Теплообменные процессы
Понятие и принципы теплообменных процессов и аппаратов, их использование для изменения температуры обрабатываемого объекта (нагрев, охлаждение) и для осуществления фазовых превращений (выпаривание, конденсация). Сущность и расчет теплопроводности.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 12.04.2015 |
Размер файла | 37,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ТЕМА: Теплообменные процессы и аппараты. Теплопроводность
Тепловые процессы используют для изменения температуры обрабатываемого объекта (нагрев, охлаждение) и для осуществления фазовых превращений (выпаривание, конденсация). Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называют теплообменом. Существуют три принципиально разных вида теплообмена: теплопроводность, конвекция и тепловое излучение. теплопроводность нагрев фазовый конденсация
Теплопроводность -- перенос тепла за счет движения микрочастиц (молекул, атомов, электронов), непосредственно соприкасающихся друг с другом. Это основной вид теплопереноса в твердых телах. Процесс теплопроводности описывается законом Фурье, который гласит, что количество тепла q, передаваемого через единицу поверхности в единицу времени, т. е. плотность теплового потока, пропорционально температурному градиенту поверхности:
где л -- характерная для данного материала величина, называемая коэффициентом теплопроводности. При обычных температурах и давлении лучше всего проводят тепло металлы, а хуже всего -- газы.
Конвекция -- перенос тепла вследствие движения и перемешивания макроскопических объемов жидкости или газа. Конвекция бывает естественной и вынужденной.
Тепловое излучение -- процесс распространения электромагнитных колебаний с различной длиной волны, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать и поглощать энергию, за счет чего и осуществляется лучистый теплообмен. В большинстве практически важных случаев перенос тепла происходит комбинированным путем с участием всех перечисленных видов теплообмена. Если два жидких или газообразных тела (теплоносители) разделены твердым телом в виде плоской перегородки, то процесс переноса тепла в такой системе описывается уравнением теплопередачи, выражающим связь между тепловым потоком Q и поверхностью теплообмена F:
Q = kFДTcpф
где k -- коэффициент теплопередачи; ДTср -- средняя разность температур между теплоносителями или температурный напор; ф -- время. Процессы теплопередачи широко распространены в химической технологии. Тепловые процессы осуществляются в специальных аппаратах -- теплообменниках. Первичными источниками тепла в химической технологии служат продукты сгорания различных топлив или электроэнергия. Вещества, получающие тепло от первичных источников и передающие его нагреваемой среде через стенку теплообменника, называют промежуточными теплоносителями. В качестве последних при нагревании используют водяной пар, горячую воду, минеральные масла, органические жидкости, расплавы солей и металлов. При охлаждении применяют воду и воздух, лед, а для более глубокого охлаждения -- пары низкокипящих жидкостей (аммиак), сжиженные газы (СO2) или холодильные рассолы. Наибольшее распространение в качестве промежуточного теплоносителя получил насыщенный водяной пар, обладающий рядом преимуществ: дешевизна, нетоксичность, возможность транспортировки на значительные расстояния и распределения по потребителям, простота регулировки температуры за счет изменения давления, небольшой расход пара.
Классификация способов переноса теплоты
Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущей силой любого процесса теплообмена является разность температур между более нагретым и менее нагретым телами, при наличии которой имеет место самопроизвольный перенос тепла. Согласно второму закону термодинамики, самопроизвольный процесс переноса теплоты в пространстве возникает под действием разности температур и направлен в сторону уменьшения температуры.
1.Теплообмен представляет собой обмен энергией между молекулами, атомами и свободными электронами. В результате теплообмена интенсивность движения частиц более нагретого тела снижается, а менее нагретого возрастает.
2.Теплопередача - наука о процессах распространения тепла. Законы теплопередачи лежат в основе тепловых процессов - нагревания, охлаждения, конденсации паров, кипения жидкостей, выпаривания - и имеют большое значение для проведения многих массообменных процессов (перегонки, сушки и др.), а также реакционных процессов химической технологии, протекающих с подводом или отводом тепла. Тела, участвующие в теплообмене, называются теплоносителями. Теплота может распространяться в любых веществах и даже в вакууме. Идеальных изоляторов тепла не существует.Во всех веществах тепло передается теплопроводностью за счет переноса энергии микрочастицами. Молекулы, атомы, электроны и другие микрочастицы, из которых состоит вещество, движутся со скоростями, пропорциональными температуре. За счет взаимодействия частиц друг с другом более быстрые отдают энергию медленным частицам, перенося таким образом теплоту из зоны с более высокой температурой в зону с меньшей температурой.В жидкостях и газах перенос теплоты может осуществиться еще и за счет перемешивания движущихся частиц. При этом уже не отдельные молекулы, а большие макроскопические объемы более нагретой жидкости (газа) перемещаются в зоны с меньшими температурами, а менее нагретые - в зоны с большей температурой. Перенос теплоты вместе с макроскопическими объемами вещества называется конвекцией.
