Гідростатика
Вивчення властивостей гідростатичного тиску. Вираження залежності тиску в точці рідини в стані спокою від виду рідини і відстані точки від вільної поверхні. Визначення сили тиску рідини на плоску стінку. Сила тиску рідини на криволінійні поверхні.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | украинский |
Дата добавления | 17.05.2015 |
Размер файла | 177,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Гідростатика
1. Гідростатичний тиск і його властивості
Такі властивості, як текучість і неспроможність чинити опір розтягуючим зусиллям, дозволяють сформулювати умови рівноваги певного об'єму рідини: рідина може зберегти свій стан рівноваги тільки в тому випадку, якщо зовнішні сили, що діють на граничну поверхню даного об'єму, напрямлені по внутрішнім нормалям до цієї поверхні.
Размещено на http://www.allbest.ru/
Розглянемо довільний об'єм рідини, що знаходиться в рівновазі під дією зовнішніх сил (рис 1). Розсічемо цей об'єм на дві частини деякою січною площиною і відкинемо верхню частину І.
Тоді на частину ІІ з боку відкинутої частини буде діяти певна сила Р, яка повинна бути перпендикулярною до січної площини. Цю стискуючу силу називають силою гідростатичного тиску. Якщо на січній площині виділити елементарну площинку , то на неї буде діяти частина Р сили Р.
Границя відношення Р/ називається гідростатичним тиском р в даній точці рідини:
Або
Середній гідростатичний тиск, який діє на площі , визначають за формулою:
Одиницею тиску в системі СІ є паскаль (1Па=Н/м2).
Гідростатичний тиск характеризується трьома властивостями.
1. Гідростатичний тиск завжди напрямлений по внутрішній нормалі до поверхні, на яку він діє, і створює тільки стискуючі напруження.
Ця властивість безпосередньо виходить із визначення тиску, як напруження від нормальної стискуючої сили.
В будь-якій точці рідини гідростатичний тиск однаковий по всім напрямам.
Щоб довести це виділимо в об'ємі рідини призму з основою у вигляді трикутника АВС (рис 2а) і замінимо дію зовнішнього об'єму рідини на її бокові грані відповідними силами. Оскільки призма знаходиться у стані рівноваги, то трикутник цих сил повинен бути замкнутим (рис 2б).
Размещено на http://www.allbest.ru/
Рис. 2а Рис. 2б
Силовий трикутник подібний трикутнику АВС і тому . Якщо поділити всі члени даного рівняння на довжину призми l, то в знаменниках будуть стояти площі відповідних граней призми. При спрямуванні розмірів призми до нуля у відповідності з рівнянням 1 отримаємо:
РАВ=РВС=РАС=P,
що і потрібно було довести.
3. Гідростатичний тиск в точці залежить тільки від її положення у просторі, тобто р=f(x,y,z).
Цей висновок виходить з викладеного вище.
2. Диференціальні рівняння рівноваги рідини
Виділимо в нерухомій рідині нескінченно малий об'єм у вигляді паралелепіпеда з ребрами dx, dy, dz (рис 3). Подумки відкинемо рідину, що оточує паралелепіпед, і замінимо її дію відповідними силами. Припустимо, що на ліву грань діє тиск р. Тоді на праву грань А1В1С1D1, яка знаходиться на відстанні x+dx, буде діяти тиск .
Відповідно, сила тиску на ліву грань АВСD буде дорівнювати
а на праву
(Знак (-) показує, що сила діє у від'ємному напрямі осі х)
Рис. 3
Крім сили тиску на паралелепіпед може діяти рівнодіюча масових сил (тяжіння, відцентрова, інерції), проекція якої на вісь х буде:
де Х-проекція прискорення (одиничної масової сили) на вісь х;
dV-об'єм паралелепіпеда.
