Метрология, стандартизация и сертификация

Цели и принципы измерения электрической энергии. Характеристика требований к расчетным приборам учета электроэнергии. Основные пути снижения производственных затрат на энергоресурсы. Порядок измерения мощности, составляющие ваттметра, его главные задачи.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 08.05.2015
Размер файла 228,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Министерство образования и науки Российской Федерации

Южно-Уральский государственный университет.

Кафедра «Строительные конструкции и инженерные сооружения»

РЕФЕРАТ

по дисциплине:

«Метрология, стандартизация и сертификация»

Челябинск 2015 г.

Введение

Объекты и явления окружающего мира являются предметами познания. Познавательная деятельность имеет свои законы и особенности. Естественные науки занимаются практической познавательной деятельностью.

В ней различаются категории качества и количества. Методами количественного анализа служат теория и эксперимент. В свою очередь экспериментальные исследования могут выполняться с применением и без применения технических средств (инструментов).

Полученная тем или иным путем количественная информация о свойствах и явлениях окружающего мира перерабатывается, транспортируется и хранится в устройствах и системах. Использование количественной информации в народном хозяйстве (включая научную сферу) служит конечной целью познавательной деятельности.

Наука о получении количественной информации опытным путем называется метрологией. Опытным путем, т.е. экспериментально, количественная информация получается посредством измерений. Таким образом, метрология - наука о получении измерительной информации.

Первая аксиома метрологии гласит, что без априорной, т.е. до опытной информации, измерение невозможно. Эта аксиома относится к ситуации перед измерением и говорит о том, что если об интересующем нас свойстве мы ничего не знаем, то ничего и не узнаем. С другой стороны, если о нем известно все, то измерение не нужно.

Вторая аксиома метрологии заключается в том, что измерение есть не что иное, как сравнение. Она относится к процедуре измерения и говорит о том, что нет иного экспериментального способа получения информации о каких бы то ни было размерах, кроме как путем сравнения их между собой.

Третья аксиома метрологии гласит, что результат измерения без округления является случайным. Она относится к ситуации после измерения и отражает тот факт, что на результат реальной измерительной процедуры всегда оказывает влияние множество разнообразных, в том числе случайных факторов, точный учет которых в принципе невозможен, а окончательный итог непредсказуем.

По способу получения результатов различаются измерения прямые, косвенные, совокупные, или совместные.

Прямое измерение - искомое значение находят непосредственно из опытных данных. Например, измерение амперметром тока.

Косвенное измерение - искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Например, сопротивление резистора R находят по уравнение. R = U/I, в которое подставляют измеренные значения падения напряжения U на резисторе и тока I через него.

Совместные измерения - одновременные измерения нескольких не одноимённых величин для нахождения зависимости между ними. Например - определяют зависимость сопротивления резистора от температуры: Rx = R0 (1+Аt+Вt2); измеряя сопротивление резистора при трех различных температурах, составляют систему из трех уравнений, из которых находят параметры R0, А, В данной зависимости.

Совокупные измерения - одновременное измерение нескольких одноименных величин, при которых искомые значения величин находят решением системы уравнений, составленных по результатам прямых измерений различных сочетаний этих величин.

Методы измерений - это совокупность приемов использования принципов и средств измерений. Все методы измерений так же, как и их виды, исходя из второй аксиомы метрологии, являются разновидностями одного методологического подхода - метода сравнения с мерой и прямого измерения.

1. Правила учета электрической энергии

Расчеты за потребляемую электроэнергию являются одной из основополагающих позиций договорных взаимоотношений между потребителем и энергоснабжающей организацией, учитывающих интересы обеих сторон.

Требования к расчетным приборам учета электроэнергии включают в себя достоверность и точность определения расхода электроэнергии с учетом ее потерь в электрических сетях, открытости и доступности результатов измерений на всех этапах производства, передачи, распределения и потребления электроэнергии.

