Джерела радіації
Сутність та характеристика основних джерел радіації: природних, космічних, земної та штучних. Особливості використання випромінювання в медицині. Ядерні вибухи, енергетика і альтернативні джерела енергії. Поняття про дози опромінення і рівні забруднення.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | украинский |
Дата добавления | 13.04.2015 |
Размер файла | 40,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Джерела радіації
1.1 Природні джерела радіації
Природними радіоактивними речовинами прийнято вважати речовини, які утворилися і впливають на людину без її участі. Земна кора, вода, повітря завжди містять радіоактивні елементи.
Людина, як мешканець цього середовища, також трохи радіоактивна, так як основну частину опромінення вона одержує від природних джерел радіації. Уникнути опромінення від природних джерел радіації абсолютно неможливо. радіація випромінювання енергія забруднення
Протягом всієї історії існування Землі, випромінювання з космосу опромінюють земну цивілізацію, яка адекватно адаптувалася до неї.
1.1.1 Космічні промені
Радіаційний фон, від космічних променів, відповідальний за половину всього опромінення, одержуваного населенням від природних джерел радіації.
Космічні промені представлені високоенергетичними потоками (приблизно 90%), альфа-частками (близько 9%), нейтронами, фотонами, електронами і ядрами легких елементів (1%). Однак, що входить в Сонячну систему, має свої захисні механізми від радіаційних впливів, інакше життя на Землі було б неможливе.
На відстані від одного до восьми земних радіусів космічні частинки відхиляються магнітним полем Землі. Магнітне поле Землі створює потужний захист для людини від космічної радіації, хоча і не абсолютну. Частина високоенергетичних часток проривається через магнітне поле і досягає верхніх шарів атмосфери. Мало хто з них проникають через всю атмосферу і досягають поверхні Землі. Більшість же, стикаючись з атомами азоту, кисню, вуглецю атмосфери, взаємодіють з ядрами цих атомів, розбиваючи їх, народжуючи безліч нових частинок протонів, нейтронів, мезонів, що утворюють вторинне космічне випромінювання.
Захиститися від цього невидимого "космічного душа" неможливо. Але одні ділянки земної поверхні більш схильні до його дії, ніж інші. Північний і Південний полюси одержують більше космічної радіації, ніж екваторіальні області, так як вплив магнітного поля Землі тут менше. Рівень опромінення істотно зростає з висотою, тому що зменшується шар повітря, що грає захисну роль Космічні промені, проходячи крізь атмосферу, викликають появу космогенних радіонуклідів, яких сьогодні налічується близько 20. Однак більш значними з них є ізотоп водню - тритій і вуглець. Заряджені частинки, потрапляючи в магнітне поле Землі, утворюють так звані радіаційні пояси Землі. Виходу заряджених часток з радіаційних поясів Землі заважає особлива конфігурація напрямків ліній магнітної напруженості, що створюють магнітні і радіаційні пояси Землі, були відкриті американським вченим Дж. Ван Алленом і російськими фізиками С.М. Верновим і А.Є. Чудановим. Заряджені частинки в магнітному полі рухаються по-різному залежно від співвідношення щільностей магнітної кінетичної енергії. Приблизно на відстані 10-ти земних радіусів потік заряджених частинок зустрічає сильне магнітне поле і під дією сили Лоренца змінюється напрямок їх руху. Рух потоку заряджених частинок можна представити, як коливальний рух але спіральної траєкторії уздовж силових ліній магнітного поля з Північного на південну півкулю і назад.
Одне коливання вздовж силової лінії з Північного на південну півкулю протон з енергією 100 МеВ здійснює приблизно за 3 секунди, а час його перебування в магнітному полі становить близько 100 років. При цьому відбувається до 10 10 коливань. У залежності від енергії і заряду, частинки здійснюють повний оборот навколо Землі за час від декількох хвилин до доби, рухаючись в західному та східному напрямках. Радіаційні пояси Землі можна підрозділити на внутрішній і зовнішній. У внутрішньому радіаційному поясі знаходяться протони високих енергій і електрони. На нижній межі внутрішнього поясу на відстані 200-300 км від поверхні Землі заряджені частинки зазнають зіткнення з атомами й молекулами атмосфери і міняють свою енергію, поглинаючись атмосферою. У зовнішньому радіаційному поясі знаходяться електрони з енергією до 100 кеВ і часом «життя» 10 5 -10 7 с.
Пояс протонів малих енергій (до 10 МеВ) знаходиться між внутрішнім і зовнішнім поясами Землі. Зона квазізахвата розташована за зовнішнім поясом і має складну конфігурацію, залежну від щільності потоку космічних променів сонячного вітру.
У роки активного сонця щільність потоку енергії сонячного вітру посилюється, кордон радіаційних поясів відсувається далі і стає великою перешкодою для космічних променів. У результаті цього, з тимчасовою затримкою близько року відбувається зростання інтенсивності космічних променів на Землі. Час затримки визначається відстанню, яке проходить сонячний вітер до кордонів магнітосфери. Радіаційні пояси Землі становлять серйозну небезпеку для екіпажів космічних кораблів при тривалих польотах у навколоземному просторі, якщо їх орбіта проходить через область радіаційних поясів. Тривале перебування космічних кораблів в радіаційному поясі призводить до переопромінення екіпажів, виходу з ладу оптичних приладів та сонячних батарей, що знаходяться на кораблі. У зв'язку з цим проводяться інтенсивні дослідження за допомогою супутників, спеціальних зондів з визначення координат радіаційних поясів Землі, а також розраховуються орбіти космічних кораблів для зниження дії радіаційного фактора.
1.1.2 Земна радіація
Як описано вище, земна радіація була відкрита більше 100 років тому.
В основному, відповідальність за природну земну радіацію несуть три сімейства радіоактивні елементи - уран, торій і актиній. Зазначені радіоактивні елементи нестабільні і, в результаті фізичних перетворень, перехід в стабільний стан, супроводжується виділенням енергії або іонізуючим випромінюванням.
Головними джерелами земної радіації є радіоактивні елементи, що містяться в гірських породах, які утворилися в результаті геофізичних процесів. Найбільший вміст радіоактивних елементів міститься в гранітних породах і вулканічних утвореннях. Середня концентрація радіоактивних ізотопів калію-40, Ra-226, Th-232 коливається у них від 10 лютого до 10 3 Бк / кг. Протягом еволюційних процесів радіоізотопи мігрують, беручи участь у метерологічних і геохімічних формуваннях навколишнього середовища. У результаті з'єднання зі стабільними елементами вони беруть участь в обмінних реакціях живих організмів, тим самим створюючи природну радіоактивність мешканців Землі. До найбільш значимих елементів, які забезпечують життєдіяльність живої матерії відносяться ізотопи калію, вуглецю і тритію, а всього в біосфері перебуває значно більше радіоактивних елементів, що обумовлює загальну радіоактивність людини.