Рівняння рівноваги сил, що діють на паралелепіпед в напрямі осі х, має вигляд:
чи, після спрощень,
Аналогічно можна отримати рівняння рівноваги сил відносно осей y і z
Таким чином, кінцево маємо систему:
Рівняння (5) є основними диференціальними рівняннями рівноваги рідини (рівняння Ейлера).
Щоб привести рівняння Ейлера до вигляду, зручного для інтегрування, помножимо кожне з рівнянь (5) відповідно на dx, dy, dz і складемо їх почленно:
Ліва частина цього рівняння є повним диференціалом тиску dp, тому:
Рівняння (6) називається основним диференціальним рівнянням гідростатики.
Зі співвідношення (6) можна отримати рівняння для поверхні рівного тиску (поверхні рівня). Для такої поверхні p=const і при =const будемо мати:
Частинним випадком поверхні рівня є вільна поверхня рідини.
Поверхні рівня мають такі властивості:
1) дві різні поверхні рівня не можуть перерізати одна одну;
2) зовнішні об'ємні сили напрямленні по нормалі до поверхні рівня.
3. Основне рівняння гідростатики
Розглянемо найбільш поширений випадок рівноваги рідини, коли вона знаходиться тільки під дією сили тяжіння. Тоді проекції одиничних масових сил на координатні осі будуть такими: Х=0, Y=0, Z=-g (координатну вісь Oz вважаємо напрямленою вверх), і рівняння поверхні рівного тиску (7) набуває вигляду:
Звідкіля
Таким чином, при рівновазі рідини в полі сил тяжіння поверхні рівня являють собою сім'ю горизонтальних площин. Однією з поверхонь рівного тиску буде і вільна поверхня рідини.
Визначимо тиск в довільній точці А об'єму рідини, що міститься в закритій посудині (рис.4) і знаходиться у стані спокою.
При X=0, Y=0, Z=-g основне диференціальне рівняння гідростатики (6) запишеться так:
Рис. 4
Після інтегрування в припущенні =const отримаємо:
де С-стала інтегрування.
Сталу інтегрування визначимо з граничних умов на вільній поверхні рідині в посудині, де z=z0, p=p0. Маємо:
і тоді
,
де h=z-z0 - заглиблення точки А під вільну поверхню.
Це і є основне рівняння гідростатики, яке виражає залежність тиску в даній точці рідини в стані спокою від виду рідини і відстані точці від вільної поверхні.
В рівнянні (10) р - абсолютний тиск в даній точці рідини, р0 - зовнішній абсолютний тиск на вільній поверхні рідини; - тиск стовпа рідини в даній точці. Всі складові рівняння мають розмірність тиску (ПА, кПА, МПА).
Основному рівнянню гідростатики можна надати іншого вигляду, якщо поділити всі його члени на сg:
В цьому рівнянні складові мають лінійну розмірність (М).
Зв'язок між тиском, виражений в одиницях тиску (ПА), і тиском в лінійних одиницях (метрах стовпа рідини) дає загальна формула
У відкритих резервуарах, водоймищах тощо зовнішнім тиском на вільну поверхню рідини є атмосферний тиск (рат,, рбар). В таких випадках рівняння (10) записують у формі
В техніці часто зустрічаються випадки, коли абсолютний тиск в даній точці рідини. Тоді величину називають надлишковим тиском:
Якщо , то надлишковий тиск називають манометричним тиском:
якщо то надлишковий тиск буде від'ємним і величину - називають вакууметричним тиском або вакуумом:
Зв'язок між абсолютним, манометричним і вакуумометричним тиском графічно проілюстрований на рис.5.
Рис. 5
Гідростатичний закон розподілу тиску, виражений формулою (11), cправедливий для будь-якого положення координатної площини хОу. Цю площину називають площиною порівняння. Величина , де z - геометрична висота розташування точки над площиною порівняння, р - абсолютний тиск, називається гідростатичним напором і позначається через ; величину , в якій р - надлишковий тиск, називають п'єзомеричним напором і позначають через . Як виходить з формули (11) напори і є сталими для всіх точок даної маси рідини, що знаходиться в стані спокою.