Эти вопросы находятся в центре внимания на самом высоком государственном уровне и отражены в ряде законодательных правительственных документов, в том числе:

в Законе Российской Федерации «Об энергосбережении» № 28-ФЗ, принятом Государственной Думой 13 марта 1996 г., в котором указана необходимость обеспечения обязательного приборного учета всего объема производимых и потребляемых энергоресурсов;

в статьях 541, 543 и 544 Гражданского Кодекса, в которых подчеркивается, что количество переданной электрической энергии определяется в соответствии с данными приборов учета о ее фактическом потреблении и т.д.;

в Постановлении Правительства Российской Федерации от 02.11.95 № 1087 «О неотложных мерах по энергосбережению», на базе которого действуют Правила учета электрической энергии;

в Законе Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в Российской Федерации, регулирует отношения государственных органов управления РФ с юридическими физическими лицами по вопросам изготовления, выпуска, эксплуатации, ремонта, продажи и импорта средств измерений и направлен на защиту прав и законных интересов граждан, установленного правопорядка и экономики РФ от отрицательных последствий недостоверных результатов измерений;

в Законе Российской Федерации «О государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации», принятом Государственной Думой 10 марта 1995 г., который определяет экономические, организационные и правовые основы государственного регулирования тарифов на электрическую и тепловую энергию в РФ;

в других законодательных, правовых и подзаконных актах, а также в государственных стандартах и ряде нормативно-технической документации.

Настоящие Правила учета электрической энергии определяют общие требования к организации ее учета и взаимосвязь между основными нормативно-техническими документами, действующими в этой области.

Допускается на основании действующих правовых и нормативно-технических документов ведомствами разрабатывать и утверждать в установленном порядке в пределах своей компетенции ведомственные нормативно-технические документы в области учета электроэнергии, не противоречащие утвержденным Правилам учета электрической энергии. Если эти документы содержат требования межведомственного характера, они должны быть согласованы в установленном порядке с Госэнергонадзором.

Учет электроэнергии производится на основе измерений с помощью счетчиков электрической энергии и информационно-измерительных систем.

Для учета электроэнергии должны использоваться средства измерений, типы которых утверждены Госстандартом России и внесены в Государственный реестр средств измерений.

К средствам учета относится совокупность устройств, обеспечивающих измерение и учет электроэнергии (измерительные трансформаторы тока и напряжения, счетчики электрической энергии, телеметрические датчики, информационно-измерительные системы и их линии связи) и соединенных между собой по установленной схеме.

Лица, выполняющие работы по монтажу и наладке средств учета электроэнергии, должны иметь лицензию на проведение данных видов работ, т.е. документ, удостоверяющий право заниматься указанными видами деятельности, выдаваемый юридическим и физическим лицам органом государственной метрологической службы.

Средства учета электрической энергии и контроля ее качества должны быть защищены от несанкционированного доступа для исключения возможности искажения результатов измерений.

Организация эксплуатации средств учета электроэнергии должна вестись в соответствии с требованиями действующих НТД и инструкций заводов-изготовителей.

Эксплуатационное обслуживание средств учета электроэнергии должно осуществляться специально обученным персоналом.

При обслуживании средств учета электроэнергии должны выполняться организационные и технические мероприятия по обеспечению безопасности работ в соответствии с действующими правилами.

На основании действующих правовых и нормативно-технических документов ведомства могут разрабатывать и утверждать в пределах своей компетенции ведомственные НТД в области учета электроэнергии, не противоречащие настоящим правилам.

В сроки, установленные Госстандартом России, необходимо производить периодическую проверку средств измерений, используемых для учета электрической энергии и контроля ее качества. Перестановка, замена или изменение схем включения средств учета осуществляется с согласия энергоснабжающей организации.

Помимо Правил учета электрической энергии действует Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении (РД 34.09.101-94), которая содержит основные положения по учету электроэнергии при ее производстве, передаче и распределении, устанавливает требования к организации, составу и правилам эксплуатации систем учета электроэнергии и мощности. Типовая инструкция предназначена для персонала акционерных обществ энергосистем, проектных организаций и потребителей электроэнергии.

Представители Энергонадзора имеют право доступа к приборам учета электроэнергии, измерительным комплексам и системе учета в целом на всех электростанциях, подстанциях и предприятиях, расположенных в зоне обслуживания, для выполнения инспекционных и регламентных работ с участием персонала соответствующего энергообъекта (электроустановки).

