Проблема превращения химической энергии топлива в электрическую

Особенность принципа действия топливных элементов. Основные проблемы электрохимического устройства. Анализ применения природного газа и угля в качестве исходного топлива. Характеристика энергоустановок со щелочным и твердополимерным электролитом.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 07.04.2015
Размер файла 92,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1. ПРИНЦИП ДЕЙСТВИЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

2. ОСНОВНЫЕ ПРОБЛЕМЫ ТЭ

3. ЭЛЕКТРОХИМИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ

4. ОСНОВНЫЕ ТИПЫ ТЭ И ЭНЕРГОУСТАНОВОК

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

К наиболее серьезным проблемам, стоящим перед человечеством, безусловно, относится экологическая проблема. Наряду с локальными экологическими бедствиями такими, как смог в крупных городах, высокий уровень вредных выбросов на отдельных предприятиях, прорывы нефтепроводов и аварии нефтеналивных танкеров, возникли общепланетарные явления, такие, как парниковый эффект, озоновые дыры и кислотные дожди [1]. Наиболее крупный вклад в загрязнение окружающей среды вносят энергетика и транспорт (рис. 1). Основные выбросы вредных компонентов возникают в результате химических процессов горения топлива в парогенераторах и двигателях внутреннего сгорания. Следует также отметить, что процессы преобразования химической энергии в электрическую характеризуются невысокими значениями КПД (20-40%).

Рис. 1. Доли загрязнений атмосферы различными отраслями техники в России

1 - теплоэнергетика, 2 - черная металлургия, 3 - нефтедобыча и нефтепереработка, 4 - автотранспорт, 5 - цветная металлургия, 6 - промышленность стройматериалов, 7 - химическая промышленность. Вместе с тем известны способы преобразования энергии, например электрохимический, практически лишенные указанных недостатков. Электрохимический способ преобразования энергии осуществляется в топливных элементах (ТЭ) [2, 3].

1. ПРИНЦИП ДЕЙСТВИЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ

В топливных элементах химическая энергия топлива и окислителя, непрерывно подводимых к электродам, превращается непосредственно в электрическую энергию, в то время как в тепловых машинах процесс преобразования химической энергии протекает через несколько промежуточных стадий, в том числе через стадию образования теплоты (рис. 2). Выбор топлива и окислителя, подаваемых в ТЭ, определяется в первую очередь их электрохимической активностью (то есть скоростью реакций на электродах), стоимостью, возможностью легкого подвода реагента в ТЭ и отвода продуктов реакции из ТЭ. В качестве топлива в ТЭ обычно используется водород, реже СО или СН4, окислителем обычно является кислород воздуха. Рассмотрим для примера работу кислородно-водородного ТЭ с щелочным электролитом (раствором КОН).

Реакция окисления водорода

2Н2 + О2 = 2Н2О

в ТЭ протекает через электроокисление водорода на аноде

2Н2 + 4ОН - 4е > 4Н2О

и электровосстановление кислорода на катоде

О2 + 2Н2О + 4е > 4OH-

Гидроксид-ионы двигаются в ионном проводнике (электролите) от катода к аноду, а электроны во внешней цепи - от анода к катоду. Суммируя уравнения реакций (2) и (3) получим уравнение реакции (1). Таким образом, в результате реакции (1) во внешней цепи протекает постоянный электрический ток, то есть происходит прямое преобразование химической энергии реакции (1) в электрическую.

Рис. 2. Ступени преобразования химической энергии традиционным и электрохимическим способами

Электродвижущую силу (ЭДС) ТЭ можно рассчитать по уравнениям химической термодинамики

где Eэ - ЭДС, Gх.р - изменение энергии Гиббса в результате протекания химической реакции, n - число электронов на молекулу реагента, F - постоянная Фарадея (96484 Кл/моль). Например, расчет по уравнению (4) для реакции (1) и воды в жидком состоянии при давлениях О2 и Н2, равных 100 кПа, дает значение Еэ 298 = 1,23 В.