4. Закон Паскаля
З основного рівняння гідростатики можна бачити, що при зміні зовнішнього тиску ро на величину , тиск у всіх точках даного об'єму рідини змінюється на теж саме значення . Таким чином, рідина має властивість передавати тиск. В цьому і полягає закон Паскаля: тиск, який виникає на граничній поверхні рідини, що знаходиться в стані спокою, передається всім частинкам цієї рідини по всім напрямам без зміни його величини.
На законі Паскаля ґрунтується принцип дії різноманітних гідравлічних пристроїв, за допомогою яких тиск передається на відстань /гідравлічний прес, гідравлічний домкрат, гідромультиплікатор та інші.
5. Сила тиску рідини на плоску стінку. Центр тиску
Визначимо силу тиску рідини на площину щ плоскої стінки, яка розташована під довільним кутом до горизонту. Розв'язання задачі зручно проводити в системі координат хОу, вісь Оу якої напрямлена вздовж стінки, а вісь Ох співпадає з лінією перетину стінки і вільної поверхні рідини. Для зручності вісь Ох повернута на кут 900, (рис.6).
Очевидно що між будь - якою координатою у і глибиною занурення h існує зв'язок:
Сила тиску dР на довільну елементарну площину dщ
де ро - тиск на вільній поверхні рідини густиною с.
Повна сила тиску на площину w стінки:
*)
Для зручності вісь Ох повернута на кут 90о
Рис. 6
Інтеграл є статичним моментом площини W відносно осі Ох, величина якого дорівнює добутку щ на відстань її центра ваги до осі Ох тобто
Тоді
де hс - глибина занурення центра ваги стінки площиною щ. Сила тиску самої рідини без урахування зовнішнього тиску p.
У випадку, коли плоска стінка горизонтальна і розміщена на глибині h,то hc=h і
Якщо плоска стінка вертикальна б=90о і hc=yc.
Досить часто в інженерних розрахунках важливо не тільки визначити величину сили тиску рідини, але й знайти точку прикладення її рівнодіючої - так званий центр тиску.
Для цього користуться теоремою Варіньйона: момент рівнодіючої сили дорівнює алгебраїчній сумі моментів сладових її. Відповідно до рис.2,6 можна записати
де уd - координата центра тиску, Р=Рнад - сила тиску рідини.
Тоді
Тут - момент інерції змоченої площини щ відносно осі Ох ; усщ - статичний момент цієї площини.
На підставі теореми про моменти інерції відносно паралельних осей /теорема Гюйгенса/
де Ic - момент інерції плоскої фігури відносно осі, що проходить через її центр ваги паралельно осі Ох, тому залежності (19) можна надати вигляду
6. Сила тиску рідини на криволінійні поверхні
гідростатичний тиск рідина сила
Визначення сили сумарного тиску рідини на поверхні довільної форми в загальному випадку зводиться до визначення трьох складових цієї сили і трьох моментів /в системі координат Оху/
В техніці переважно мають справу з циліндричними або сферичними поверхнями, які мають вертикальну площину симетрії.
Розглянемо посудину з боковою стінкою циліндричної форми, котра заповнена рідиною, на вільну поверхню якої діє тиск р0 і визначимо силу тиску на ділянку АВ цієї стінки в двох випадках:
1) рідина знаходиться над стінкою (рис.7а);
2) рідина знаходиться під стінкою. (рис.7б).
a) б)
Рис. 7
В першому випадку виділимо об'єм АВСD рідини, обмежений ділянкою АВ стінки, вертикальними поверхнями АD і ВС, що проведені через границі цієї ділянки, і вільною поверхнею рідини. Сумарну силу тиску Р на ділянку АВ розкладемо на дві складові: вертикальну РВ і горизонтальну РГ.