Одновременно вместе с конвекцией имеет место теплопроводность. Такой сложный вид теплообмена называется конвективным. Конвекция является определяющим процессом переноса тепла в жидкостях и газах, поскольку она значительно интенсивнее теплопроводности. Большое распространение получил теплообмен между жидкостью (газом) и поверхностью твердого тела (или наоборот). Этот процесс называется конвективной теплоотдачей или просто теплоотдачей.
3.Излучение является третьим способом передачи тепла. Теплота излучением передается через все прозрачные среды, в том числе и в вакууме (в космосе). Носителями энергии при излучении являются фотоны, излучаемые и поглощаемые телами, участвующими в теплообмене. В большинстве случаев перенос теплоты производится несколькими способами одновременно. В процессе теплоотдачи участвуют все способы передачи тепла - теплопроводность, конвекция и излучение. Более сложным является процесс передачи тепла от более нагретого теплоносителя к менее нагретому через разделяющую их стенку, называемый теплопередачей. В процессе теплопередачи переносу тепла конвекцией сопутствуют теплопроводность и теплообмен излучением.
Однако при рассмотрении сложных процессов теплообмена преобладающими в определенных условиях является один или два из трех способов распространения тепла.
В непрерывно действующих аппаратах температуры в различных точках не изменяются во времени и протекающие процессы теплообмена считаются установившимися (стационарными). В периодически действующих аппаратах, где температуры меняются во времени, осуществляются неустановившиеся(нестационарные) процессы теплообмена.
Основные понятия: Температурное поле и температурный градиент:тепловой поток
К основным задачам теории теплообмена относится установление аналитической связи между тепловым потоком и распределением температур в средах. Совокупность мгновенных значений какой-либо величины во всех точках данной среды (тела) называется полем этой величины. Соответственно совокупность значений температур в данный момент времени для всех точек рассматриваемой среды называется температурным полем.
В наиболее общем случае температура в данной точке зависит от координат точки в пространстве и изменяется во времени:
.
Эта зависимость представляет собой уравнение неустановившегося температурного поля.
Для установившегося температурного поля
.
На практике, кроме трехмерного стационарного температурного поля, довольно часто встречаются двумерные и одномерные температурные поля, являющиеся функцией соответственно двух и одной координат.
Геометрическое место точек, имеющих одинаковую температуру, называетсяизотермической поверхностью. Температуры изменяются от одной изотермической поверхности к другой, причем наибольшее изменение температуры происходит по нормали к изотермическим поверхностям.
Предел отношения изменения температуры к расстоянию между изотермическими поверхностями по нормали называется температурным градиентом:
.
Температурный градиент является векторной величиной. Положительным направлением температурного градиента принято считать направление в сторону возрастания температур.
ТЕПЛОВОЙ ПОТОК - вектор, направленный в сторону, противоположную градиенту темп-ры и равный по абс. величине кол-ву теплоты, проходящему через изотермич. поверхность в единицу времени. Измеряется в ваттах или ккал/ч (1 ккал/ч=1,163 Вт)
Теплопроводностью называется процесс переноса тепловой энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц. В результате теплопроводности температура тела выравнивается.
1.Основной закон теплопроводности, установленный Фурье (1768--1830) и названный его именем, гласит, что количество теплоты dQ, переданное теплопроводностью, пропорционально градиенту температуры, времени и площади сечения dF, перпендикулярного направлению теплового потока:
где: - коэффициент теплопроводности среды, Вт/(м*К)
Коэффициент теплопроводности веществ зависит от их природы и агрегатного состояния, температуры и давления. Коэффициент теплопроводности газов возрастает с повышением температуры и почти не зависит от давления. Для жидкостей, за исключением воды и глицерина, наоборот, уменьшается с повышением температуры. Для большинства твердых тел увеличивается с повышением температуры.
