • Биполярный транзистор как трехэлектродный полупроводниковый прибор, один из типов транзистора, его отличительные характеристики, устройство и элементы. Принцип действия транзисторов и схема его включения. Входная и выходная характеристика транзистора.

    контрольная работа [234,3 K], добавлен 20.02.2011

  • Понятие и функциональное назначение биполярного транзистора как полупроводникового прибора с двумя близкорасположенными электронно-дырочными переходами. Анализ входных и выходных характеристик транзистора, включенного по схеме с общим эмиттером и базой.

    лабораторная работа [1,3 M], добавлен 12.05.2016

  • Параметры транзистора МП–40А, чертеж его основных выводов. Входная и выходная характеристики данного транзистора. Определение параметров для схемы с общим эмиттером. Схема с общим коллектором и общей базой. Расчет параметров для соответствующей схемы.

    контрольная работа [642,0 K], добавлен 28.03.2011

  • Порядок получения входных и выходных характеристик транзистора. Методика и основные этапы сборки электрической схемы, определение измерения тока коллектора. Экспериментальное нахождение сопротивления по входной характеристике при изменении базового тока.

    лабораторная работа [39,8 K], добавлен 12.01.2010

  • Общее представление о мощных БИП-транзисторах Зависимость эффективности эмиттера от концентрации примеси в нем. Характеристика падения коэффициента усиления по току при больших плотностях тока. Сущность монолитного мощного транзистора Дарлингтона.

    курсовая работа [676,6 K], добавлен 04.04.2015

  • Получение входных и выходных характеристик транзистора. Включение биполярного транзистора по схеме с общим эмиттером. Проведение измерения тока базы, напряжения база-эмиттер и тока эмиттера для значений напряжения источника. Расчет коллекторного тока.

    лабораторная работа [76,2 K], добавлен 12.01.2010

  • Принцип работы полевого транзистора. Стоковые характеристики транзистора. Причина насыщения в стоковой характеристике полевого транзистора. Устройство полевого транзистора с управляющим p-n-переходом. Инверсия типа проводимости.

    лабораторная работа [37,8 K], добавлен 20.03.2007

  • Понятие и классификация полевых транзисторов, их разновидности и функциональные особенности. Входные и выходные характеристики данных устройств, принцип их действия, внутренняя структура и элементы. Физическое обоснование работы и сферы применения.

    презентация [2,4 M], добавлен 29.03.2015

  • Схемы и устройство автоматического повторного включения (АПВ). Особенности применения, основные функции, классификация и принцип действия АПВ. Характеристика АПВ с различным количеством фаз. Анализ функций автоматики микропроцессорного комплекса.

    отчет по практике [923,0 K], добавлен 10.03.2016

  • Тип механизма, назначение, его основные технические данные. Выбор питающих проводов и кабелей. Разработка схемы электрической принципиальной. Последовательность включения приводов, режимы работы. Циклограмма работы электроприводов и цепи управления.

    дипломная работа [492,9 K], добавлен 18.11.2016

  • Общая характеристика и функциональные особенности ядерной энергодвигательной установки, ее назначение и сферы использования. Внутреннее устройство и принцип работы данной установки, главные компоненты и их функции: двигатель и холодильник-излучатель.

    реферат [226,6 K], добавлен 07.10.2016

  • Понятие и назначение электронных генераторов, их классификация и разновидности, структура и основные элементы, принцип действия и сферы применения. Характеристика, возможные режимы работы генераторов постоянного тока и автоматического включения резерва.

    шпаргалка [1,1 M], добавлен 20.01.2010

  • Классификация и разновидности широтно-импульсных преобразователей, их функциональные особенности и сферы применения. Внутреннее устройство и принцип работы преобразователя ТЕ9, расчет параметров силового каскада. Экономические показатели проекта.

    дипломная работа [2,2 M], добавлен 23.08.2015

  • Назначение полевых транзисторов на основе металлооксидной пленки, напряжение. Вольт-амперная характеристика управляющего транзистора в крутой линейной части. Передаточная характеристика инвертора, время переключения. Вычисление скорости насыщения.

    контрольная работа [103,9 K], добавлен 14.12.2013

  • Тиристорные однофазные двухполупериодные усилительно-преобразовательные устройства. Автоматизация электроснабжения: общие сведения работы схемы автоматического повторного включения. Устройство, принцип действия, конструкция магнитоуправляемых контактов.

    контрольная работа [132,3 K], добавлен 16.02.2015

  • Понятие и назначение деаэраторного бака, порядок и критерии выбора необходимой емкости. Разновидности охладителей выпара и их отличительные признаки, основные технические характеристики. Методика и главные этапы регулирования работы деаэраторов.

    реферат [915,7 K], добавлен 27.10.2009

  • Общие технические характеристики используемого транзистора, схема цепи питания и стабилизации режима работы. Построение нагрузочной прямой по постоянному току. Расчет параметров элементов схемы замещения. Анализ и оценка нелинейных искажений каскада.

    курсовая работа [1,0 M], добавлен 27.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.