Каждый измерительный комплекс учета электроэнергии, введенный по нормальной или временной схеме размещения приборов расчетного и технического учета электроэнергии, должен иметь технический паспорт-протокол следующей формы.

Настоящие Правила учета электрической энергии согласованы с Госстандартом России, Главгосэнергонадзором России и РАО «ЕЭС России» и утверждены в Минтопэнерго Российской Федерации и Минстрое Российской Федерации.

2. Цели и принципы измерения электрической энергии

Основной целью учета электрической энергии является получение достоверной информации о количестве отпущенной и потребленной электроэнергии (величине мощности) для решения финансовых расчетов за электроэнергию и мощность, определения и прогнозирования технико-экономических показателей потребления электроэнергии предприятием, обеспечения энергосбережения и организации электропотребления. Различают коммерческий, используемый для финансовых расчетов (с определенными требованиями по местам установки средств учета, их типам, классам точности и периодичности снятия показаний), и технический учет электроэнергии в целях организации по подразделениям электропотребления и энергосбережения на предприятии.

Средства учета электроэнергии -- это устройства, обеспечивающие измерение и учет; к ним относятся: счетчики электрической энергии (активной и реактивной); измерительные трансформаторы тока и напряжения; телеметрические датчики; информационно-измерительные системы и их линии связи. Измерительным комплексом средств учета электроэнергии называется совокупность соединенных между собой по установленной схеме устройств. Совокупность измерительных комплексов, установленных на одном объекте (например, на предприятии), называется системой учета электроэнергии.

Самым распространенным видом электроизмерительных приборов являются счетчики активной и реактивной энергии. Различают счетчики непосредственного включения в сеть и счетчики, предназначенные для подключения к измерительным трансформаторов тока и напряжения. В последнем случае показания счетчика умножают на расчетный коэффициент Кр, равный произведению соответствующих коэффициентов трансформации: Ар = К,Ки. Есть счетчики, заранее отградуированные для работы с конкретными измерительными трансформаторами, которые указаны на их табличке. Такие счетчики называются трансформаторными; пересчет их показаний не требуется.

В качестве расчетных приборов учета используют однофазные и трехфазные счетчики двух типов: индукционные и статические (электронные). В индукционном счетчике имеется подвижный диск, по которому протекают токи, индуцированные магнитным полем токопроводящих катушек. В электронном счетчике переменный ток и напряжение воздействуют на твердотельные (электронные) элементы для создания на выходе импульсов, число которых пропорционально измеряемой активной энергии.

Счетный механизм представляет собой электромеханическое или электронное устройство, содержит запоминающее устройство и дисплей.

Система учета электроэнергии должна быть защищена от воздействия электромагнитных полей (сверх установленных техническими условиями), механических повреждений и несанкционированного доступа. На счетчиках устанавливают два типа пломб: заводские пломбы на креплении кожухов, не допускающие проникновение внутрь механизма счетчика, и пломбы организации (субъекта электроэнергетики), с которой осуществляются финансовые расчеты.

Счетчики активной энергии изготавливают следующих классов точности (обозначает наибольшую относительную погрешность в процентах): индукционные -- 0,5; 1,0; 2,0 и 2,5; электронные -- 1; 2; 0,2S; 0,5S. Требования к классу точности определяют в зависимости от цели и места установки системы учета; ряд требований определены в правовых и нормативных документах. Рынок электроэнергии предъявляет повышенные требования к точности приборов учета.

Снижение производственных затрат на энергоресурсы затрат реализуется направлениями технической политики предприятия, заключающейся в снижении стоимости потребленной электроэнергии и повышении эффективности ее использования.

Для оптимизации затрат предприятию следует переносить часть нагрузки на другие временные интервалы -- полупиковые и ночные. Считая, что годовое А(А = Рмах Тмах) и суточное Ас (Ас = 24Рс) электропотребление не зависят от регулирования (энергия для функционирования предприятия W const), можно организовать перераспределение потребляемой энергии в течении суток. Для этого на суточном графике нагрузки предприятия выделяют ночную зону Рн; дневную зону, равную средней нагрузке Рс; утренний РУ(таХ) и вечерний Рв(тах) максимумы, совпадающие с временем прохождения максимума в энергосистеме (при этом Рс < Ру(макс) < Рв(мах))

Предприятие заинтересовано в постоянном управлении величиной электропотребления, опираясь на возможности регулирования по цехам.