Основну роль у радіоактивність людини вносить калій-40 - близько 20 * 1010 Бк або 0,2% від загальної маси людини, вуглець-14 - близько 30 * 10 2 Бк або 18% від загальної маси людини, які надходять в організм людини в основному по харчовому ланцюжку.
Основні радіоактивні ізотопи, що зустрічаються в Земній корі - калій-40, рубідій і члени двох радіоактивних сімейств, що беруть початок від урану-238 і торію-232.
Рівні земної радіації неоднакові і залежать від концентрації радіонуклідів у тій чи іншій ділянці земної кори. У місцях проживання основної маси населення потужність дози опромінення в середньому становить 0,3-0,6 мікрозіверта на рік.
Основний природний радіоактивний елемент на території Білоруського Полісся з періодом напіврозпаду 1,32 х 10 9 років, як дозообразующих фактор - це калій-40, який знаходиться в грунтах у вигляді солей і в живих організмах.
К-40 - слаборадиоактивний елемент, мало небезпечний, він засвоюється організмом разом з нерадіоактивними ізотопами калію, необхідними для життєдіяльності. У середньому людина одержує близько 180 мкЗв на рік від К-40.
У малих концентраціях природні джерела радіоактивності містяться в будь-якому грунті. Однак, в залежності від структури грунту, їх більше в гранітних породах, глиноземах і менше в піщаних і вапняних грунтах.
Половину річний індивідуальної ефективної еквівалентної дози опромінення від земних джерел радіації людина отримує від невидимого, що не має смаку і запаху важкого газу радону. У природі радон зустрічається в двох основних формах: радон-222, член радіоактивного ряду, утвореного продуктами розпаду урану-238, і радон-220, члена радіоактивного ряду торію-232.
Радон у 7,5 рази важчий за повітря і є альфа-радіоактивним з періодом напіврозпаду 3,8 доби. Після альфа-розпаду ядро радону перетворюється в ядро полонію. Це також альфа-радіоактивний ізотоп з періодом напіврозпаду 3 хвилини і наявністю додаткового електричного заряду. Наступні елементи цього ланцюжка радіоактивних розпадів мають такі ж характеристики. Закінчується ряд стабільним ізотопом свинцю. Концентратори радону в різних точках земної кулі неоднакова. Основну частину дози опромінення від радону людина одержує, перебуваючи в закритому, непровітрюваному приміщенні, де підвищена його концентрація. Радон може проникати крізь тріщини у фундаменті, через підлогу з поверхні Землі і накопичується в основному на нижніх поверхах житлових приміщень, створюючи там підвищену радіацію. Одним з джерел радонової радіації можуть бути конструкційні матеріали, використовувані в будівельному виробництві. До них в першу чергу відносяться матеріали з підвищеною радіоактивністю - граніт, пемза, глинозем, фосфогіпс.
Вода, що використовується для побутових і харчових цілей, зазвичай містить мало радону, проте глибоко залягають водяні пласти можуть мати підвищену його концентрацію. Висока концентрація радону утворюється у ванних кімнатах, де радон, випаровуючись з гарячої води при прийнятті душу або ванни, потрапляє в організм з повітрям.
Основними заходами щодо усунення впливу радону, зменшення його концентрації та зниження дозообразующих чинника є: закладення швів, тріщин в фундаментах будинків, відмова від будівельних матеріалів, які містять радон, обклеювання, забарвлення покриттів стін пластиковими матеріалами, кип'ятіння води для харчових потреб, особливо з глибоких артезіанських свердловин і колодязів, часте провітрювання приміщень на нижніх поверхах, ванних кімнат.
У процесі розвитку матеріального виробництва, технологій, людина може локально змінити розподіл природних джерел радіації, що призводить до підвищеного опромінення. Такими прикладами є польоти на літаках, застосування матеріалів з підвищеною концентрацією радіонуклідів, використання кам'яного вугілля та природного газу. Спостережувані при цьому підвищені рівні випромінювання називаються технологічно підвищеним природним радіаційним фоном (ТПЕРФ). Внесок у загальну дозу від природної радіації вносить вугілля яке спалюється як на теплових електростанціях, так і для звичайних побутових потреб. В 1 кг вугілля міститься до 50 Бк урану, близько 300 Бк торію, 70 Бк калію-40 та інших радіоактивних елементів. Якщо вугілля містить невелику кількість радіонуклідів, то у вугільних шлаках може бути висока їх концентрація. У зв'язку з цим, недоцільно використовувати шлаки вугілля як наповнювачі до цементів і бетонів, а золу - для поліпшення грунтів. Тому теплові електростанції є серйозним джерелом зовнішнього і внутрішнього опромінення населення, що проживає на прилеглих територій.
Інше джерело ТПЕРФ - промислове використання продуктів переробки фосфоритів. Поклади фосфоритів містять, як правило, продукти розпаду U -238 в порівняно високих концентраціях. При цьому слід врахувати, що видобуток фосфорної руди в світі дуже велика і з року в рік зростає.
Процес переробки фосфорної руди екологічно небезпечний, оскільки відходи руди містять радіонукліди. Застосування фосфорних добрив у сільському господарстві, стимулює засвоєння природних радіонуклідів рослинами з грунту. Використання відходів фосфорного виробництва в якості будматеріалів (гіпсу) також є можливим додатковим джерелом опромінення. Збільшення радіаційного грунтів можуть дати фосфор , особливо що вносяться в рідкому вигляді. У даному випадку дуже важливо дотримання термінів, по закінченню яких можна використовувати під випаси сільськогосподарські угіддя після агрохімії фосфором.
Людство в усьому світі все ширше для побутових потреб використовує велику кількість споживчих товарів, що містять радіонукліди. До таких товарів можна віднести годинник зі світловим циферблатом, що містить радій, спеціальні оптичні прилади, апаратуру, яка застосовується в і митному огляді і т.д.
Не можна недооцінювати іонізуюче випромінювання від телевізорів і, особливо, від дисплеїв комп'ютерів. Це випромінювання, в деяких випадках, може перевищувати природні фонові рівні. У зв'язку з цим не рекомендується дуже близько дивитися телепередачі або тривалий час знаходиться в дисплея комп'ютера, особливо дітям. Показано, що середньорічна доза, обумовлена використанням виробів, що містять радіонукліди, складає менше мЗв (1 мбер).
Додаткове опромінення від природних джерел радіації становить близько 1% дози, хоча в деяких випадках для окремих груп людей цей внесок може стати суттєвим у порівнянні з природним фоном.
