Бета-распад
Исследование процесса радиоактивного распада атомного ядра. Природа бета-распада, его источник. Энергия, выделяющаяся при бета-распаде. Три вида распадов, термодинамические условия их протекания. Проникающая и ионизационная способность бета-частиц.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 09.05.2015 |
Размер файла | 15,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Бета-излучение - поток в-частиц, испускаемых атомными ядрами при в-распаде радиоактивных изотопов. в-распад - радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. Вылетающие при в-распаде электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы - нейтрино (n) в случае в+-распада или антинейтрино в случае в--распада. радиоактивный распад атомный ядро частица
Масса в-частиц в абсолютном выражении равна 9,1-10 28 г. в-частицы несут один элементарный электрический заряд и распространяются в среде со скоростью от 100 тыс. км/с до 300 тыс. км/с (т.е. до скорости света) в зависимости от энергии излучения. Энергия в-частиц колеблется в значительных пределах. Это объясняется тем, что при каждом в-распаде радиоактивных ядер образующаяся энергия распределяется между дочерним ядром, в-частицами и нейтрино в разных соотношениях, причем энергия в-частиц может колебаться от нуля до какого-то максимального значения. Максимальная энергия лежит в пределах от 0,015-0,05 МэВ (мягкое излучение) до 3-13,5 МэВ (жесткое излучение).
Так как в-частицы имеют заряд, то под действием электрического и магнитного полей они отклоняются от прямолинейного направления. Обладая очень малой массой, в-частицы при столкновении с атомами и молекулами также легко отклоняются от своего первоначального направления (т.е. происходит сильное рассеяние их). Поэтому определить длину пути в-частиц очень трудно - этот путь слишком извилистый. Пробег в-частиц в связи с тем, что они обладают различным запасом энергии, также подвергается колебаниям. Длина пробега в воздухе может достигать 25 см, а иногда и нескольких метров. В биологических тканях пробег частиц составляет до 1 см. На путь пробега влияет также плотность среды.
Периоды полураспада заключены в широком интервале: от 1,3*10-2 сек (12N) до 2*1013 лет (природный радиоактивный изотоп 180W).
в-распад имеет место у элементов всех частей периодической системы. Тенденция к в-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Таким образом, тенденция к в+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к в--распаду - для нейтроноизбыточных изотопов.
Если изотоп имеет меньшее массовое число, чем указано в периодической системе Менделеева, то велика вероятность того, что он будет в+-активным, т.е. протон внутри такого ядра будет стремиться превратиться в нейтрон. Если масса изотопа больше, чем указано в периодической системе Менделеева, то возрастает вероятность того, что он будет в--активным, т.е. в таком ядре нейтрон будет стремиться пре¬вратиться в протон. В обоих случаях ядро становится неустойчивым, и его распад ведёт к восстановлению соотношения протонов и нейтронов.
Природа в-распада
Исследование в-распада ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление в-распада долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой. Затем непостоянство энергии электронов, вылетающих при в-распаде, даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы - нейтрино - спасло не только закон сохранения энергии, но и другой важнейший закон физики - закон сохранения момента количества движения.
Источник
Взаимные превращения нуклонов в легких и тяжелых ядрах при участии слабых взаимодействий.
Энергия
Для того чтобы ядро было неустойчиво по отношению к одному из типов в-превращения, сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при в -распаде происходит выделение энергии.
Энергия в - распада распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.
Три вида распадов. Термодинамические условия их протекания
Бета-распад может быть трех видов:
а) электронный в--распад характерен как для естественных, так и для искусственных радионуклидов, которые имеют излишек нейтронов. Этот распад в основном характерен для тяжелых радиоактивных изотопов. Электронному в--распаду подвергается около 46 % всех радиоактивных изотопов. При этом один из нейтронов превращается в протон, а ядро испускает электрон и антинейтрино. Массовое число ядра, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов.
При испускании в--частиц ядра атомов могут находиться в возбужденном состоянии, когда в дочернем ядре обнаруживается избыток энергии, которая не захвачена корпускулярными частицами. Этот излишек энергии высвечивается в виде г-квантов.
б) позитронный в+-распад. Наблюдается у некоторых искусственных радиоактивных изотопов, у которых в ядре имеется излишек протонов. Он характерен для 11% радиоактивных изотопов, находящихся в первой половине таблицы Д.И. Менделеева (Z<45). При позитронном в - распаде один из протонов превращается в нейтрон, заряд ядра и, соответственно, атомный номер уменьшаются на единицу, а массовое число остается без изменений. Ядро испускает позитрон и нейтрино.
