Низкоэнергетические ядерные реакции

История открытия низкоэнергетических ядерных реакций (LENR). Понятие холодного ядреного синтеза (ХЯС). Первое независимое подтверждение LENR. Стандартные возражения противников LENR и ХЯС. Основные проблемы LENR и ХЯС и перспективы их разрешения.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 07.04.2015
Размер файла 339,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Факультет - ЭНИН

Кафедра - ЭСС

Учебно-исследовательская работа студентов

Тема: «Низкоэнергетические ядерные реакции»

Выполнил: Щёголев П.А.

студент гр. 5А

Проверил: Тихонов Д.В

преподаватель

ТОМСК 2015

Содержание

  • Введение
  • 1. История открытия LENR
  • 2. Первое независимое подтверждение LENR
  • 3. Стандартные возражения противников LENR и ХЯС
  • 4. Проблемы LENR и ХЯС и перспективы их разрешения
  • Заключение
  • Использованная литература
  • Введение

Холодный ядерный синтез -- предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных) системах без значительного нагрева рабочего вещества. Известные ядерные реакции синтеза -- термоядерные реакции -- проходят в плазме при температурах в миллионы кельвинов.

В зарубежной литературе известен также под названиями:

1. низкоэнергетические ядерные реакции (LENR, low-energy nuclear reactions)

2. химически ассистируемые (индуцируемые) ядерные реакции (CANR)

Для того, чтобы произошла ядерная реакция, необходимо сблизить ядра на расстояние, на котором работает сильное взаимодействие. Этому препятствует более дальнодействующее кулоновскому отталкиванию. Чтобы сблизить ядра, нужно затратить энергию ~0,1 МэВ. Этому соответствует температура порядка 11 миллионов градусов, что является теоретическим пределом. Для получения экономически эффективной установки нужны температуры в несколько раз большие. Поэтому большинство учёных относятся к заявленям о ХЯС со скептицизмом.

ядерный реакция синтез низкоэнергетический

1. История открытия LENR

Первое упоминание о явлении низкоэнергетической трансмутации химических элементов датировано 1922 годом. Химики С. Айрион и Дж. Вендт, исследуя образцы вольфрама в электрохимических экспериментах, зарегистрировали выделение гелия. Этот результат не был воспринят научным сообществом, в том числе и потому, что Э. Резерфорду так и не удалось его воспроизвести. Другими словами, в первой же работе, посвященной проблеме ядерных превращений при низких энергиях, ее авторы С. Айрион и Дж. Вендт наступили на пресловутые «грабли невоспроизводимости», о которые впоследствии спотыкались практически все ученые, пытавшиеся исследовать этот интереснейший феномен. Более того, основная критика многочисленных работ по холодному синтезу связана с плохой воспроизводимостью результатов, полученных различными энтузиастами, не имеющими специфической профессиональной подготовки экспериментатора-ядерщика.

В то же время, существуют надежные экспериментальные данные, полученные в лучших научных лабораториях, неопровержимо указывающие на то, что «запрещенные» процессы имеют место. В связи с этим дословно приведем выводы академика И.В. Курчатова на лекции, прочитанной им 25 апреля 1956 г. на эпохальной конференции в английском атомном центре в Харуэлле:

«Жесткое рентгеновское излучение возникает при прохождении больших токов через водород, дейтерий и гелий. Излучение при разрядах в дейтерии всегда состоит из коротких импульсов. Импульсы, вызываемые нейтронами и рентгеновскими квантами, могут быть точно сфазированы на осциллограммах. При этом оказывается, что они возникают одновременно. Энергия рентгеновских квантов, появляющихся при импульсных электрических процессах в водороде и дейтерии, достигает 300 - 400 кэВ. Следует отметить, что в тот момент, когда возникают кванты с такой большой энергией, напряжение, приложенное к разрядной трубке, составляет всего лишь 10 кВ».

Было также указано, что наблюдаемые реакции нельзя считать термоядерными. Этот вывод относится, в первую очередь, к гелию, у которого заряд ядра вдвое больше, чем заряд протона, и преодолеть кулоновский барьер в исследованной группой Курчатова области энергий невозможно.