1.2 Штучні джерела радіації
Відкриття радіоактивності послужило поштовхом для прикладного використання цього фізичного явища. У результаті господарської діяльності за останні кілька десятиліть людина створила штучні джерела радіоактивного випромінювання і навчився використовувати енергію атома в самих різних цілях: медицині, для виробництва енергії та атомної зброї, для пошуку корисних копалин та виявлення пожеж. Мирний атом застосовується в сільському господарстві та археології. З кожним роком збільшується кількість штучних джерел випромінювання, які використовуються в сфері діяльності людини, які дають додаткову дозове навантаження.
Дози, отримані кожною окремою людиною від штучних джерел радіації дуже різняться. У більшості випадків вони невеликі, але іноді техногенне опромінення виявляється досить значним, хоча і його значно легше контролювати.
Зовсім інша ситуація склалася на територіях, постраждалих від Чорнобильської катастрофи, між штучними та природними джерелами опромінення, про що докладніше зупинимося нижче.
1.2.1 Випромінювання в медицині
Медичні процедури і методи лікування, які пов'язані з застосуванням радіоактивного випромінювання вносять основний внесок серед техногенних джерел радіації. Розрізняють три самостійні напрямки застосування радіації в медицині.
Використання випромінювання в діагностичних цілях.
Найбільш поширеним з них є рентгенівські промені. Принцип рентгенографії заснований на здатності рентгенівських променів проходити крізь людський організм, як правило, вони легше проходять крізь м'які тканини і важче крізь кістки. Результат фіксується на фотоплівці або моніторі комп'ютера. У розвинених країнах в середньому кожна людина раз на два роки проходить рентгенівські обстеження , не рахуючи рентгенологічних обстежень зубів і масової флюорографії. У більшості країн близько половини обстежень припадає на частку грудної клітини, але в міру зменшення захворювання на туберкульоз, інтенсивність масових обстежень знижується. Розвиток комп'ютерної техніки дозволило поєднати рентгеноскопію з методами обробки інформації. Комп'ютерна томографія знаходить все більш широке застосування. Така методика при обстеженні нирок дозволила зменшити дози опромінення шкіри в 5 разів, а яєчників - у 25 разів у порівнянні зі звичайними методами. В даний час розроблено новий метод діагностики на основі ядерно-магнітного резонансу. У таких установках використовують не рентгенівське випромінювання, а дуже інтенсивне магнітне поле і електромагнітні хвилі радіочастотного діапазону, цей вид діагностики особливо важливий в умовах чорнобильського фактора, так як не дає додаткової дозового навантаження.
Введення радіоактивних ізотопів в організм людини.
Метод заснований на реєстрації випромінювання зовні організму після того, як ізотопи сконцентруються в певному органі, розташованому в глибині тіла. Область використання радіоактивних речовин для діагностики або лікування називають радіоізотопної медициною. Величину випромінювання оцінюють за допомогою лічильника та визначають локалізацію, кількість характер розподілу введеного ізотопу. Така інформація дуже важлива для діагностики ряду медичних порушень. Завдяки високій чутливості лічильників, що визначають випромінювання, в організмі людини вводять дуже невелика кількість радіоактивних речовин, що не порушує нормальної рівноваги речовин. Річна ефективна еквівалентна доза від даних видів досліджень на думку японських вчених становить 20 мкЗв на людину.
В даний час іонізуючі випромінювання використовують для боротьби із злоякісними хворобами.
Променева терапія заснована на здатності рентгенівських променів (або інших видів іонізуючих випромінювань) впливати на клітини біологічної тканини за допомогою усунення їх здатності до поділу і розмноження. Успішне лікування залежить від точного напрямку променя і забезпечення режиму опромінення дозами, які розподілені протягом тривалого періоду часу .
У світі налічується кілька тисяч радіотерапевтичних установок, які використовуються для лікування раку. Сумарні дози для кожної людини досить великі, однак їх отримує невелика кількість людей. Тому їх внесок у дозу незначний.
Середня ефективна еквівалентна доза, що отримується від всіх джерел опромінення в медицині в промислово розвитих країнах близько 1 мЗв на кожного жителя, тобто приблизно половина середньої дози від природних джерел. Цей показник є неоднаковим у різних країнах і визначається рівнем соціального розвитку країни, доступністю медичної допомоги та охоплення населення медичними заходами, матеріально-технічною базою рентгенологічної служби, тобто якістю і конструктивними особливостями рентгенівської апаратури.
1.2.2 Ядерні вибухи
Будь-яке наукове відкриття, як показав досвід, може бути використано на благо чи на шкоду людської цивілізації. Одним з прикладів цього є розробка і застосування ядерної зброї. ядерної зброї в атмосфері, розпочаті після другої світової війни, є додатковим джерелом опромінення населення Землі. Найбільша кількість випробувань було проведено в 1954-1958 і 1961-1962 роках. З 1963 року проводяться в основному підземні випробовування, які зазвичай не супроводжуються утворенням радіоактивних опадів. У результаті вибухів на планеті утворилася величезна кількість радіонуклідів. Частина радіоактивного матеріалу випала неподалік від місця вибуху (локальні опади). Тропосферні опади випали на відстані кількох сотень тисяч кілометрів протягом місяця після вибуху. Їх поширення залежить від погодних умов на даній широті. Велика частина радіоактивного матеріалу зосередилася в стратосфері (10-50 км від поверхні Землі), обумовлюючи глобальне радіоактивне забруднення навколишнього середовища протягом багатьох років. Радіоактивні опади складаються з декількох сотень різних радіонуклідів, але найбільше значення для формування доз опромінення населення Землі мають такі: вуглець-14, цезій-137, церій-144, стронцій-90, рутеній-106, цирконій-95, тритій і йод-131 . Дози опромінення від цих та інших радіонуклідів неоднакові у різні періоди часу після вибуху, так як різну швидкість їх розпаду.
1.2.3 Енергетика
Атомна електростанція (АЕС) - новий сучасний тип підприємств з виробництва електроенергії. В основі її виробництва лежать ланцюгові реакції поділу важких ядер. Ядерним пальним служать ізотопи урану -235 І -238, Рі-239, Th -232, але для більшості АЕС використовується тільки U - 235, 238, одержувані з уранової руди. При розпаді цих елементів виділяється значна енергія і, що особливо важливо, звільняються два-три нейтрону, що володіють кінетичною енергією порядку декількох МеВ; їх називають "швидкими", на відміну від "повільних" нейтронів (Е <1 МеВ) і " теплових "нейтронів (Е <0,01 еВ). Ядерна реакція розпаду урану-235 виглядає наступним чином. Випущення при поділі ядер -235, 239 і - 233 кількох нейтронів робить можливим здійснення ланцюгової реакції. Кожен з нейтронів, що утворилися при одному акті поділу, якщо він буде захоплений ядром, викличе появу нових нейтронів, здатних, у свою чергу, викликати реакції поділу і т.д. Таким чином буде відбуватися лавиноподібне наростання нейтронів ділення і розвивається ланцюжок діляться ядер (ланцюгова реакція). У дійсності, ця картина не завжди має місце: частина вторинних нейтронів потрапляє в ядра атомів тих речовин, які присутні в обсязі, де розвивається реакція, але не є діляться, інша частина може просто вийти за межі активної зони - простору, де йде реакція.