З умови рівноваги об'єму АВСD у вертикальному напрямі знаходимо що
де G- вага виділеного об'єму рідини; щГ - площа проекції поверхні АВ на горизонталь.
В свою чергу сила ваги . Об'єм рідини, що міститься в геометричній фігурі АВСD часто називають “тілом тиску” і позначають через Vтт. З урахуванням цього рівняння (21) запишеться у формі
При визначенні горизонтальної складової сили тиску на поверхню АВ потрібно урахувати, що сили тиску на поверхні ВС і DЕ взаємно зрівноважуються. Тоді
В останньому рівнянні hc - заглиблення центра ваги (мас) вертикальної проекції поверхні АВ - щв
Очевидно, що повна сила тиску на циліндричну поверхню
Коли рідина розташована під стінкою рис.7б складові Рв і Рг також визначаються формулами 21 або 22 і 23, але мають протилежний напрям. При цьому під силою ваги G розуміють вагу рідини в об'ємі АВСD, хоча останній не заповнений рідиною; тіло тиску VТТ є фіктивним.
Слід відмітити, що в тих випадках, коли циліндрична поверхня є коловою, лінія дії рівнодіючої сил тиску напрямлена по радіусу.
Размещено на Allbest.ru
...Подобные документы
Визначення гідростатичного тиску у різних точках поверхні твердого тіла, що занурене у рідину, яка знаходиться у стані спокою. Побудова епюр тиску рідини на плоску і криволінійну поверхні. Основні рівняння гідродинаміки для розрахунку трубопроводів.
курсовая работа [712,8 K], добавлен 21.01.2012Що таке тиск та від чого залежить його значення. Одиниці вимірювання тиску та сили тиску. Напрямок дії сили тиску. Як можна змінити тиск. Що потрібно робити, щоб збільшити або зменшити тиск, створюваний тілом. Розрізнення понять тиску та сили тиску.
презентация [2,0 M], добавлен 16.12.2012Аналіз особливостей різних розділів фізики на природу газу й рідини. Основні розділи гідроаеромеханіки. Закони механіки суцільного середовища. Закон збереження імпульсу, збереження енергії. Гідростатика - рівновага рідин і газів. Гравітаційне моделювання.
курсовая работа [56,9 K], добавлен 22.11.2010Розрахунок потужності і подачі насосу, вибір розподільників та фільтра. Застосування гідравліки у верстатах із звертально-поступальним рухом робочого органа. Втрата тиску в системі. Тепловий розрахунок гідросистеми, визначення об'єму бака робочої рідини.
курсовая работа [169,3 K], добавлен 26.10.2011Суть та використання капілярного ефекту - явища підвищення або зниження рівня рідини у капілярах. Історія вивчення капілярних явищ. Формула висоти підняття рідини в капілярі. Використання явищ змочування і розтікання рідини в побуті та виробництві.
презентация [889,7 K], добавлен 09.12.2013Густина речовини і одиниці вимірювання. Визначення густини твердого тіла та рідини за допомогою закону Архімеда та, знаючи густину води. Метод гідростатичного зважування. Чи потрібно вносити поправку на виштовхувальну силу при зважуванні тіла в повітрі.
лабораторная работа [400,1 K], добавлен 20.09.2008Гідродинаміка - розділ механіки рідини, в якому вивчаються закони її руху. Фізична суть рівняння Бернуллі. Побудова п’єзометричної та напірної ліній. Вимірювання швидкостей та витрат рідини. Режими руху рідини. Дослідження гідравлічного опору труб.
учебное пособие [885,0 K], добавлен 11.11.2010Ізотермічний процес. Закони ідеальних газів: закон Бойля-Маріотта, закон Гей-Люссака, закон Шарля. Визначення атмосферного тиску за допомогою ізотермічного процесу розширення чи стиснення повітря. Дослід Торрічеллі. Точність вимірювання тиску.