Так как процесс преобразования энергии не имеет промежуточной стадии генерации теплоты (см. рис. 2), то для электрохимического способа нет ограничения цикла Карно и теоретический КПД преобразования энергии можно рассчитать по уравнению

где Hх.р - изменение энтальпии в результате протекания химической реакции (тепловой эффект реакции). Например, КПД, рассчитанный по уравнению (5), равен зт,298 - 1,0 для метана и зт,298 = 0,94 для водорода.

Принципиальная схема ТЭ представлена на рис. 3. Топливные элементы, как и другие источники тока (гальванические элементы и аккумуляторы), состоят из анода, катода и ионного проводника (электролита) между ними. Основное отличие ТЭ от гальванических элементов заключается в том, что в ТЭ используются нерасходуемые электроды, поэтому ТЭ могут работать длительное время (до нескольких десятков тысяч часов). Реагенты в ТЭ поступают во время работы, а не закладываются заранее, как в гальванических элементах и аккумуляторах. В отличие от аккумуляторов ТЭ не требуют подзарядки. Реальный ТЭ имеет сложное строение по сравнению со схемой, представленной на рис. 3.

Рис. 3. Принципиальная схема ТЭ

Впервые о ТЭ в 1839 году сообщил английский исследователь Гроув, который при проведении электролиза воды обнаружил, что после отключения внешнего тока в ячейке генерируется постоянный ток. Однако работа Гроува тогда не могла быть реализована. Не удалось реализовать и идею известного физикохимика В. Оствальда (1894 год) о генерации электрической энергии в ТЭ, работающих на природных углях, а также изобретенного русским ученым П. Яблочковым (1887 год) водородно-кислородного ТЭ и результатов других исследований и изобретений. Интерес к ТЭ снова возродился в начале 50-х годов после публикации в 1947 году монографии российского ученого О. Давтяна, посвященной ТЭ [4]. Работы по ТЭ ведутся в США, Японии, Германии, России, Италии, Канаде, Голландии и других странах. Первое практическое применение ТЭ нашли на космических кораблях "Джемини", "Аполлон" и "Шаттл". В России была созданы ТЭ для корабля "Буран" [5]. Интерес к ТЭ снова повысился с конца 70-х - начала 80-х годов в связи с необходимостью разработки экологически чистых стационарных и транспортных энергоустановок.

2. ОСНОВНЫЕ ПРОБЛЕМЫ ТЭ

Как и любой источник тока, ТЭ характеризуются напряжением, мощностью и сроком службы. Напряжение U топливного элемента ниже ЭДС из-за омического сопротивления электролита и электродов R и поляризации катода ЕК и анода Еа,

U = Еэ - IR - (ЕК + Еа),

где / - сила тока.

Поляризация электродов обусловлена замедленностью процессов, протекающих на электродах, и равна разности потенциалов электрода под током ЕI и при отсутствии тока ЕI=0

Е = ЕI - ЕI=0

Поляризация электродов возрастает с увеличением плотности тока /, то есть тока, отнесенного к единице площади поверхности электрода S:

При одном и том же токе можно снизить плотность тока и поляризацию, применяя пористые электроды, имеющие высокоразвитую поверхность (до 100 м2/г). В пористом электроде осуществляется контакт газа (реагента), электролита (ионного проводника) и электронного проводника. Процессы в пористых электродах достаточно сложны.

Для ускорения реакций в пористые электроды вводят катализаторы. К катализаторам ТЭ предъявляются требования высокой активности, длительного срока службы и приемлемой стоимости. Выбор катализатора определяется как этими требованиями, так и видами ТЭ и топлива, рабочей температурой и областями применения ТЭ. Наиболее широкое использование нашли платина, палладий, никель и некоторые полупроводниковые материалы. Пористые электроды представляют собой сложную структуру, в которой протекают электрохимические реакции, подводятся и отводятся ионы и электроны, подводятся реагенты, отводятся продукты реакции и тепло. Эти процессы рассматриваются в теории пористых электродов (макрокинетике электродных процессов), которая позволяет оптимизировать их структуру и толщину [6].