Умовою, необхідною для виникнення ланцюгової реакції, є розмноження вторинних нейтронів. Коефіцієнтом розмноження нейтронів називають відношення числа нейтронів в даному поколінні до числа нейтронів в попередньому поколінні. Величина цього коефіцієнта визначається значенням середнього числа нейтронів, що утворюються при одному акті поділу, ймовірностями різних процесів взаємодії нейтронів з ядрами речовини, що ділиться і домішок, а так само розмірами системи, в якій відбувається реакція.
Вище описаний процес може мати практичне значення, якщо вдасться здійснити ланцюгову реакцію і зробити її керованою, тобто викликати швидке наростання , зупинку наростання і створення стаціонарного процесу, рівень якого може встановлюватися експериментатором. У цьому плані найбільш прийнятний ізотоп -235, Тому що він ділиться як швидкими, так і повільними нейтронами, причому ймовірність поділу після захоплення нейтрона набагато більше, ніж у 238, здатного ділитися тільки під дією швидких нейтронів. У природному урані, що містить більше 99% ядер -238 І всього 0,72% 235, ланцюгова реакція мимоволі не виникає. Тому в ядерних реакторах (пристроях, у яких здійснюється ланцюгові ядерні реакції), що працюють на незбагаченому, природному урані, головна роль відводиться рідкісного ізотопу 235.
Перший ядерний реактор був побудований в грудні 1942 року в США під керівництвом Е. Фермі. Перший європейський ядерний реактор створений в Москві під керівництвом М.В. Курчатова. Деякі з, так званих, гетерогенних реакторів представляють систему графітових блоків, в які вставлені в певному порядку уранові стрижні. Між останніми поміщені керуючі стрижні, що містять кадмій. Уран є ядерним пальним; графіт - сповільнювач швидких нейтронів; кадмій, добре поглинає нейтрони, - поглинач. Завдяки кадмію можна регулювати інтенсивність процесу розподілу: для послаблення реакції керуючі стрижні всувають в реактор, для прискорення - висувають з нього. Область, де відбувається реакція, оточена шаром берилію, відбиває нейтрони, і бетонним шаром, що поглинає шкідливі для людини випромінювання.
На території колишнього Радянського Союзу використовуються гетерогенні реактори двох типів - ВВЕР і РБМК. Це реактори "на теплових нейтронах.
Абревіатура ВВЕР розшифровується як водо-водяний реактор. У даному випадку це означає, що теплодонощиків та сповільнювачем є
РБМК - реактор великої потужності канальний (або киплячий). У реакторах цього типу сповільнювачем служить графіт, а теплоносієм - вода.
Основні характеристики РБМК наступні. Активна зона реактора - вертикальний циліндр еквівалентним діаметром 11,8 м, висотою 7 м. Боковий відбивач товщиною 1 м, торцьові відбивачі - 0,5 м. В якості вихідного палива в реакторах РБМК використовується збагачений , тобто вміст -235 становить 2%.
Реактор РБМК використовувався і на Чорнобильській АЕС.
Ядерний реактор замінює топку котла. В іншому ж АЕС містить всі елементи звичайної електростанції. Струм газу, наприклад гелію, передає тепло, звільнене в результаті поділу, в теплообмінник. Там же утворюється пара, що прямує на турбіну, до якої підключений генератор змінного струму.
АЕС має ряд переваг перед тепловими електростанціями, що працюють на вугіллі або нафтопродуктах:
1. 10 грам незбагаченого урану замінює 0,43 м 3 нафти, що дозволяє економити природні енергоресурси.
2. Оскільки самого процесу спалювання як такого не відбувається, вихлопні гази відсутні і, отже, немає двоокисом сірки або вуглецю.
3. АЕС вимагає обслуговуючого персоналу в 2-3 рази менше, ніж теплові електростанції.
Крім електроенергії зазначений тип реакторів, що використовує суміш ізотопів урану -235 та -238. Виробляє Рі-239 - радіоактивний елемент, практично не зустрічається в природі: альфа-активний, період напіврозпаду - 24400 років. Цей ізотоп застосовується, головним чином, у військовій промисловості. Інакше його називають збройовий .
Одним з факторів опромінення людини, особливо після аварій на атомних електростанціях, є техногенний радіаційний фон атомної енергетики, який при нормальній роботі ядерної установки невеликий.
Після аварії на Чорнобильській АЕС в екологічному аспекті виникло різко негативне ставлення до перспектив розвитку ядерної енергетики, хоча і в процесі спалювання вугілля, з метою отримання електроенергії та опалення приміщень, відбувається навколишнього середовища. Слід зазначити, що в одному кілограмі вугілля міститься близько 70 Бк калію-40, 300 Бк торію і до 500 Бк урану. При спалюванні радіонукліди концентруються в золі. Зі сказаного випливає, що теплові електростанції є серйозним джерелом опромінення населення на прилеглих до станцій територіях. Радіоактивні викиди ТЕС у відстанях формують в десятки - сотні разів більшу ефективну еквівалентну дозу, ніж технологічні викиди нормально атомної станції. Крім того, у викидах ТЕС небезпечні технічні канцерогени, особливо бензопилрен, сірчистий газ, азоту, свинець. Середні індивідуальні дози опромінення в районі розташування ТЕС в залежності від потужності та ступеня викидів золи, за даними Холла, коливаються в межах 6-60 мкЗв / рік, тоді як в залежності від типу реактора від 0,004 до 0,13 мкЗв / рік , що значно нижче.
За даними МАГАТЕ до 1993 р. в 29 країнах світу діяло 424 енергоблока АЕС. Їх потужність становила близько 20% сумарної потужності всіх джерел електроенергії. За кількістю діючих реакторів держави розподілилися наступним чином: США - 109 блоків, Франція - 56, Японія - 44, Великобританія - 37, Росія - 28, Німеччина і Канада - 21, Україні - 15, Швеція - 12 і ще 20 держав мають від 1 до 9 блоків. Як видно АЕС розміщені в досить високорозвинених країнах. До особливої групи можна віднести ряд країн центральної та східної Європи. Це Болгарія - 6 блоків, Угорщина - 4, Литва - 2, Словаччина - 4, Словенія - 1, Чехія - 4. включає в себе видобуток уранової руди і витяг з неї урану, переробку сировини в готове ядерне , транспортування і хімічну регенерацію відпрацьованого палива, очищення останнього від радіоактивних відходів і домішок, а потім поховання відходів. Відходи є головним довгоживучим джерелом опромінення населення, пов'язаним з розвитком ядерної енергетики.