Дифференциальное уравнение теплопроводности, называемое также уравнением Фурье, описывает процесс распространения теплоты в среде. Его выводят на основе закона сохранения энергии и записывают в следующем виде:
где: =а - коэффициент температуропроводности, м2/ч или м2/с; с - удельная теплоёмкость материала, кДж/(м*К); - плотность материала, кг/м3
Уравнение теплопроводности позволяет решать вопросы, связанные с распространением теплоты теплопроводностью в условиях как установившегося, так и неустановившегося процесса.
При решении конкретных задач уравнение теплопроводности должно быть дополнено соответствующими уравнениями, описывающими начальные и граничные условия.
В качестве примера рассмотрим установившийся процесс передачи теплоты теплопроводностью через плоскую стенку от горячего теплоносителя к холодному. Пусть температура стенки со стороны горячего теплоносителя равна tст1, а со стороны холодного -- tст2; теплопроводность материала стенки ; толщина стенки. Как видно из рис. 9.1, температурное поле одномерно и температуры изменяются только в направлении оси х. Уравнение, описывающее теплопроводность плоской стенки при установившемся режиме, имеет вид
где: - тепловая проводимость стенки.
Величина, обратная тепловой проводимости стенки, () называется термическим сопротивлением стенки. В случае двухслойной стенки, например эмалированной, или многослойной, можно аналогично получить
где n -- количество слоев стенки.
Основными кинетическими характеристиками процесса теплопередачи являются средняя разность температур, коэффициент теплопередачи, количество передаваемой теплоты (от этой величины зависят размеры теплообменной аппаратуры).
Движущая сила теплообменных процессов -- разность температур теплоносителей. Под действием этой разности теплота передается от горячего теплоносителя к холодному.
Количество теплоты Q, переданное в единицу времени от горячего теплоносителя к холодному на всей теплообменной поверхности F теплообменника, определяют из уравнения теплового баланса:
Движущая сила при теплопередаче между двумя теплоносителями не сохраняет своего постоянного значения, а изменяется вдоль теплообменной поверхности.
Например, при прямотоке при входе теплоносителей в теплообменник локальная движущая сила максимальна: = t1'-t2', a на выходе из аппарата минимальна: = t1''-t2'' Такая же картина наблюдается и при противотоке. Поэтому при расчетах процессов теплопередачи пользуются средней движущей силой процесса. Получают соотношение для расчета средней движущей силы процесса теплопередачи
Размещено на Allbest.ru
...Подобные документы
Процессы нестационарной теплопроводности тел. Особенности передачи теплоты через оребрённую поверхность плоской стенки. Принципы пузырькового кипения жидкости в трубе, плёночной конденсации пара в трубе. Расчёты теплообменных и массообменных процессов.
курсовая работа [2,9 M], добавлен 04.03.2014Применение теплообменных аппаратов, принцип их действия. Теплообменные аппараты с неподвижными трубными решетками, линзовым компенсатором на кожухе, плавающей головкой и U-образными трубами. Конструктивный и проверочный тепловой расчет аппарата.
контрольная работа [1,2 M], добавлен 22.08.2015Классификация теплообменных аппаратов по принципу действия (поверхностные и смесительные). Особенности подбора устройства. Схема кожухотрубного теплообменника. Основные удельные показатели, которые характеризуют эффективность теплообменных аппаратов.
презентация [206,5 K], добавлен 28.09.2013Классификация теплообменных аппаратов. Конструктивный тепловой расчет. Предварительный выбор теплообменного аппарата по каталогу, действительные температуры теплоносителей. Шестиходовой кожухотрубчатый теплообменник с неподвижными трубными решетками.
курсовая работа [873,5 K], добавлен 11.03.2013Определение назначения регенеративных теплообменных аппаратов как устройств, обеспечивающих нагрев или охлаждения материальных потоков, их преимущества и недостатки. Устройство и преимущества люминесцентных светильников. Энергоемкость галогенных ламп.
реферат [46,7 K], добавлен 27.05.2013Классификация теплообменных аппаратов в зависимости от расположения теплообменных труб, перегородок в распределительной камере и задней крышке, продольных перегородок, установленных в межтрубном пространстве. Двухходовой кожухотрубчатый теплообменник.