Экспериментальные данные Курчатова по ядерным реакциям при сильноточном электрическом разряде в гелии согласуются с данными, полученными П.Л. Капицей на два года раньше. Это Петр Леонидович сообщил в своей Нобелевской лекции. Таким образом, экспериментальные данные, полученные лучшими физиками ХХ века, четко указывают на существование до сих пор неизученных механизмов нейтрализации электрического заряда легчайших атомных ядер в области низких энергий.

Героический период становления советской ядерной науки не обошелся без подвигов на ниве LENR. Молодой, энергичный и очень талантливый физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150о С. Топливом для реактора служила тяжелая вода. Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

В 1962 году И.С. Филимоненко подал заявку на изобретение «Процесс и установка термоэмиссии». Но Государственная патентная экспертиза отказала в признании заявленного технического решения изобретением на том основании, что термоядерные реакции не могут идти при столь низкой температуре.

Филимоненко экспериментально установил, что после разложения тяжелой воды электролизом на кислород и дейтерий, растворяющийся в палладии катода, в катоде происходят реакции ядерного синтеза. При этом отсутствует как нейтронное излучение, так и радиоактивные отходы. Филимоненко предложил идею экспериментов еще в 1957 г, работая в оборонной промышленности. Идея была воспринята и поддержана его непосредственным руководством. Было принято решение о начале исследований, и в кратчайшие сроки получены первые положительные результаты.

Филимоненко создал несколько вполне работоспособных реакторов ХЯС, но до разума властей так и не достучался

Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез или синтез при комнатной температуре. Они электролитическим путем насыщали палладий дейтерием - проводили электролиз в тяжелой воде с палладиевым катодом. При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др. К сожалению, результаты М. Флейшмана и С. Понса оказались плохо воспроизводимыми, и на долгие годы были отвергнуты академической наукой.

Однако далеко не все эксперименты, в которых исследовались явления ХЯС и LENR, являются невоспроизводимыми. Например, не вызывает сомнений достоверность и воспроизводимость представленных в работе И.Б. Савватимовой результатов регистрации остаточной радиоактивности методом авторадиографии поверхности катодных фольг из палладия, титана, ниобия, серебра и их сочетаний после облучения ионами дейтерия в тлеющем разряде. Побывавшие в плазме тлеющего разряда электроды становились радиоактивными, хотя напряжение на них не превышало 500 В.

Результаты работ группы И.Б. Савватимовой, выполненных в Подольске на НПО «Луч», были подтверждены в независимых экспериментах. Они легко воспроизводимы, и однозначно свидетельствуют в пользу существования процессов LENR и ХЯС. Но самое замечательное в экспериментах И.Б. Савватимовой, А.Б. Карабута и др. состоит в том, что они относятся к числу решающих.

Весной 2008 года заслуженный профессор Йосиаки Арата из университета Осака, и его китайская коллега и неизменная соратница, профессор Юэчан Чжан из Шанхайского университета, в присутствии многочисленных журналистов представили очень красивый эксперимент. На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики. Эти результаты были удостоены Императорской премии «За бесценный вклад в науку и технику», которая в Японии котируется выше Нобелевской премии. Результаты эти были воспроизведены группой А. Такахаши.

Андреа Росси - изобрёл устройство E-Cat, использующее холодный синтез для выработки большого количества дешёвой экологичной энергии - в марте 2014г было проверено независимой группой учёных, представивших сейчас 54-страничный отчёт.

К сожалению, всех упомянутых выше аргументов оказалось недостаточно, чтобы реабилитировать незаслуженно скомпрометированную тематику.

2. Первое независимое подтверждение LENR

E-Cat изобретателя Андреа Росси- устройство, использующее холодный синтез для выработки большого количества дешёвой экологичной энергии - в марте 2014г было проверено независимой группой учёных, представивших сейчас 54-страничный отчёт.

Они исследовали маленький E-Cat в течение 32 дней, за которые реактор произвёл 1.5 мегаватт-часов энергии. Это «намного больше, чем может быть получено из любого известного химического источника для реактора подобного размера».

Интересно, что в самом отчёте написано, что 32 дня - это заранее установленный срок эксперимента. То есть, реактор выключили искуственно, и он, к тому времени, всё ещё не подавал признаков снижения выдаваемой мощности.

Исследование топлива до и после испытаний показало, что изотопы в использованном топливе могли быть получены только благодаря ядерным реакциям. Этот вывод поразил исследователей: "… конечно, очень сложно понять, как именно эти процессы синтеза могут проходить при таких низких энергиях".