Половину від загальної кількості уранової руди видобувають відкритим способом. Потім її збагачують на фабриці, зазвичай розташованої неподалік. Фабрики і створюють проблему довготривалого забруднення, утворюючи величезну кількість відходів, які будуть радіоактивні років. За різних авторів до 2000 року в світі накопичиться 200 тисяч тонн урану, в той же час потужності з переробки відходів розраховані лише на 50 тисяч тонн. У результаті переробки утворюються газоподібні і рідкі , але вони дають відносно невеликий внесок у дози опромінення в порівнянні з іншими етапами паливного циклу. Після збагачення ядерне паливо готово для спалювання. Величина радіоактивних викидів при цьому залежить від типу реактора і коливається в широких межах. Викиди можуть істотно відрізнятися при роботі одного і того ж реактора в різні роки в залежності від поточних ремонтних робіт, під час яких і відбувається велика частина викидів.
Частина відпрацьованого ядерного палива направляється на переробку. В даний час це 10% використаного ядерного палива. Останній етап паливного ядерного циклу - поховання високоактивних відходів, які становлять найбільшу небезпеку для екології. Цикл поховання вимагає величезних коштів, потребує досконало технології утилізації відходів. У якості ядерних відходів слід розглядати і самі ядерні електростанції відслужили свій термін. В даний час ряд блоків у Західній і Східній Європі підходять до критичних термінів свого існування, тому це питання сьогодні також актуальне, оскільки демонтувати АЕС складніше, ніж її побудувати, і технологія демонтажу ще не відпрацьована.
Річна ефективна доза опромінення від усього ядерного циклу в 1980 році склала 500 чел.-Зв. Очікується що до 2100 року вона зросте до 200000 чел.-Зв. Ця заснована на припущенні, що нинішній рівень викидів збережеться. Але навіть і в цьому випадку, середні дози будуть в порівнянні з дозами, що отримуються від зовнішніх джерел, в 2100 році вони складуть лише 1% від природного фону, хоча з урахуванням техногенних катастроф на атомних станціях і, особливо, на Чорнобильській АЕС це співвідношення істотно зміниться.
На сьогоднішній день в зруйнованому 4-му блоці Чорнобильської АЕС знаходиться 50 т урану. Уран знаходиться в застиглій лаві селікатної речовини при температурі 50-100 ° С, яка розплавила дві залізобетонні перекриття. За оцінками фахівців 120 т урану знаходиться між зруйнованим 4 блоком і саркофагом. Близько 40 т високорадіоактивних суміші з уранового палива, графіту, бетону знаходиться в шахті зруйнованого реактора.
Сам саркофаг знаходиться в аварійному стані і термін його> служби за попередніми оцінками - близько 5 років. Бетонна укриття навколо 4-го блоку має тріщини близько 1000 м 2. Верхнє бетонне перекриття порушено і в разі екстремальної ситуації 40 т радіоактивного пилу піднімається вгору.
У зв'язку з цим необхідно проводити щоденний радіаційний за станом навколишнього середовища, дослідити ізотопний радіонуклідів, динаміку їх переміщення та своєчасно інформувати населення, щоб не повторився другий Чорнобиль.
У 1993 році відбувся міжнародний конгрес з розробки нового укриття і створенню екологічно безпечної системи. Було представлено близько 400 проектів з різних країн світу. У минулому році відбулося обговорення першого етапу проекту вартістю близько 300 млн. доларів, розрахованого на 5 років. Головним висновком етапу є підтвердження аварійного саркофага. Слід зазначити, що працюють 2-ий і третій енергоблоки Чорнобильської АЕС не міжнародним нормам радіаційної безпеки. У 1991 р. Верховна Рада Україна прийняла рішення про закриття Чорнобильської АЕС, проте в 1993 р. своє рішення скасував. У 1994 р. 7 країн Європейського співтовариства запропонували Україні 200 млн. доларів для закриття Чорнобильської АЕС.
За дирекції Чорнобильської вже 300 млн. доларів на підвищення безпеки станції, а також добивається від світової спільноти фінансування витрат на закриття Чорнобильської АЕС та компенсації вироблення електроенергії за рахунок введення нових блоків на інших станціях (вартість близько 4,5 млрд. доларів ).
Сьогодні можна однозначно зробити висновок, що має глобальний характер. завдасть непоправної шкоди і її стала зоною екологічного лиха. Поки існують атомні станції, атомну зброю, необхідно об'єднати зусилля всіх людей для вироблення ефективних заходів від ядерних аварій та подолання наслідків Чорнобильської катастрофи. Залежно від аварії на атомній електростанції, радіоактивні речовини, викинуті в атмосферу в результаті вибуху або нештатної ситуації, потрапляють у і переносяться повітряними потоками, в залежності від погодних умов, на різні відстані від епіцентру аварії. Вся середовище проживання, флора, фауна, яка перебуває у зоні вибуху, буде піддаватися опроміненню. Концентрація і якісний склад радіонуклідів, що знаходяться в радіоактивній хмарі, залежать від характеру вибуху. Якщо викид радіоактивних елементів стався в результаті вибуху активної зони реактора, то радіоактивні речовини піднімаються досить високо в атмосферу і можливо їх переміщення з повітряними масами повітря на великі відстані. Важливим чинником викиду є температура і стан реактора в момент аварії. Якщо реактор в момент аварії знаходився не в робочому стані, то викид короткоживучих радіонуклідів мало ймовірний, і навпаки, аварія в момент ядерної реакції супроводжується утворенням і викидом короткоживучих елементів. Поряд з викидом газоподібного фракції радіонуклідів з активної зони реактора Чорнобильської АЕС були викинуті осколки палива, графіт, елементи конструкції та інші матеріали з більш високою температурою плавлення. Радіоактивна , що розповсюджується на великі відстані від місця аварії, осідає на землю з дощовими опадами, абсорбується на зважених порошинках повітря, змінює свою концентрацію і склад. У початковий період аварії короткоживучі радіонукліди, що переносяться повітряними потоками, є основними дозоутворюючими факторами зовнішнього опромінення. Надалі основний внесок в інтегральну дозу опромінення вносять довгоживучі радіонукліди цезій-134 і -137, церій-134, стронцій-90 та інші, які осідаючи на землю, рослини, водойми, і володіючи великими періодами напіврозпаду, є джерелами гамма-випромінювання. У 2.4 представлено склад радіонуклідів у повітрі в поверхні землі на 28 квітня 1986 року в Нурміярві (Фінляндія).