курсовая работа [194,2 K], добавлен 27.12.2015Характерные признаки подогревателей смешивающего и поверхностного типов. Экономический расчет оптимального недогрева. Пароохладитель как пароводяной теплообменник, где вода нагревается в результате понижения перегрева. Охлаждение и конденсация пара.
курсовая работа [129,2 K], добавлен 01.04.2011Математическое моделирование тепловых процессов. Основные виды теплообмена в природе. Применение метода конечно разностной аппроксимации для решения уравнения теплопроводности. Анализ изменения температуры по ширине пластины в выбранные моменты времени.
курсовая работа [1,5 M], добавлен 22.05.2019Теплофизические свойства теплоносителей. Предварительное определение водного эквивалента поверхности нагрева и размеров аппарата. Конструктивные характеристики теплообменного аппарата. Определение средней разности температур и коэффициента теплопередачи.
курсовая работа [413,5 K], добавлен 19.10.2015Теплообменный аппарат - устройство для передачи теплоты от горячей среды к холодной. Виды и конструкции теплообменных аппаратов, применяемых в котельных. Устройство кожухотрубчатых элементных (секционных) и пластинчатых теплообменников; экономайзеры.
реферат [1,6 M], добавлен 20.11.2012Понятие термодинамической температуры. Способы получения низких температур. Принцип работы холодильника. История изобретения холодильных аппаратов и достижений в получении низких температур. Метод получения сверхнизких температур, магнитное охлаждение.
реферат [21,8 K], добавлен 10.07.2013Классификация теплообменных аппаратов (ТОА), требования к ним. Выбор схемы движения теплоносителей при расчете устройства, определение их теплофизических свойств. Коэффициент теплоотдачи в ТОА, уточнение температуры стенки и конструктивный расчет.
курсовая работа [1,2 M], добавлен 17.11.2013Ребристые, спиральные и витые теплообменные аппараты. Теплообменники с неподвижными трубными решетками, с температурными компенсаторами на кожухе, с плавающей головкой. Аппараты теплообменные с воздушным охлаждением. Теплообменники пластинчатые разборные.
курсовая работа [3,1 M], добавлен 17.10.2014Тепловой и конструктивный расчет отопительного пароводяного подогревателя горизонтального типа и секционного водоводяного теплообменника. Подбор критериальных уравнений для процессов теплообмена. Определение коэффициентов теплоотдачи и теплопередачи.
курсовая работа [1,7 M], добавлен 15.12.2010Разделение теплопереноса на теплопроводность, конвекцию и излучение. Суммарный коэффициент теплоотдачи. Определение лучистого теплового потока. Теплопередача через плоскую стенку. Типы теплообменных аппаратов. Уравнение теплового баланса и теплопередачи.
реферат [951,0 K], добавлен 27.01.2012Методика численного решения задач нестационарной теплопроводности. Расчет распределения температуры по сечению балки явным и неявным методами. Начальное распределение температуры в твердом теле (временные граничные условия). Преимущества неявного метода.
реферат [247,8 K], добавлен 18.04.2011Физические принципы образования росы. Условия и причины появления инея. Дождь как конденсация огромного количества мельчайших капель и быстрое их укрупнение и выпадение в процессе переноса воздушных масс. Роль низкой температуры в появлении снега.
презентация [3,4 M], добавлен 27.11.2011Расчет обмоток трансформатора, этапы, принципы данного процесса. Методика определения потерь короткого замыкания. Тепловой расчет трансформатора. Вычисление теплопроводности обмотки, а также среднего превышения температуры обмотки над температурой масла.
контрольная работа [84,0 K], добавлен 11.04.2014Сравнительный анализ теплообменников. Технологический процесс нагрева растительного масла. Теплотехнический, конструктивный, гидравлический и прочностной расчет теплообменника. Определение тепловой изоляции внутренней и наружной поверхностей трубы.
дипломная работа [710,6 K], добавлен 08.09.2014Подбор коэффициентов теплоотдачи и расчет площади теплообменника. Определение параметров для трубного и межтрубного пространства. Конденсация паров и факторы, влияющие на охлаждение конденсата. Гидравлический расчет кожухотрубчатого теплообменника.
курсовая работа [142,2 K], добавлен 25.04.2016