Этот отчёт о E-Cat был подготовлен шестью авторитетными учёными из Италии и Швеции. Несмотря на то, что эта версия E-Cat сильно отличаеться от предыдущих, исследователи говорят, что она также использует в качестве топлива «обогащённый водородом никель» с некоторыми добавками (в основном, литий). Изобретатель реактора Андреа Росси заявляет, что E-Cat использует холодный синтез - низкоэнергетическую ядерную реакцию, LENR - для синтеза меди путём соединения атомов никеля и водорода, с выделением большого количества энергии.

При анализе топлива до и после 32-дневного эксперимента исследователи обнаружили, что изотопы почти полностью превратились из «естественной» смеси Никеля-58/60 в Никель-62. А эта реакция, по словам учёных, невозможна без ядерных реакций синтеза. Исследователи говорят, что использовался всего лишь 1 грамм топлива.

Рис. 1. Взвешивание нового реактора E-Cat

Исследователи очень осторожны в выводах, они не заявляют прямо, что именно LENR/холодный синтез являются источником энергии в E-Cat. Вместо этого говорится о «неизвестной реакции».

В серьёзном научном сообществе LENR до сих пор не воспринимается иначе как шутка (а то и вообще табуированная тема). Ситуация получается забавной: исследователи действительно пытаются понять, как именно E-Cat производит так много энергии и всё-таки приходят к выводу, что единственный вариант это синтез, но затем охлаждают пыл, добавляя, что это всего лишь рассуждения, а не серьёзное предположение.

Рис. 2. Тестовый стенд

В любом случае, давайте теперь отбросим необходимый скептицизм и посмотрим на то, что действительно интересно: совершенно безумное количество энергии, вырабатываемой E-Cat. В табличке ниже приведены некоторые числа из этого 32-дневного испытания. Наиболее важные числа справа: COP (коэффициент производительности) достигает 3.74, а чистая выработка энергии - до 2373 Ватта. На минуточку, это маленькое устройство, которое показывает подобные данные на протяжении 32 дней подряд. Общее количество выработанной за 32 дня энергии составило 1.5МВт*ч.

Получается, что E-Cat, исследованный учёными, имеет энергетическую ёмкость 1.6Ч109Вт*ч/кг и мощность 2.1Ч106Вт/кг.

Порядки значений этих величин выше, чем что-либо испытанное до сих пор: реактор получается примерно в 100 раз более мощным, чем лучшие суперконденсаторы и возмождно в миллион раз более энергоёмким, чем бензин. По словам исследователей, «такие значения ставят E-Cat выше любых известных традиционных источников энергии».

Очевидно, если верить этим независимым исследованиям и если E-Cat действительно использует холодный синтез - это весьма впечатляющая новость. Ведь речь идёт о чрезвычайно дешёвом, экологичном, энергоёмком источнике, который буквально может изменить мир.

Рис. 3. Предполагаемый вид коммерческого продукта

Однако, прежде чем менять мир, надо пройти через период очень пристального внимания большого научного сообщества. Предыдущая независимая экспертиза E-Cat от марта 2013г была очень быстро дискредитирована критиками. Сейчас похоже, что новый отчёт выполнен более качественно, с меньшим количеством дыр и нестыковок. Доклад об испытании был отправлен в Arxiv, на сервер допечатных статей, с надеждой на будущую публикацию в Журнале Ядерной Физики.

3. Стандартные возражения противников LENR и ХЯС

Зловещую роль в судьбе холодного ядерного синтеза сыграли его первооткрыватели М. Флейшман и С. Понс, анонсировавшие сенсационные результаты в нарушение всех правил ведения научной дискуссии. Поспешность выводов и практически полное отсутствие знаний в области ядерной физики, продемонстрированные авторами открытия, привели к тому, что тематика ХЯС оказалась дискредитированной, и получила официальный статус лженауки во многих, но не во всех, странах, располагающих крупными центрами ядерных исследований.

Стандартные возражения, с которыми сталкиваются докладчики, рискнувшие огласить результаты крамольных исследований на международных конференциях по ядерной физике, обычно начинаются с вопроса: «В каких рецензируемых научных журналах, имеющих высокий индекс цитируемости, опубликованы надежные результаты, неопровержимо доказывающие существование обсуждаемого явления?». Ссылки на результаты солиднейших исследований, выполненных в университете Осака, оппонентами обычно отклоняются.