У безпосередній близькості до реактора (на відстані 100 км) концентрація перелічених вище радіонуклідів була набагато вище. У післяаварійні роки спектрометричні аналізи приземного повітря показали, що в атмосфері присутні у певній концентрації радіонукліди цезію-137, цезію-134, Беріл-7, стонція-90, церію-144, рубідію-106, актинія-228. За оцінками різних авторів, збільшення гонадної дози становить близько 10 мБер на рік. Ця додаткова технічна доза також збільшує ризик отримання вад розвитку у дітей, що становить 1 на 8000. У другому і третьому поколіннях цей стан буде рости. З вище викладеного можна розрахувати кількість спадкових вад розвитку, які виникають від Чорнобильської аварії, запропонований Дж. Гофманом, враховує багато факторів, в тому числі, дозові навантаження від радіації. Вважається, що 48% всієї колективної дози населення Землі одержало за перше десятиліття після Чорнобильської катастрофи, 69% - протягом перших 30 років і 75% - протягом 40 років після аварії. Решта 25% будуть отримані в наступні роки. Для людей 42 млн. чоловіків і жінок, кожен з яких отримали середню дозу 1 рад, буде спостерігатися 21000 випадків вад розвитку новонароджених із зростанням в наступних поколіннях. Загальна кількість випадків аномального розвитку від колективної дози 42 млн. людини-радий складе 210000 випадків. У висновку слід зазначити, що методика і Дж. Гофмана виходять з граничних оцінок ризику, що, на наш погляд, є виправданим для населення, яке постраждало від Чорнобильської катастрофи, так як здоров'я людей, - найважливіший фактор розвитку суспільства.
1.3 Альтернативні джерела енергії
В даний час перспективними з екологічної точки зору є розробка альтернативних джерел енергії, таких як сонячні і вітряні електростанції.
В Україні є певні можливості використання енергії сонця. Тривалість сонячних днів для нашої республіки становить близько ста на рік, що становить в 1 кКал на 1 м 2. Ця енергія може бути використана як безпосередньо для теплових потреб, так і для в енергію на сонячних електростанціях. Незатребуваною сьогодні є також енергія вітру. За умови використання вітроагрегатів 3000 годин річне вироблення енергії складе близько 20 млрд. кВт, а економія органічного палива 11-12 млн. т.
Перспективним джерелом енергії є особливо для сільської місцевості є гідроресурси. Використання енергії води може внести вагомий внесок у енергії країни. Практично не використовуються в Україні тверді побутові відходи (ТПВ), а також біомаса. При використанні прогресивних технологій з переробки їх потенційна енергія еквівалентна 630 тис. тонн питомої палива.
У колишньому СРСР склалося відношення до електроенергії як до чогось безкоштовного. Це не могло не відбитися й на економіці щодо економії електроенергії в побуті, на при висвітленні міст і населених пунктів. У цьому відношенні слід орієнтуватися на розвинені країни - ФРН, США та інші, де боротьба за економію і раціональне використання енергії зведені в ранг національних програм. Необхідно також знизити споживання енергії за рахунок впровадження на виробництві сучасних енергозберігаючих технологій. В іншому разі не можна домогтися економіки країни. Кошти, вкладені в атомну енергетику, можуть стимулювати подальше технологічне відставання народного господарства.
Однак на наш погляд на головну небезпеку для екології представляють аварії на атомних станціях. Багато хто вважає, що озвучена була лише найбільша атомна катастрофа на Чорнобильській АЕС, яка була наслідком багатьох, навіть неймовірних факторів. Разом з тим аварії на атомних електростанціях трапляються регулярно. Тільки за останні п'ять десятиліть зареєстровані близько 150 атомних аварій в країнах з високорозвиненою технологією, високою технічною обслуговуючого персоналу. Хоча масштаби аварії непорівнянні з Чорнобильською катастрофою, наведемо хронологію найбільш значущих з них.
1957 р. - в реакторі ядерного заводу в Селлавіле (Англія). Результат аварії - радіоактивне забруднення території Англії та Західної Європи.
1957 р. - сховища радіоактивних відходів у місті Киштим області. Переселено в інші місця 10 тис. чоловік.
1961 р. - аварія на ядерному реакторі в штаті Айдахо (США).
1966 р. - розплавлення сердечника реактора в штаті Мічиган (США).
1969 р. - аварія в системі охолодження підземного реактора в Швейцарії. Викид радіоактивних ізотопів, забруднення території.
1971 р. - аварія на реакторі в штаті Міннесота (США). У річку Міссісіпі потрапило близько 200 тис. літрів радіоактивної води, частина її потім - в систему водопостачання міста Сан-Пауло.
1975 р. - пожежа на реакторі в штаті Алабама (США) спричинив за собою збиток 10 млн. доларів.
1979 р. - аварія на реакторі "Тримайл-Айленд". Ліквідація наслідків аварії тривала до 1994 року. склали 5 млрд. доларів. Це найбільша ядерна аварія в ядерній енергетиці.
1981 р. - забруднення території радіоактивною водою в обсязі 454 тис. літрів на заводі в штаті Теннессі (США).
1981 р. - аварія на атомній станції в Цуруга (Японія).
1983 р. - аварія на реакторі поблизу Торонто (Канада).
1986 р. - радіоактивний викид на реакторі в Північний Рейн-Вестфалія (ФРН).
1988 р. - пожежа на АЕС у Фатуба (Японія).
2011 р. - аварія на атомній станції в Фукусіма - 1 (Японія).
Багато західних держав, усвідомлюючи небезпеку, все частіше відмовляються від будівництва нових атомних електростанцій. Так у США, Німеччині, Франції, Англії та інших західноєвропейських країнах заморожено проектування нових атомних блоків. Закриваються діючі, не задовольняють безпеки атомні станції. За оцінками фахівців до кінця нашого століття будуть закриті близько 40 діючих атомних електростанцій.
Підсумовуючи вищевикладене можна зробити висновок, що людство стоїть перед дуже складною проблемою в пошуках джерел, які повинні забезпечити цивілізації в 21 столітті.
2. Поняття про дози опромінення
До радіаційних небезпечних об'єктів на території України відносяться:
§ атомні електростанції (Запорізька, Південно-Українська, Рівненська, Хмельницька і Чорнобильська);
§ підприємства по виготовленню і переробці відпрацьованого ядерного палива;
§ підприємства по похованню радіоактивних відходів;
§ науково-дослідні та проектні організації, які працюють з ядерними реакторами;
§ ядерні реактори на об'єктах транспорту та інші.
Найбільш небезпечними із всіх аварій на радіаційно небезпечних об'єктах, є аварії з викидом радіонуклідів в атмосферу і гідросферу, що приводять до радіоактивного забруднення навколишнього природного середовища.
Ступінь забруднення характеризується поверхневою (об'ємною) щільністю зараження радіонуклідами і вимірюється активністю того чи іншого радіонукліда.
Радіаційна дія на персонал об'єктів і населення в зоні радіоактивного забруднення оцінюється величиною дози зовнішнього і внутрішнього опромінювання людей.