В соответствии с уравнением (6) напряжение ТЭ снижается с увеличением тока. Зависимость напряжения ТЭ от тока получила название вольт-амперной характеристики. Напряжение большинства ТЭ лежит в пределах 0,8-0,9 В. Реальный КПД топливного элемента зр ниже теоретического и определяется по уравнению

где зр - реальное количество электронов на молекулу реагента.

Величина зр ниже з уравнения (5) в связи с неполным использованием реагентов и их расходом на собственные нужды установок с ТЭ. Как видно, все факторы, увеличивающие напряжение (см. уравнение (6)), повышают КПД. топливный электрохимический газ энергоустановка

От напряжения также зависит и мощность Р:

P = U I,

и удельная мощность на единицу массы m и объема V топливного элемента

В процессе работы характеристики ТЭ постепенно ухудшаются, что обусловлено дезактивацией и износом катализаторов, коррозией основ электродов, изменением структуры электродов и другими причинами. Ухудшение характеристик ТЭ ограничивает их срок службы. Для увеличения срока службы ТЭ применяют химически стойкие катализаторы (платиновые металлы и оксиды некоторых металлов) и основы электродов (графит и никель). Срок службы некоторых ТЭ достигает 40 тыс. часов.

3. ЭЛЕКТРОХИМИЧЕСКИЕ ЭНЕРГОУСТАНОВКИ

Для увеличения тока и напряжения ТЭ соединяют в батареи. Последние могут работать, если в них непрерывно подаются реагенты и отводятся продукты реакции и тепло. Устройство, состоящее из батарей ТЭ, систем подвода реагентов, автоматики, отвода продуктов реакции и тепла, получило название электрохимического генератора (ЭХГ). В свою очередь, ЭХГ входит в электрохимическую энергоустановку (ЭЭУ), которая, кроме ЭХГ, включает блок подготовки топлива, преобразователь постоянного тока в переменный (инвертор) и блок использования тепла (рис. 4).

Рис. 4. Схема электрохимической энергоустановки

Выбор исходного топлива, используемого в ЭЭУ, определяется в первую очередь его стоимостью, доступностью, экологическими характеристиками, химической активностью и удельной энергией на единицу массы. Поэтому в качестве исходного топлива применяют природный газ, уголь и некоторые недорогие синтетические виды топлива, например метанол. Однако с приемлемой скоростью в ТЭ могут окисляться лишь водород и в специальных видах ТЭ - монооксид углерода и метанол. Поэтому природные виды топлива и метанол предварительно конвертируются в блоке подготовки топлива в водород и другие газы, например по реакциям

СН4+Н2О - СО + ЗН2,

СО + Н2О - СО2 + Н2,

СН3ОН + Н2О - СО2 + ЗН2,

С + Н2О - СО + Н2

Продукты конверсии затем подаются в ТЭ. Так как реальный КПД ТЭ (40-65%) ниже 100%, то при их работе выделяется тепло, которое может быть использовано либо для теплофикации, либо для генерации дополнительной электрической энергии с помощью паровых или газовых турбин.

4. ОСНОВНЫЕ ТИПЫ ТЭ И ЭНЕРГОУСТАНОВОК

К наиболее разработанным относятся ТЭ с щелочным электролитом (раствором КОН). Основные реакции в этих ТЭ были приведены ранее (1) - (3). В качестве материала электродов обычно применяют никель, хорошо устойчивый в щелочных растворах. Для ускорения реакции в электроды вводят платину. Энергоустановки на основе ТЭ с щелочным электродом мощностью 4, 5 и 30 кВт нашли применение на кораблях "Аполлон" и "Шаттл" [2]. Однако в ТЭ с щелочным электролитом можно использовать только чистые водород и кислород, так как из-за наличия СО2 в воздухе и техническом водороде происходит карбонизация щелочи:

2КОН + СО2 - К2СО3 + Н2О

Кроме того, эти установки достаточно дорогие.