Условно принимается:

1) технологический процесс одинаков для каждого цикла (смены), но изменением времени начала и конца цикла можно перевести максимальную нагрузку на другое время;

2) процесс непрерывен и не может сдвигаться во времени, но продукция различна по электроемкости, а сам процесс регулируем по интенсивности -- следует ставить на часы максимума выпуск неэнергоемкой продукции;

3) технология допускает прерывание -- такое, что экономия оплаты за электроэнергию перекрывает неудобства;

4) цеха свободны от технологических ограничений на снижение нагрузки. I

Предприятие, имеющее возможности регулирования нагрузки, называется потребителем с управляемой нагрузкой. Такое предприятие может оказывать услуги субъектам электроэнергетики. За эти услуги предприятию должны оплачивать (полностью возмещают как затраты, так и обоснованный уровень рентабельности). С точки зрения субъектов электроэнергетики снижение Ртах отдельных потребителей означает выравнивание общего графика нагрузки и снижение максимума, что в пределе снижает возможный дефицит мощности и позволяет отказаться от строительства части генерирующих мощностей.

Особо как регуляторы рассматриваются предприятия и организации, имеющие собственные источники электроэнергии. Они законодательно получили название «потребители с блокстанциями» и право продажи излишков (даже в отдельные часы) другим потребителям региона, гарантирующему поставщику, а в ряде случаев -- и на оптовый рынок. Это позволит организовать экономичные режимы собственных электростанций.

3. Приборы учета и измерений электроэнергии

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 1) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

ваттметр энергия электрический

Рис. 1 Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения -- через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые -- в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 2) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 2 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения -- последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Рис. 2 Ферродинамический счетчик электрической энергии

Индукционный счетчик имеет два электромагнита (рис. 3а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске.

В индукционном счетчике вращающий момент М должен быть пропорционален мощности. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) -- параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 -- напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз угол между потоками Ф1 и Ф2 в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике.

Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок.

Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам.

Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 3б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,-- буквами Г.

Рис. 3 Индукционный счетчик электрической энергии

4. Погрешности измерений и их виды

Ни одно измерение не свободно от погрешностей, или, точнее, вероятность измерения без погрешностей приближается к нулю. Род и причины погрешностей весьма разнообразны и на них влияют многие факторы.

По результатам измерения погрешности можно разделить на три вида: систематические, случайные и промахи.

Систематические погрешности, в свою очередь, делят на группы по причине их возникновения и характеру проявления. Они могут быть устранены различными способами, например, введением поправок.

Случайные погрешности вызываются сложной совокупностью изменяющихся факторов, обычно неизвестных и трудно поддающихся анализу. Их влияние на результат измерения можно уменьшить, например, путем многократных измерений с дальнейшей статистической обработкой полученных результатов методом теории вероятностей.

К промахам относятся грубые погрешности, которые возникают при внезапных изменениях условия эксперимента. Эти погрешности по своей природе тоже случайны, и после выявления должны быть исключены.

Точность измерений оценивается погрешностями измерений, которые подразделяются по природе возникновения на инструментальную и методическую и по методу вычислений на абсолютную, относительную и приведенную.

Инструментальная погрешность характеризуется классом точности измерительного прибора, который приведен в его паспорте в виде нормируемых основной и дополнительных погрешностей.

Методическая погрешность обусловлена несовершенством методов и средств измерений.

Абсолютная погрешность есть разность между измеренным Gu и истинным G значениями величины, определяемая по формуле:

Д=ДG=Gu-G

Заметим, что величина имеет размерность измеряемой величины.

Относительную погрешность находят из равенства

д=±ДG/Gu·100%

Приведенную погрешность рассчитывают по формуле (класс точности измерительного прибора)

д=±ДG/Gнорм·100%

где Gнорм - нормирующее значение измеряемой величины. Ее принимают равной:

а) конечному значению шкалы прибора, если нулевая отметка находится на краю или вне шкалы;

б) сумме конечных значений шкалы без учета знаков, если нулевая отметка расположена внутри шкалы;

в) длине шкалы, если шкала неравномерная.