Позитрон, вылетев из ядра, срывает с оболочки атома «лишний» электрон или взаимодействует со свободным электроном, образуя пару «позитрон-электрон», которая мгновенно превращается в два г - кванта с энергией, эквивалентной массе частиц. Процесс превращения пары «позитрон-электрон» в два г-кванта получил название аннигиляции (уничтожения), а возникающее электромагнитное излучение - аннигиляционного. В данном случае происходит превращение одной формы материи (частиц вещества) в другую - г-фотоны.
в) электронный К-захват. Это такой вид радиоактивного превращения, когда ядро атома захватывает электрон из ближайшего к ядру энергетического К-уровня (электронный К-захват) или, реже, в 100 раз - из L уровня. В результате один из протонов ядра нейтрализуется электроном превращаясь в нейтрон. Порядковый номер нового ядра становится на единицу меньше, а массовое число не изменяется. Ядро испускает антинейтрино. Освободившееся место, которое занимал в К или L-уровне захваченный электрон, заполняется электроном из более удаленных от ядра энергетических уровней. Избыток энергии, освободившийся при таком переходе, испускается атомом в виде характеристического рентгеновского излучения.
Электронный К-захват характерен для 25% всех радиоактивных ядер, но в основном для искусственных радиоактивных изотопов, расположенных в другой половине таблицы Д.И. Менделеева и имеющих излишек протонов (Z = 45 - 105). Только три естественных элемента претерпевают К-захват: калий-40, лантан-139, лютеций-176 .
Некоторые ядра могут распадаться двумя или тремя способами: путем а и в-распада и К-захвата.Калий-40 подвергается, как уже отмечалось, электронному распаду 88% и К-захвату - 12%. Медь-64 превращается в никель (позитронный распад - 19%, К-захват - 42%; (электронный распад - 39%).
Проникающая и ионизационная способность
Ионизирующая способность в - частиц значительно ниже, чем б - частиц. Степень ионизации зависит от скорости: меньше скорость -- больше ионизация. На 1 см пути пробега в воздухе в - частица образует 50-100 пар ионов (1000-25000 пар ионов на всем пути в воздухе ). в - частицы больших энергий, пролетая мимо ядра слишком быстро, не успевают вызвать такой же сильный ионизирующий эффект, как медленные в - частицы. При потере энергии электрон захватывается либо положительным ионом с образованием нейтрального атома, либо атомом с образованием отрицательного иона.
Проникающая способность в воздухе до 1 м, в биологических тканях до 1 см.
Бета-спектрометр - прибор, служащий для анализа бета-спектров (см. Бета-распад). Б.-с. применяют также для исследования энергетического спектра г-лучей по создаваемым ими в веществе вторичным электронам (см. Гамма-спектрометр).
Основными характеристиками Б.-с. являются светосила и разрешающая способность. Под светосилой понимают отношение числа электронов (или позитронов), которое используется для анализа, к полному числу частиц, испускаемых радиоактивным источником. Светосила Б.-с. зависит от их конструкции и обычно составляет от нескольких десятых процента до нескольких десятков процентов. Разрешающей способностью Б.-с. называется наименьшее различие в энергии (или, чаще, в импульсе) электронов, которое может быть замечено прибором. Разрешающая способность прецизионных Б.-с. достигает 0,01%. Как правило, приборы с лучшей разрешающей способностью обладают меньшей светосилой.
Различают Б.-с., измеряющие энергию электронов по их воздействию на вещество, и Б.-с., действие которых основано на пространственном разделении электронов и позитронов, имеющих различную энергию. К приборам первого типа относятся Б.-с., основанные на ионизации, возникающей в веществе при торможении электронов (см. Сцинтилляционный спектрометр, Ионизационная камера); приборы этого типа обладают большой светосилой, но не дают возможности измерять энергию электронов с точностью, большей чем несколько процентов (или даже несколько десятков процентов). К приборам второго типа принадлежат Б.-с., в которых используются магнитные или электрические (для медленных электронов) поля. Обычно под Б.-с. понимают приборы второго типа.
Размещено на Allbest.ru
...Подобные документы
Виды бета-распад ядер и его характеристики. Баланс энергии при данном процессе. Массы исходного и конечного атомов, их связь с массами их ядер. Энергетический спектр бета-частиц, роль нейтрино. Кулоновское взаимодействие между конечным ядром и электроном.