Для гражданского применения разработаны ТЭ с фосфорнокислым электролитом (98%-ным раствором Н3РО4), в которых на аноде и катоде протекают реакции

2Н2 - 4е > 4Н+,

О2 + 4Н+ + 4е > 2Н2О

Элементы работают при температуре 200°С. Материалом электродов, устойчивым при этой температуре в агрессивной среде, служит графит, а катализаторами - Pt (0,8 - 1,2 г/кВт) и ее сплавы. В ТЭ с кислотными электролитами окислителем может служить кислород воздуха, так как компоненты воздуха химически не взаимодействуют с такими электролитами. На базе этих ТЭ в США и Японии созданы и испытаны ЭЭУ мощностью от 12 кВт до 11 МВт. Некоторые из них вышли на уровень коммерческой реализации. Данные ЭЭУ имеют срок службы несколько тысяч часов, суммарный КПД 75%, в том числе электрический 40-42%. Выбросы вредных компонентов на этих ЭЭУ на 1-2 порядка ниже по сравнению со стандартами на выбросы от тепловых машин.

В последние годы большой интерес проявляется к ТЭ с твердополимерным электролитом (ионообменной мембраной), на электродах которых протекают реакции (12) и (13). В качестве материалов электродов используется графит, а катализаторов - Pt и ее сплавы. Рабочая температура ТЭ около 100°С. К достоинствам этих ТЭ относятся отсутствие жидкого электролита, высокие удельные мощности на единицу массы и объема. Основное назначение ЭЭУ на основе данных ТЭ - это электромобили. Разработка ЭЭУ на основе ТЭ с твердополимерным электролитом ведется в США, Германии, России, Японии, Канаде и многих других странах. Применение ТЭ позволит создать транспорт, характеризуемый бесшумностью и удовлетворяющий экологическим требованиям. Важнейшими проблемами этих ТЭ являются снижение стоимости и увеличение срока службы. В качестве топлива для ЭЭУ на основе ТЭ с твердополимерным электролитом может быть метанол, который предварительно конвертируется в водород (реакция (10)). В последние годы во многих лабораториях мира ведутся работы по созданию ТЭ, в которых происходит прямое электроокисление метанола:

СН3ОН + Н2О - 6е > СО2 + 6Н+

Чистый Pt - катализатор быстро отравляется промежуточными продуктами реакции (14). Поэтому ведутся фундаментальные исследования механизма и катализаторов реакции (14) [3]. Предложены катализаторы на основе сплавов Pt-Ru, Pt-Ru-Re, Pt-Ru-WO3 и др. К настоящему времени созданы лабораторные образцы метанольных ТЭ, однако срок их службы пока не превышает сотни часов.

В рассмотренных до сих пор видах ТЭ применяются Pt и ее сплавы. Массовое производство ЭЭУ на основе ТЭ будет лимитироваться запасами Pt, которые относительно невелики. Поэтому большое внимание уделяется разработке высокотемпературных ТЭ, которые не содержат Pt-катализаторов.

В одном из них, работающем при температурах 650-700°С применяется электролит из расплава карбоната лития и натрия (Li2CO3 + Na2CO3), находящийся в порах керамической матрицы (LiAlO2). Материалом анода служит никель, легированный хромом; катода - дотированный оксид никеля (NiO + Li2O). Реакция, протекающая на аноде ТЭ:

Н2 + СO32- - 2е > СО2 + Н2О,

СО + СO32- - 2е > 2СО2 на катоде ТЭ:

2СО2 + О2 + 4е > СO32-

В последние годы было установлено, что в высокотемпературных ТЭ можно окислить и метан, если в элементе проводить его внутреннюю конверсию по уравнению (8). Основная проблема ТЭ с расплавленным карбонатным электролитом заключается в увеличении ресурса, поскольку в расплаве в присутствии О2 и СО2 происходит коррозия материала катода. К настоящему времени созданы ЭЭУ мощностью от нескольких киловатт до 2 МВт. Установки имеют КПД 60% и выше. Во втором типе высокотемпературных ТЭ применяется твердый электролит (ZrO2 + Y2O3), аноды - из Ni + ZrO2, катоды - из полупроводников на основе La1-x CaxMnO3. На электродах протекают следующие реакции:

Н2 + СO2- - 2е - Н2О и

СО + О2 - 2е > СО2 (анод),

О2 + 4е - 2О2 (катод).