Класс точности прибора устанавливается при его проверке и является нормируемой погрешностью, вычисляемой по формулам

г=±ДG/Gнорм·100%, если ДGm=const

где ДGm - наибольшая возможная абсолютная погрешность прибора;

Gk - конечное значение предела измерения прибора; с и d - коэффициенты, учитывающие конструктивные параметры и свойства измерительного механизма прибора.

Например, для вольтметра с постоянной относительной погрешностью имеет место равенство

дm=±c

Относительная и приведенная погрешности связаны следующими зависимостями:

а) для любого значения приведенной погрешности

д=±г·Gнорм/Gu

б) для наибольшей приведенной погрешности

д=±гm·Gнорм/Gu

Из этих соотношений следует, что при измерениях, например вольтметром, в цепи при одном и том же значении напряжения относительная погрешность тем больше, чем меньше измеряемое напряжение. И если этот вольтметр выбран неправильно, то относительная погрешность может быть соизмерима со значением Gн , что является недопустимым. Заметим, что в соответствии с терминологией решаемых задач, например, при измерении напряжения G = U, при измерении тока C = I, буквенные обозначения в формулах для вычисления погрешностей необходимо заменять на соответствующие символы.

Важными этапами в процессе измерений являются обработка результатов и правила округления. Теория приближенных вычислений позволяет, зная степень точности данных, оценить степень точности результатов еще до выполнения действий: отобрать данные с надлежащей степенью точности, достаточной для обеспечения требуемой точности результата, но не слишком большую, чтобы избавить вычислителя от бесполезных расчетов; рационализировать сам процесс вычисления.

При обработке результатов применяют правила округления.

Правило 1. Если первая из отбрасываемых цифр больше пяти, то последняя из сохраняемых цифр увеличивается на единицу.

Правило 2. Если первая из отбрасываемых цифр меньше пяти, то увеличение не делается.

Правило 3. Если отбрасываемая цифра равняется пяти, а за ней нет значащих цифр, то округление производится на ближайшее четное число, т.е. последняя сохраняемая цифра остается неизменной, если она четная, и увеличивается, если она не четная.

Если за цифрой пять есть значащие цифры, то округление производится по правилу 2.

Применяя правило 3 к округлению одного числа, мы не увеличиваем точность округления. Но при многочисленных округлениях избыточные числа будут встречаться примерно столь же часто, как недостаточно. Взаимная компенсация погрешности обеспечит наибольшую точность результата.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной погрешностью.

Величина предельной погрешности не является вполне определенной. Для каждого приближенного числа должна быть известна его предельная погрешность (абсолютная или относительная).

Кроме того, при обработке результатов используются правила нахождения погрешности суммы, разности, произведения и частного.

Правило 1. Предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей отдельных слагаемых, но при значительном числе погрешностей слагаемых обычно происходит взаимная компенсация погрешностей, поэтому истинная погрешность суммы лишь в исключительных случаях совпадает с предельной погрешностью или близка к ней.

Правило 2. Предельная абсолютная погрешность разности равна сумме предельных абсолютных погрешностей уменьшаемого или вычитаемого.

Предельную относительную погрешность легко найти, вычислив предельную абсолютную погрешность.

Правило 3. Предельная относительная погрешность суммы (но не разности) лежит между наименьшей и наибольшей из относительных погрешностей слагаемых.

Если все слагаемые имеют одну и ту же предельную относительную погрешность, то и сумма имеет ту же предельную относительную погрешность. Иными словами, в этом случае точность суммы (в процентном выражении) не уступает точности слагаемых.

В противоположность сумме разность приближенных чисел может быть менее точной, чем уменьшаемое и вычитаемое. Потеря точности особенно велика в том случае, когда уменьшаемое и вычитаемое мало отличаются друг от друга.

Правило 4. Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей: д=д1+д2, или, точнее, д=д1+д2+д1д2 где д - относительная погрешность произведения, д1д2 - относительные погрешности сомножителей.

Примечания:

1. Если перемножаются приближенные числа с одним и тем же количеством значащих цифр, то в произведении следует сохранить столько же значащих цифр. Последняя из сохраняемых цифр будет не вполне надежна.