Основними дозиметричними величинами, за допомогою яких оцінюється дія радіації на людину, є поглинута і еквівалентна доза її опромінювання.
Експозиційна доза визначається тільки для повітря при гамма і рентгенівському випромінюванні.
Поглинута доза - це основна дозиметрична величина для оцінки радіаційної небезпеки.
Еквівалентна доза - дозиметрична величина для оцінки шкоди здоров'ю людини від дії іонізуючого випромінювання будьякого складу, дорівнює добутку поглинутої дози на коефіцієнт якості.
Коефіцієнт якості випромінювання (К) дорівнює: для гамма і бета випромінювання одиниці; для альфа випромінювання двадцяти.
3. Рівні забруднення
Характер і масштаби радіоактивного забруднення місцевості при аваріях на АЕС залежать від типу реактора, ступеню його руйнування, метеорологічних умов, рельєфу місцевості і, головним чином, від характеру вибуху (тепловий чи ядерний).
При аварії на АЕС з тепловим вибухом і руйнуванням реактора відбувається викид радіонукліді в у атмосферу, гідросферу і літосферу, що обумовлює радіоактивне забруднення довкілля і опромінювання працюючого персоналу і населення.
Тяжкість променевої хвороби залежність від величини дози опромінювання.
Зони радіоактивного забруднення на місцевості при тепловому вибуху будуть характеризуватись значними рівнями радіації. Вони поділяються на зони: відчуження, безумовного відселення, гарантованого (добровільного) відселення і підвищеного радіоекологічного контролю.
Зона відчуження - це територія з якої проводиться евакуація населення негайно після аварії і на ній не здійснюється господарська діяльність.
Зона безумовного відселення - це територія навколо АЕС, на якій щільність забруднення ґрунту довго живучими радіонуклідами цезію дорівнює 15,0 Кі/км2 і більше, або стронцію - 3,0 Кі/км2 і більше, або плутонію - 0,1 Кі/км2 і більше, де розрахована ефективна доза опромінювання із урахуванням коефіцієнту міграції радіонуклідів в рослини перебільшує 5 мЗв (0,5 бер) на рік.
Зона гарантованого (добровільного) відселення - це територія, на якій щільність забруднення ґрунту радіонуклідами цезію від 5,0 до 15,0 Кі/км2, або стронцію від 0,15 до 3,0 Кі/км2 або плутонію від 0,01 до 0,1 Кі/км2, де ефективна доза опромінювання із урахуванням коефіцієнту міграції радіонуклідів в рослини та інших факторів може перебільшити 0,5 мЗв (0,05 бер) на рік.
Зона підвищеного радіоекологічного контролю - це територія із щільністю забруднення ґрунту радіонуклідами цезію від 1,0 до 5,0 Кі/км2, або стронцію від 0,02 до 0,15 Кі/км2, або плутонію від 0,005 до 0,01 Кі/км2, де ефективна доза опромінювання із урахуванням коефіцієнту міграції радіонуклідів в рослини та інших факторів може перебільшити 0,5 мЗв (0,05 бер) на рік.
Аварія з повним руйнуванням реактору на атомній електричній станції і його ядерним вибухом - може мати місце внаслідок стихійного лиха, падіння літаючого апарату на атомну електричну станцію, дії вибуху звичайних чи ядерних боєприпасів у воєнний час або диверсії. На території сліду радіоактивної хмари такого вибуху, як і при наземному ядерному вибуху, виділяють зони: надзвичайно небезпечного забруднення (зона Г), небезпечного забруднення (зона В), сильного забруднення (зона Б), помірного забруднення (зона А), радіаційної небезпеки (зона М).
Умовами проживання і трудової діяльності населення без обмеження по радіаційному фактору є одержання додаткової дози за рахунок забруднення довкілля радіоактивними ізотопами дози, що не перебільшує межі опромінювання, які встановлені Державними гігієнічними нормативами “Норми радіаційної безпеки України (НРБУ 97)”.
Під радіаційною обстановкою при аваріях на АЕС розуміють ступінь радіоактивного забруднення місцевості і атмосфери, що оказують дію на життєдіяльність населення та проведення аварійнорятувальних і невідкладних відновлювальних робіт.
Прогнозування і оцінка радіаційної обстановки включає вирішення наступних задач:
* визначення напрямку осі сліду хмари викиду радіоактивних речовин, внаслідок аварії або руйнування ядерного реактора АЕС, за метеоданими;
* розмірів зон забруднення місцевості, які розмежовуються за очікуваними значеннями доз опромінювання населення;
* потужності дози гаммавипромінювання на осі сліду;
* доз внутрішнього (інгаляційного) опромінювання людей, що знаходяться на сліду, за час проходу хмари;
* концентрації радіоактивного йоду 131 в повітрі за час проходу радіоактивної хмари;
* можливих радіаційних уражень людей, що знаходяться на забрудненій території;
* допустимого рівня перебування населення в зонах радіаційного забруднення.
Вказані задачі можуть вирішуватися розрахунковим методом з послідуючим уточненням на основі фактичних вимірювань на забрудненій місцевості (за даними радіаційної розвідки або систем контролю радіаційної обстановки).
Вихідними даними для прогнозування і оцінки радіаційної обстановки є: координати місця розташування АЕС; тип реактора і його електрична потужність; час начала викиду радіоактивних речовин в повітря; напрям вітру і його швидкість на висоті флюгеру (10 м); клас стійкості атмосфери; загальна хмарність, висота хмари і вид хмарності; прогноз зміни метеорологічних даних на ближчі 12 годин після аварії. Прогнозування і оцінка радіаційної обстановки проводиться за допомогою формул і таблиць.
Об'єкт знаходиться на відстані 56 км від АЕС, на якій стався викид 30 % активності радіоактивних речовин в повітря, реактор типу РВПК1000, категорія стійкості атмосфери - сильно нестійка (конвекція), швидкість приземного вітру 2 м/с. Оцінити можливість попадання об'єкту господарської діяльності в зону радіоактивного забруднення.
o Із таблиці при 30% викиду активності маємо наступні зони радіоактивності: М - довжина 249 км; А довжина 62, 6 км; Б - довжина 13,9 км і В - довжина 7 км.
o Об'єкт може опинитися в зонах М і А, якщо напрямок вітру співпадає з напрямком АЕС об'єкт.
Для виявлення і виміру іонізуючих випромінювань радіоактивних речовин використовуються дозиметричні прибори-рентгенометри, радіометри-рентгенометри, індикатори, індивідуальні дозиметри. За своїм призначенням поділяються на прибори для формувань цивільної оборони і побутові для використанням населенням. Частина приладів може бути подвійного призначення як для формувань ЦЗ так і для населення.