Элементы работают при температуре 1000°С. Созданы и испытаны ЭЭУ мощностью до 20 кВт. Основной проблемой этого типа ТЭ является создание недорогой технологии многослойных керамических ТЭ и батарей ТЭ.

Таким образом, к настоящему времени разработаны пять типов ТЭ и большое число ЭЭУ на их основе. Энергоустановки на основе ТЭ имеют многие преимущества по сравнению с традиционными энергоустановками: более высокий КПД (в 1,5-2 раза выше), экологическая чистота, практическая бесшумность, широкий диапазон мощностей и применяемого топлива, возможности когенерации тепла [3]. Эти ЭЭУ не потребляют воду, при необходимости можно даже использовать воду, которая является продуктом реакции. Пока основным тормозом для их широкого применения являются относительно высокая стоимость (в 2-3 раза) по сравнению с традиционными установками, а также недостаточный срок службы. После преодоления этих недостатков системы на основе ТЭ найдут широкое применение как автономные маломощные и транспортные энергоустановки, так и стационарные мощные станции. Можно ожидать, что в начале следующего века энергоустановки на основе ТЭ будут вносить весомый вклад в генерацию энергии и решение экологических проблем транспорта и энергетики.

СПИСОК ЛИТЕРАТУРЫ

1. Курс общей химии / Под ред. Н.В. Коровина. М.: Высш. шк., 1990. 446 с.

2. Коровин Н.В. Электрохимическая энергетика. М.: Энергоатомиздат, 1991. 264с.

3. Коровин Н.В. II Изв. РАН. Энергетика. 1997. № 9. С. 49-65.

4. Давтян O.K. Проблема непосредственного превращения химической энергии топлива в электрическую. М.: Изд-во АН СССР, 1947. 150 с.

5. Худяков С.А., Поспелов B.C. // Наука и жизнь. 1990. № 9. С. 60-65.

6. Чизмаджев Ю.А., Маркин B.C., Тарасевич М.Р., Чирков Ю.Г. Макрокинетика процессов в пористых средах. М.: Наука, 1971. 364 с.

Размещено на Allbest.ru

...

Подобные документы

  • Современная энергетика. Сокращение запасов ископаемого топлива. Топливные элементы. Типы топливных элементов и области их применения. Состояние работ по водородной энергетике в России. Примеры использования водорода, в качестве источника энергии.

    реферат [789,6 K], добавлен 02.10.2008

  • История человечества тесно связана с получением и использованием энергии. Практическая ценность топлива - количество теплоты, выделяющееся при его полном сгорании. Проблема энергетики - изыскания новых источников энергии. Перспективные виды топлива.

    реферат [11,6 K], добавлен 04.01.2009

  • История развития процессов получения и использования энергии. Существующие виды топлива. Технологические свойства жидкого топлива. Применение газообразного топлива в различных отраслях народного хозяйства. Тепловое действие электрического тока.

    реферат [27,1 K], добавлен 02.08.2012

  • Понятие первичной энергии, способы ее получения. Энергия, непосредственно извлекаемая в природе (энергия топлива, воды, ветра, тепловая энергия Земли, ядерная). Традиционные, нетрадиционные виды энергетики, их характеристика. Создание топливных элементов.

    реферат [688,6 K], добавлен 04.02.2015

  • Органическое и ядерное топливо, виды, классификация по агрегатному состоянию. Состав газообразного топлива. Добыча органического топлива, проблемы правового и экологического характера. Современная ситуация на мировом газовом рынке, роль сланцевого газа.