2. Если некоторые сомножители имеют больше значащих цифр, чем другие, то до умножения следует первые округлить, сохранив в них столько цифр, сколько имеет наименее точный сомножитель или еще одну (в качестве запасной), дальнейшие цифры сохранять бесполезно.

3. Если требуется, чтобы произведение двух чисел имело заранее данное число вполне надежное, то в каждом из сомножителей число точных цифр (полученное измерением или вычислением) должно быть на единицу больше. Если количество сомножителей больше двух и меньше десяти, то в каждом из сомножителей число точных цифр для полной гарантии должно быть на две единицы больше, чем требуемое число точных цифр. Практически же вполне достаточно взять лишь одну лишнюю цифру.

Правило 5. Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя. Точная величина предельной относительной погрешности всегда превышает приближенную. Процент превышения примерно равен предельно относительной погрешности делителя.

Пример 1. Найти предельную абсолютную погрешность частного 2,81 : 0,571.

Решение. Предельная относительная погрешность делимого есть 0,005:2,81=0,2%; делителя - 0,005:0,571=0,1%; частного - 0,2% + 0,1%=0,3%. Предельная абсолютная погрешность частного приближенно составит 2,81:0,571·0,0030=0,015

Значит, в частном 2,81:0,571=4,92 уже третья значащая цифра не надежна.

Ответ. 0,015.

Пример 2. Найти сумму приближенных замеров прибора. Найти количество верных знаков: 0,0909 + 0,0833 + 0,0769 + 0.0714 + 0,0667 + 0.0625 + 0,0588+ 0,0556 + 0,0526.

Решение. Сложив все результаты замеров, получим 0,6187. Предельная наибольшая погрешность суммы 0,00005·9=0,00045. Значит, в последнем четвертом знаке суммы возможна ошибка до 5 единиц. Поэтому округляем сумму до третьего знака, т.е. тысячных, получаем 0,619 - результат, в котором все знаки верные.

Ответ. 0,619. Количество верных знаков - три знака после запятой.

Выводы

Измерение и учет электрической энергии строго регламентируется нормативно-технической документацией и законодательством Российской Федерации.

Для измерения и учета электрической энергии имеется множество приборов, которые должны удовлетворять требованиям государственных стандартов и другой нормативно-технической документации.

Список используемых источников

1. Интернет ресурс http://www.telenir.net/tehnicheskie_nauki

2. Интернет ресурс http://pue8.ru/uchet-elektroenegii (3)

3. Интернет ресурс http://electrono.ru

4. Закон Российской Федерации «Об энергосбережении» № 28-ФЗ, принятый Государственной Думой 13 марта 1996 г.

5. Постановление Правительства Российской Федерации от 02.11.95 № 1087 «О неотложных мерах по энергосбережению»

6. Закон Российской Федерации «О государственном регулировании тарифов на электрическую и тепловую энергию в Российской Федерации», принятый Государственной Думой 10 марта 1995 г.

7. Типовая инструкция по учету электроэнергии при ее производстве, передаче и распределении (РД 34.09.101-940).

Размещено на Allbest.ru

...

Подобные документы

  • Методы измерения мощности. Архитектура автоматизированной измерительной системы технического учета электроэнергии. Разработка функциональной и электрической принципиальной схемы устройства. Выбор стандарта связи между цифровым счетчиком и компьютером.

    дипломная работа [7,1 M], добавлен 09.06.2014

  • Измерение поглощаемой мощности как наиболее распространенный вид измерения СВЧ мощности. Приемные преобразователи ваттметров проходящей мощности. Обзор основных методов для измерения импульсной мощности, характеристика их преимуществ и недостатков.

    реферат [814,2 K], добавлен 10.12.2013

  • Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.

    реферат [1,5 M], добавлен 08.01.2015

  • Изучение истории рождения энергетики. Использование электрической энергии в промышленности, на транспорте, в быту, в сельском хозяйстве. Основные единицы ее измерения выработки и потребления. Применение нетрадиционных возобновляемых источников энергии.

    презентация [2,4 M], добавлен 22.12.2014

  • История возникновения приборов учёта и измерения электрической энергии. Классификация счётчиков электричества по типу измеряемых величин, типу подключения и конструкции. Схема устройства индукционного счетчика. Будущее учёта электрической энергии.