Ответы на другие аргументы противников LENR и ХЯС содержатся в сотнях работ, выполненных на деньги различных промышленных корпораций, включая такие гиганты, как Sony и Mitsubishi, и т.д. Результаты этих исследований, квалифицированно выполненных, и уже доведенных до выхода на рынок сертифицированной и коммерчески выгодной промышленной продукции (реакторов А. Росси), по-прежнему продолжает отрицать научное коммьюнити, и безоговорочно принимают на веру сторонники гонимого научного направления.

Однако вопросы веры лежат вне плоскости науки. Поэтому «официальная наука» серьезно рискует попасть в число религий, бездумно отрицающих тезис, что практика - есть критерий истины. Однако у академической науки имеются весьма серьезные аргументы для подобного отрицания, так как даже перечисленные выше работы, в которых приведены не вызывающие никаких сомнений экспериментальные данные, уязвимы для критики, поскольку ее, критику, не выдерживает ни одна из упоминаемых в них теорий.

4. Проблемы LENR и ХЯС и перспективы их разрешения

На сегодняшний день насчитывается не менее сотни «теорий» LENR и ХЯС, ни одна из которых не совместима с известными и абсолютно надежно установленными законами физики. Поэтому даже достоверные результаты экспериментов с ходу отбраковывались физиками, сумевшими дойти до описания «теорий». Однако, к счастью, не все так печально.

Семь лет назад был предложен подход, позволяющий описать LENR, не вступая в противоречие с известными законами физики. В его основе лежит гипотеза о существовании нейтральных частиц «нейтроний» и «динейтроний», которые отвечают за ядерные реакции при низких энергиях. Гипотеза о возможности существования экзотических нейтринных атомов «нейтрония» и «динейтрония» была сформулирована и частично обоснована в работах одного из авторов настоящей публикации, Ю.Л. Ратиса.

Основанием для выдвижения столь экстравагантной гипотезы послужили экспериментальные данные о слиянии ядер при сверхнизких энергиях, при которых они запрещены высоким кулоновским барьером. Например, фактор проницаемости кулоновского барьера для пресловутого «холодного ядерного синтеза» при комнатной температуре столь мал, что за все время существования Вселенной ни одна реакция ХЯС в дейтерии (тяжелом водороде) не могла произойти при комнатной температуре по стандартным схемам слияния ядер.

Гипотетический экзотический нейтринный атом «нейтроний» рождается в результате столкновения свободного электрона с атомом водорода, а распадается он на протон и электрон. Возможность существования нейтринных атомов связана с тем, что электрон и протон притягиваются не только благодаря тому, что обе частицы имеют электрический заряд, но и за счет так называемого слабого взаимодействия, из-за которого происходит в- распад ядер радиоактивных изотопов.

Основной аргумент против существования экзотических нейтринных атомов, с которым приходится сталкиваться при обсуждении проблемы нахождения нейтрино внутри нейтрона, - что это якобы запрещено соотношением неопределенностей Гейзенберга.

Сильнейшим контраргументом является тот факт, что нейтрон распадается на протон, электрон и электронное антинейтрино, причем ни один из лептонов не помещается внутри протона. В философском труде «Часть и целое» В. Гейзенберг предложил рациональный выход из описанной выше логически тупиковой ситуации. Он постулировал, что в микромире соотношение между частью и целым радикально отличается от такового для макроскопических объектов.

В этом смысле «нейтроний» (гипотетическая частица) полностью аналогичен нейтрону. Поэтому нейтроний может вызывать ядерные реакции, весьма похожие на реакции, вызываемые нейтронами. Однако вероятность образования нейтрония в столкновениях электронов с атомами водорода ничтожно мала. Для того, чтобы составить представление о том, насколько мала эта вероятность, стоит упомянуть, что она в миллиард миллиардов раз меньше, чем вероятность взаимодействия нейтрона с ядром урана. Именно с этим обстоятельством связана плохая воспроизводимость результатов экспериментов в области LENR и ХЯС.

28 октября 2011 года, в Университете Болоньи (Италия) состоялся успешный пробный запуск реактора Leonardo конструкции А. Росси, работающего на энергии холодного ядерного синтеза. Проектная мощность реактора 1 МВт. Во время испытаний реактор развивал мощность 470 кВт, и производил тепловую энергию в течение 5 часов.