контрольная работа [133,4 K], добавлен 22.04.2014Сведения о радиоактивных излучениях. Взаимодействие альфа-, бета- и гамма-частиц с веществом. Строение атомного ядра. Понятие радиоактивного распада. Особенности взаимодействия нейтронов с веществом. Коэффициент качества для различных видов излучений.
реферат [377,6 K], добавлен 30.01.2010Общие сведения о бета-спектрометрическом комплексе "ПРОГРЕСС". Сравнение спектрометрического и радиохимического методов анализа при оценке вклада 137Cs и 40К на суммарную бета-активность 90Sr в почве, отобранной на СИП с активностью менее 2000 Бк/кг.
дипломная работа [4,4 M], добавлен 24.07.2010Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.
курсовая работа [1,1 M], добавлен 06.02.2008Поняття радіоактивності. Різниця між радіоактивністю і розпадом "компаунд"-ядер, утворених дією деяких елементарних частинок на стабільні ядра. Закономірності "альфа" і "бета" розпаду. Гамма-випромінювання ядер не є самостійним видом радіоактивності.
реферат [154,4 K], добавлен 12.04.2009Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.
курсовая работа [1,5 M], добавлен 21.03.2014Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.
реферат [117,7 K], добавлен 02.04.2012Преобразование энергии бета распада в электрическую энергию с использованием твердотельных полупроводников. Определение областей применения радиоизотопных источников питания. Обоснование и выбор оптимального по радиоактивности и геометрии радиоизотопа.
дипломная работа [3,6 M], добавлен 20.05.2015Типы радиоактивного распада и радиоактивного излучения. Закон радиоактивного распада. Анализы, основанные на измерении радиоактивности. Использование естественной радиоактивности в анализе. Метод изотропного разбавления, радиометрическое титрование.
реферат [23,4 K], добавлен 11.03.2012Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.
реферат [306,3 K], добавлен 08.05.2003Лучи Беккереля действуют на фотопластинку, проходят через чёрную бумагу и слои металла небольшой толщины. Различие между лучами Рентгена и Беккереля. О свойствах радиоактивного излучения. Энергия, излучаемая радием. Альфа-, бета- и гамма- лучи.
реферат [845,5 K], добавлен 19.03.2008Анализ источников радиоактивного фона. Определение естественного радиоактивного фона с использованием радиометрической лабораторной установки. Исследование изменения радиоактивности воздуха с течением времени. Определение периода радиоактивного распада.
методичка [188,0 K], добавлен 30.04.2014Методы наблюдения и регистрации элементарных частиц; газоразрядный счетчик Гейгера и камера Вильсона. Открытие радиоактивности; исследование альфа-, бета- и гамма-излучения. Рассмотрение биологического действия радиоактивных излучений на живые организмы.
презентация [2,2 M], добавлен 03.05.2014Работы Эрнеста Резерфорда. Планетарная модель атома. Открытие альфа- и бета-излучения, короткоживущего изотопа радона и образования новых химических элементов при распаде тяжелых химических радиоактивных элементов. Воздействие радиации на опухоли.
презентация [520,3 K], добавлен 18.05.2011Характеристика корпускулярного, фотонного, протонного, рентгеновского видов излучения. Особенности взаимодействия альфа-, бета-, гамма-частиц с ионизирующим веществом. Сущность комптоновского рассеивания и эффекта образования электронно-позитронной пары.
реферат [83,8 K], добавлен 08.11.2010Радиоактивные излучения, их сущность, свойства, единицы измерения, физическая доза и мощность. Газоразрядные счётчики ионизирующих частиц. Конструкция и принципы работы счётчиков Гейгера с высоковольтным питанием, СТС-5 и слабого бета-излучения СТБ-13.
курсовая работа [3,8 M], добавлен 05.11.2009Ядерно-физические свойства и радиоактивность тяжелых элементов. Альфа- и бета-превращения. Сущность гамма-излучения. Радиоактивное превращение. Спектры рассеянного гамма-излучения сред с разным порядковым номером. Физика ядерного магнитного резонанса.
презентация [1,0 M], добавлен 15.10.2013Основные термины, используемые при рентгенологическом исследовании. Устройство рентгеновской трубки. Свойства рентгеновского излучения. Характеристика структуры атома и ядра вещества. Виды радиоактивного распада: альфа-распад. Система обозначений ядер.
реферат [667,7 K], добавлен 16.01.2013Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.
курсовая работа [140,4 K], добавлен 25.04.2015Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.
презентация [16,0 M], добавлен 14.03.2016