Література
1. Лінденбратен Л.Д., Наумов Л.Б. Медична рентгенологія. М. Медицина 1984
2. Савенко В.С. Радіоекологія. - Мн.: ПРО, 1997.
3. Ткаченко М.М., "Радіологія (променева діагностика та променева терапія)" М. Медицина 1997
4. Хазов П.Д. Променева діагностика. Цикл лекцій. Рязань, 2006
5. Хазов . П.Д., Петрова М.Ю. Основи медичної радіології, Рязань, 2005
6. Шумаков А.В. Короткий посібник з радіаційного медіціне Луганск, 2006
Размещено на Allbest.ru
...Подобные документы
Загальна характеристика основних видів альтернативних джерел енергії. Аналіз можливостей та перспектив використання сонячної енергії як енергетичного ресурсу. Особливості практичного використання "червоного вугілля" або ж енергії внутрішнього тепла Землі.
доклад [13,2 K], добавлен 08.12.2010Світ шукає енергію. Скільки потрібно енергії. Альтернативні джерела енергії. Вітрова енергія. Енергія річок. Енергія світового океану. Енергія морських течій. Енергія сонця. Атомна енергія. Воднева енергетика. Сучасні методи виробництва водню.
дипломная работа [40,8 K], добавлен 29.05.2008Природні джерела випромінювання, теплове випромінювання нагрітих тіл. Газорозрядні лампи високого тиску. Переваги і недоліки різних джерел випромінювання. Стандартні джерела випромінювання та контролю кольору. Джерела для калібрування та спектроскопії.
курсовая работа [2,7 M], добавлен 13.12.2010Теплове випромінювання як одна з форм енергії. Теплові і газоразрядні джерела випромінювання. Принцип дії та призначення світлодіодів. Обґрунтування та параметри дії лазерів. Характеристика та головні властивості лазерів і можливість їх використання.
контрольная работа [51,0 K], добавлен 07.12.2010Обґрунтування необхідності дослідження альтернативних джерел видобування енергії. Переваги і недоліки вітро- та біоенергетики. Методи використання енергії сонця, річок та світового океану. Потенціальні можливості використання електроенергії зі сміття.
презентация [1,9 M], добавлен 14.01.2011Альтернативні джерела енергії: вода. Енергія води, приливів, гідроенергія. Біологічні і фізичні наслідки будівництва приливних електростанцій. Перспективи вітрової енергетики в Україні. Сонячна енергія та її використання. Перспективи сонячної енергетики.
реферат [21,5 K], добавлен 07.12.2010Загальна характеристика та порівняння ефективності, перспективи подальшого застосування різних видів альтернативної енергії: сонячної та земної теплової, приливів і хвиль, біопалива, атмосферної електрики. Їх сучасний стан і оцінка досягнень видобування.
презентация [671,7 K], добавлен 10.03.2019Швидкий розвиток енергетики на відновлюваних і невичерпних джерелах. Вітрова, сонячна, водна енергетика та енергія приливів. Вітрові електростанції в Україні. Перспективні регіони країни для розвитку сонячної енергетики. Гідравлічна енергія річок.
презентация [195,6 K], добавлен 24.05.2012Поняття теплового випромінювання, його сутність і особливості, основні характеристики та спеціальні властивості. Різновиди випромінювання, їх відмінні риси, джерела виникнення. Абсолютно чорне тіло, його поглинаючі властивості, місце в квантовій теорії.
реферат [678,2 K], добавлен 06.04.2009Характеристика альтернативних джерел енергії, до яких належать сонячна, вітрова, геотермальна, енергія хвиль та припливів, гідроенергія, енергія біомаси, газу з органічних відходів та газу каналізаційно-очисних станцій. Вторинні енергетичні ресурси.
презентация [3,6 M], добавлен 14.11.2014Поглинена й експозиційна дози. Одиниці вимірювання дози випромінювання. Особливості взаємодії випромінювання з біологічними об'єктами. Дія іонізуючого випромінювання на організм людини. Залежність небезпеки від швидкості виведення речовини з організму.
реферат [38,2 K], добавлен 12.04.2009Характеристика електромагнітного випромінювання. Огляд фотометрів на світлодіодах для оцінки рівня падаючого світла. Використання фотодіодів на основі бар'єрів Шотткі і гетеропереходів. Призначення контактів використовуваних в пристрої мікросхем.
курсовая работа [1010,0 K], добавлен 27.11.2014Ядерна енергетика як галузь науки і техніки. Діяльність державного підприємства НАЕК "Енергоатом" та атомних електростанцій України. Процес перетворення ядерної енергії на теплову і електричну. Альтернативні джерела: Сонце, вітер, земля, Світовий океан.
презентация [2,2 M], добавлен 30.01.2011Основні види альтернативних джерела енергії в Україні, технології їх використання: вітряна, сонячна та біогазу. Географія поширення відповідних станцій в Україні. Сучасні тенденції та оцінка подальших перспектив розвитку альтернативних джерел енергії.
курсовая работа [1,4 M], добавлен 17.05.2015Визначення основних джерел (корисні копалини, ядерні, поновлювані) та принципів збереження енергії. Розгляд переваг (мінімізація витрат на транспортування палива) та проблем (утворення газогідратів) використання газотурбінних когенераційних установок.
реферат [1,7 M], добавлен 07.06.2010Джерела енергії та фактори, що визначають їх вибір, опис ланцюга перетворення. Види палива та шкідливі викиди при його спалюванні. Етапи отримання палива та його підготовка до використання. Постачання і вартість кінцевого споживання енергоносія.
лекция [49,2 K], добавлен 26.09.2009Аналіз програми в випускному класі при вивченні ядерної фізики. Основні поняття дозиметрії. Доза випромінювання, види поглинутої дози випромінювання. Біологічна дія іонізуючого випромінювання. Методика вивчення біологічної дії іонізуючого випромінювання.
курсовая работа [2,6 M], добавлен 24.06.2008Альтернативні джерела енергії. Кліматичні вимоги міскантуса гігантеуса. Нетрадиційні поновлювані енергоджерела України. Ботанічна характеристика і походження міскантуса. Технологія вирощування міскантуса гігантеуса. Використання біомаси в енергетиці.
реферат [47,7 K], добавлен 01.11.2009Паливо як основне джерело теплоти для промисловості та інших галузей господарства, його різновиди та відмінні риси, особливості використання. Склад твердого та рідкого палива. Горіння палива і газові розрахунки. Тепловий баланс котельного агрегату.
курсовая работа [250,1 K], добавлен 07.10.2010Проходження важких ядерних заряджених частинок через речовину. Пробіг електронів в речовині. Проходження позитронів через речовину. Експозиційна, поглинена та еквівалентна дози. Проходження нейтронів через речовину. Методика розрахунку доз опромінення.
курсовая работа [248,4 K], добавлен 23.12.2015