В июле 2012 года А. Росси был принят Бараком Обамой. В результате этой встречи проект А. Росси получил поддержку Президента Соединенных Штатов Америки, и на продолжение работ по холодному ядерному синтезу NASA было выделено $5 млрд., которые успешно осваиваются. В США уже создан реактор LENR, существенно превосходящий по своим характеристикам опытный реактор А. Росси. Создали его специалисты NASA, используя передовые космические технологии. Запуск этого реактора состоялся в августе 2013 года.

В настоящее время в Греции работает корпорация Defkalion, отделившаяся от работающей в Италии и США компании Leonardo, основанной А. Росси. На сегодняшний день 850 компаний из 60 стран мира выразили готовность заключить с корпорацией Defkalion лицензионное соглашение.

Глобальные последствия работ А. Росси для России могут быть как позитивными, так и негативными. Очевидно, что от своевременной и адекватной реакции властей России на проводимые в США, Германии и Италии работы по «холодному синтезу» будет во многом зависеть и судьба российской экономики и страны в целом.

Заключение

Одной из причин, по которой большая часть научной общественности прохладно относится к обсуждаемой проблеме, является чрезмерно оптимистическая оценка возможности обеспечения человечества даровой энергией, присутствующая в работах многочисленных изобретателей реакторов холодного синтеза. К сожалению, обещания быстрого, легкого, а главное, дешевого успеха выглядят заманчиво только в проектах или бизнес-планах. Для того чтобы LENR-энергетика действительно смогла выполнить свою историческую миссию и спасти человечество в будущем от жажды и голода, холода и жары, необходимо решить ряд архиважных задач, связанных с тем, что на пути глобального перевода энергетики с углеводородов на альтернативную ядерную энергетику стоит множество препятствий.

Теория ХЯС, как отмечалось, все еще находится в зачаточном состоянии. И хотя качественно картина LENR и ХЯС уже вполне ясна, однако до создания рабочих методик проектирования и строительства «под ключ» соответствующих реакторов пока еще далеко. Имеющиеся опытные образцы реакторов, как правило, демонстрационных, в большинстве своем, кроме реактора А. Росси, имеют относительно небольшую мощность. Энтузиасты создавали их либо в надежде получить Нобелевскую премию за свое открытие, либо получить инвестиционные ресурсы для продолжения работ. Если не считать реактора А. Росси, в реакторах ХЯС реакции идут в неуправляемом режиме, поскольку разработчики в основной массе просто не знакомы ни с квантовой теорией, ни с ядерной физикой, а без этих знаний создать эффективную систему управления реактором невозможно.

На основе имеющегося опыта создания миниатюрных неуправляемых реакторов ХЯС малой мощности в принципе невозможно спроектировать энергетический реактор управляемого синтеза, пригодный для выработки тепловой и электрической энергии в промышленных масштабах. Однако имеется обоснованная надежда преодолеть эти препятствия в течение одного - двух десятилетий. Ведь в Советском Союзе LENR-реакторы работали еще в 1958 году, и нашими учеными была создана основанная на известных законах физики теория соответствующих процессов.

Использованная литература

1. В. А. Царев, Низкотемпературный ядерный синтез, «Успехи физических наук», ноябрь 1990.

2. С.Богданов Холодный термояд: разберемся в истории вопроса // CNews.ru, 2011

3. Японский физик заявил о проведенной реакции холодного ядерного синтеза// «Известия», 28.05.2008 URL: http://izvestia.ru/news/426181#add_comment (дата обращения 29.03.15)

4. LENR - Low-energy nuclear reaction - Низкоэнергетическая ядерная реакция// Газета “Промышленные ведомости”URL: http://5ballov.org/oformlenie-spiska-literaturyi/pravilnoe-oformlenie-spiska-literaturyi.html (дата обращения 31.03.15)

Размещено на Allbest.ru

...

Подобные документы

  • Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.

    презентация [774,1 K], добавлен 12.12.2014

  • Законы сохранения и энергетические соотношения в ядерных реакциях. Определение порога реакции в нерелятивистском и релятивистском приближениях. Механизмы протекания и основные типы ядерных реакций. Концепция образования составного ядра нейтроном.

    контрольная работа [948,5 K], добавлен 08.09.2015

  • Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.