    реферат [20,3 K], добавлен 27.01.2012

  • Сравнение видов топлива по их тепловому эффекту. Понятие условного топлива. Теплота сгорания твердого и жидкого топлива. Гомогенное и гетерогенное горение. Процесс смешивания горючего газа с воздухом. Воспламенение горючей смеси от постороннего источника.

    реферат [14,7 K], добавлен 27.01.2012

  • География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация [1,2 M], добавлен 28.11.2012

  • Основные способы определения потерь коэффициента полезного действия и часового расхода топлива. Характеристика конструкции топки. Анализ горелочных устройств, предназначенных для различных типов горелок. Знакомство с классификацией топочных устройств.

    практическая работа [1,2 M], добавлен 31.10.2014

  • Химические источники тока. Химическая реакция сжигания углерода. Переход химической энергии в тепловую. Структурная схема электростанции на топливном элементе. Процесс восстановления окислителя на катоде. Применение и проблемы топливных элементов.

    реферат [210,0 K], добавлен 20.11.2011

  • Проблемы современной российской энергетики, перспективы использование возобновляемых источников энергии и местных видов топлива. Развитие в России рынка биотоплива. Главные преимущества использования биоресурсов на территории Свердловской области.

    контрольная работа [1,1 M], добавлен 01.08.2012

  • Расход топлива по нормативным и измененным значениям топлива. Определение типоразмера мельницы-вентилятора. Расход сушильного агента при нормативных и измененных значениях топлива. Удельный расход электроэнергии на размол топлива и пневмотранспорт.

    курсовая работа [1,4 M], добавлен 03.03.2011

  • Анализ механической работы силы над точкой, телом или системой. Характеристика кинетической и потенциальной энергии. Изучение явлений превращения одного вида энергии в другой. Исследование закона сохранения и превращения энергии в механических процессах.

    презентация [136,8 K], добавлен 25.11.2015

  • Методика расчета горения топлива на воздухе: определение количества кислорода воздуха, продуктов сгорания, теплотворной способности топлива, калориметрической и действительной температуры горения. Горение топлива на воздухе обогащённым кислородом.

    курсовая работа [121,7 K], добавлен 08.12.2011

  • Преимущества альтернативного топлива: уменьшение выбросов; повышение энергетической независимости и безопасности государства; производство топлива из неисчерпаемых запасов. Виды альтернативного топлива: газ, электричество, водород, пропан, биодизель.

    презентация [463,7 K], добавлен 09.11.2012

  • Электростанции, вырабатывающие электроэнергию посредством преобразования химической энергии топлива в механическую энергию вращения вала электрогенератора. Общие сведения о работе тепловых паротурбинных станций. Основные способы увеличения КПД.

    реферат [1,4 M], добавлен 23.03.2014

  • Место ядерной энергетики среди других источников энергии. Характеристика последовательности производственных процессов ядерного цикла, добыча топлива, производство электроэнергии, удаление радиоактивных отходов. Обогащение урана и изготовление топлива.

    реферат [42,3 K], добавлен 09.12.2010

  • Основные понятия конвективного теплообмена: конвекция, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов теплообмена. Циклонные топки для сжигания дробленого угля. Характеристики газообразного топлива, доменного газа.

    контрольная работа [122,9 K], добавлен 25.10.2009

  • Принципы преобразования тепловой энергии в электрическую. Фотоэлектрический метод преобразования в солнечных батареях. Преимущества и недостатки ветроэлектростанций. Конструкции и типы ветровых энергоустановок. Ядерные реакторы на быстрых нейтронах.

    реферат [25,3 K], добавлен 22.01.2011

  • Расчет горения топлива (смесь коксового и доменного газов). Определение теоретически необходимого и действительного количества воздуха, количества продуктов сгорания, их процентного состава и калориметрической температуры. Характеристика видов топлива.

    контрольная работа [38,9 K], добавлен 28.04.2013

  • Понятие и виды топлива на тепловых электрических станциях. Использование газообразных видов топлива, обусловливаемое их химическим составом и физическими свойствами углеводородной части. Элементный состав жидкого, твердого и газообразного топлива.

    реферат [20,8 K], добавлен 28.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.