лабораторная работа [129,0 K], добавлен 20.09.2008Гідравлічний розрахунок газопроводу високого тиску, димового тракту та димової труби. Визначення тиску газу перед пальником. Розрахунок витікання природного газу високого тиску через сопло Лаваля. Розрахунок витікання повітря через щілинне сопло.
курсовая работа [429,8 K], добавлен 05.01.2014Правило фаз. Однокомпонентні системи. Крива тиску насиченої водяної пари. Діаграма для визначення тиску пари різних речовин у залежності від температури. Двохкомпонентні системи. Залежність між тиском і температурою водяної пари та пари різних речовин.
реферат [1,6 M], добавлен 19.09.2008Особливості поглинання енергії хвилі коливальними однорідними поверхневими розподілами тиску. Характеристика та умови резонансу. Рекомендації щодо підвищення ефективності використання енергії системою однорідних осцилюючих поверхневих розподілів тиску.
статья [924,3 K], добавлен 19.07.2010Рух молекул у рідинах. Густина і питома вага рідини. Поняття про ідеальну рідину. Поверхневий натяг, змочуваність і капілярні явища. Перехід з рідкого у газоподібний стан і навпаки. Зміна об'єму та густини рідини. Випаровування, конденсація, кавітація.
реферат [69,5 K], добавлен 22.12.2013Поверхневий натяг рідини та його коефіцієнт. Дослідження впливу на поверхневий натяг води розчинення в ній деяких речовин. В чому полягає явище змочування та незмочування, капілярні явища. Як залежить коефіцієнт поверхневого натягу від домішок.
лабораторная работа [261,2 K], добавлен 20.09.2008Аналіз методів та засобів вимірювання рівня рідини засобами вимірювальної техніки. Основні принципи та класифікація рівномірів. Поплавкові і буйкові прилади як найбільш прості прилади виміру, їх принцип дії. Склад та настройка ємнісних перетворювачів.
реферат [1,7 M], добавлен 11.12.2009Аналіз сучасного стану існуючих п’єзодатчиків тиску з мікроконтролером. Розробка оптимального маршруту виготовлення датчика регістра за КМОН-технологією та проведено моделювання технологічного маршруту в програмному середовищі Microwind 3.1 Profesional.
дипломная работа [2,3 M], добавлен 28.11.2012Історія виявлення явища кавітації; причини виникнення та його наслідки. Визначення основних причин падіння тиску на вході в насос. Особливості захисту поверхні від утворення в рідині порожнин за допомогою газотермічного напилення і наплавлення покриттів.
реферат [888,4 K], добавлен 13.05.2015Розрахунок максимальної швидкості підйомного крана і сили тяги кривошипно-шатунного механізму. Визначення зусилля для підняття щита шлюзової камери. Обчислення швидкості води у каналі та кількості теплоти для нагрівання повітря; абсолютного тиску.
контрольная работа [192,6 K], добавлен 08.01.2011Класифікація теплообмінних апаратів. Теплова схема промислової теплоенергоцентралі з турбінами типа Т. Розрахунок підігрівників живільної води низького тиску та багатоступеневої випарної установки. Вибір оптимального варіанту багатоступеневої системи.
курсовая работа [868,3 K], добавлен 19.03.2014Обчислення швидкості течії рідини в трубах, втрати опору на окремих ділянках та енергоефективності насосного агрегату. Розрахунок повітропроводів, підбір вентиляторів та електродвигуна для промислової вентиляційної системи. Шляхи підвищення ККД приладів.
курсовая работа [791,8 K], добавлен 18.01.2010Визначення розрахункових витрат на ділянках трубопроводів. Гідравлічний розрахунок подаючих трубопроводів. Розрахунок втрат тепла подаючими і циркуляційними трубопроводами та визначення циркуляційних витрат. Втрати тиску в подаючих трубопроводах.
курсовая работа [148,9 K], добавлен 12.04.2012