    презентация [2,2 M], добавлен 29.11.2015

  • Возможность осуществления ядерных реакций синтеза ядер изотопов водорода в присутствии катализаторов при температурах, существенно меньших, чем в термоядерных реакциях. Сколько же энергии в стакане обычной воды. Механизм работы холодного ядерного синтеза.

    статья [559,5 K], добавлен 15.05.2019

  • История открытия радиации. Радиоактивное излучение и его виды. Цепная реакция деления. Ядерные реакторы. Термоядерные реакции. Биологическое действие излучения. Действие ядерных излучений на структуру вещества. Естественные источники радиации.

    дипломная работа [180,6 K], добавлен 25.02.2005

  • Атомные электростанции (АЭС)–тепловые электростанции, которые используют тепловую энергию ядерных реакций. Ядерные реакторы, используемые на атомных станциях России: РБМК, ВВЭР, БН. Принципы их работы. Перспективы развития атомной энергии в РФ.

    анализ книги [406,8 K], добавлен 23.12.2007

  • Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.

    презентация [16,0 M], добавлен 14.03.2016

  • Научные разработки в сфере холодного термоядерного (ХТС) и холодного ядерного синтеза (ХЯС). Возможность использования реакций ХТС и ХЯС для создания природных ресурсов, дешевой энергии, производства электромобилей и решения экологических проблем.

    презентация [2,1 M], добавлен 14.12.2010

  • Изучение свойств термоядерного синтеза. Энергетическая выгодность термоядерных реакций. Их осуществление в земных условиях и, связанные с этим проблемы. Осуществление управляемых реакций в установках типа "ТОКАМАК". Современные исследования плазмы.

    курсовая работа [108,0 K], добавлен 09.12.2010

  • Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат [32,0 K], добавлен 12.12.2009

  • Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.

    курсовая работа [1,5 M], добавлен 21.03.2014

  • Первые ядерные реакторы, их принцип работы как устройств, в которых осуществляется управляемая реакция деления ядер. Использование в ядерных реакторах, работающих на естественном уране, замедлителей нейтронов для повышения коэффициентов их деления.

    презентация [627,4 K], добавлен 26.02.2014

  • Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.

    реферат [306,3 K], добавлен 08.05.2003

  • Модифицированная формула Бете-Вайцзеккера. Термодинамическое описание крайне вырожденных идеальных ферми-газов. Нейтронизация холодного сверхплотного вещества. Пикноядерные реакции синтеза в холодном веществе. Пикноядерные реакции обмена ядер нейтронами.

    курсовая работа [1,0 M], добавлен 30.07.2011

  • Изотопический спин, обменные силы, насыщение ядерных сил, мезоны и ядерные силы, класификация элементарных частиц. Приемлемые значения размеров зеркальных ядер. Опыты по рассеянию нейтронов протонами. Пространство изотопического спина.

    курсовая работа [251,2 K], добавлен 16.03.2004

  • Цепная реакция деления, термоядерный синтез. Явления при ядерном взрыве. Классификация ядерных взрывов по мощности и по нахождению центра взрыва. Военное и мирное применение ядерных взрывов. Природные ядерные взрывы. Разрушительные последствия от взрыва.

    реферат [29,4 K], добавлен 03.12.2015

  • Принцип работы и назначение лазерных устройств, история и основные этапы их разработок, значение в данном процессе академиков Н.Г. Басова и А.М. Прохорова. Первое экспериментальное подтверждение возможности усиления света и развитие данных идей.

    доклад [10,6 K], добавлен 26.01.2010

  • Рассмотрение понятия, классификации (сверхмалый, малый, средний, большой, сверхбольшой, высотный, воздушный, наземный, надводный, подводный, подземный) ядерного взрыва. Изучение реакций деления атомных ядер каскадного характера и термоядерного синтеза.

    презентация [897,8 K], добавлен 09.04.2010

  • История развития атомной энергетики. Типы ядерных энергетических реакторов. Переработка и хранение ядерных отходов. Проблема эксплуатационной безопасности. Оценка состояния на сегодняшний день и перспективы её развития. Строительство АЭС в Беларуси.

    курсовая работа [41,8 K], добавлен 12.10.2011

  • Рассмотрение гипотез о происхождении энергии на Солнце. Определение необходимости, условий и проблем (экономических и медицинских) осуществления самоподдерживающейся реакции ядерного синтеза. Выдвижение теории о преобразовании энергии в электричество.

    реферат [25,6 K], добавлен 05.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.