    реферат [268,8 K], добавлен 11.06.2014

  • Напряжение, ток, мощность, энергия как основные электрические величины. Способы измерения постоянного и переменного напряжения, мощности в трехфазных цепях, активной и реактивной энергии. Общая характеристика электросветоловушек для борьбы с насекомыми.

    контрольная работа [2,2 M], добавлен 19.07.2011

  • Общие сведения по коллективным (общедомовым) приборам учета электроэнергии, их наладка и эксплуатация. Инструкционно-техническая карта на монтаж приборов учета электроэнергии. Охрана труда при работе с счетчиками на электростанциях и подстанциях.

    курсовая работа [26,7 K], добавлен 09.12.2014

  • Анализ экономических показателей и характеристика предприятия на примере ГРЭС-5 г. Шатура Московской области. Анализ производственно-хозяйственной деятельности предприятия, финансового состояния. Пути снижения себестоимости производства электроэнергии.

    курсовая работа [102,3 K], добавлен 09.02.2009

  • Роль электроэнергии в производственных процессах на современном этапе, метод ее производства. Общая схема электроэнергетики. Особенности главных типов электростанций: атомной, тепловой, гидро- и ветрогенераторы. Преимущества электрической энергии.

    презентация [316,3 K], добавлен 22.12.2011

  • Номинальное напряжение на шинах. Определение по методу коэффициента максимума электрической нагрузки цехового трансформатора. Выбор марки проводов и кабелей всех линий и определение их сечений по нагреву расчетным током. Потери мощности и электроэнергии.

    курсовая работа [339,5 K], добавлен 03.02.2013

  • Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.

    презентация [127,3 K], добавлен 02.08.2012

  • Метрология как наука об измерениях физических величин, методах и средствах обеспечения их единства. Знакомство с основными особенностями комбинированного вольтметра В7-40 для измерения среднеквадратических значений переменного напряжения и тока.

    дипломная работа [1,5 M], добавлен 08.11.2013

  • Средства обеспечения единства измерений, исторические аспекты метрологии. Измерения механических величин. Определение вязкости, характеристика и внутреннее устройство приборов для ее измерения. Проведение контроля температуры и ее влияние на вязкость.

    курсовая работа [465,3 K], добавлен 12.12.2010

  • Определение мощности лазерного излучения, подаваемого на образец. Вычисление размеров лазерного пучка на образце. Разработка системы измерения мощности излучения и длительности лазерного импульса, системы измерения температуры в зависимости от времени.

    лабораторная работа [503,2 K], добавлен 11.07.2015

  • Требования по технике безопасности. Трехфазная цепь при соединении потребителей по схемам "звезда" и "треугольник". Однофазного счетчика электрической энергии. Опыт холостого хода трансформатора, короткого замыкания. Работа люминесцентной лампы.

    методичка [721,6 K], добавлен 16.05.2010

  • Исследование особенностей применения трансформаторов тока и напряжения. Изучение схемы подключения приборов и реле к вторичным обмоткам. Измерение показателей качества электроэнергии. Расчетные счетчики активной и реактивной энергии трехфазного тока.

    презентация [2,0 M], добавлен 23.11.2014

  • Общая характеристика и главные отличия периодической системы измерения величин и системы единиц СИ. Примеры, способы и формулы перехода от размерностей международной системы (СИ) к размерностям периодической системы (АС) измерения физических величин.

    реферат [66,1 K], добавлен 09.11.2010

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Цель учета электрической энергии и контроль его достоверности. Коммерческий учет потребления энергии предприятием для денежного расчета за нее. Требования к АСКУЭ. Расчет системы АСКУЭ для части промышленного предприятия. Хранение данных энергоучета.

    курсовая работа [299,7 K], добавлен 15.10.2011

  • Приемники электрической энергии. Качество электрической энергии и факторы, его определяющие. Режимы работы нейтрали. Выбор напряжений, числа и мощности силовых трансформаторов, сечения проводов и жил кабелей, подстанций. Компенсация реактивной мощности.

    курс лекций [1,3 M], добавлен 23.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.