Особенность применения теплового насоса

Понятие теплового насоса, его классификация и область применения. Основные источники низкопотенциальной термической энергии. Размораживание батареи с помощью инверсии охлаждающего цикла. Применение грунта и воды в качестве естественного источника тепла.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 20.05.2015
Размер файла 40,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

История существования гидравлических машин насчитывает несколько тысячелетий. Первый насос был поршневым, появился, по-видимому, за несколько веков до нашей эры в странах древней культуры. Изобретение этого насоса связано с созданием водоподъемных устройств. Поршневой насос был хорошо известен в Древней Греции и Риме.

Изобретение центробежного насоса приписывается итальянцу Д. Жордану, давшему первый рисунок такого насоса. Одной из первых удачных конструкций центробежного насоса является насос французского физика Д. Папена, предложенный им в 1689 г. Первой примененной в практике машиной для подачи жидкости действием центробежной силы был насос Ледемура (Франция, 1732 г.). В этой конструкции вода, находящаяся в наклонной трубе, вращающейся вокруг вертикальной оси, перемещалась с нижнего уровня на верхней действием центробежной силы самой воды. Таким образом, достигалась подача воды на некоторую высоту.

Классическая схема и конструкция одноколесного центробежного насоса, применяющегося в различных модификациях и поныне, была осуществлена Андревсом (США) в 1818 г. и существенно улучшена им в 1846 г. Исследования Андеревса привели к созданию многоступенчатого центробежного насоса, однако весьма несовершенной конструкции, запатентованной в 1851 г.

Знаменитый ученый Рейнольдс (Англия), исследуя конструкцию многоступенчатого насоса, ввел в нее прямой и обратный направляющие лопаточные аппараты и в 1875 г. запатентовал насос, в общих чертах аналогичный современным многоступенчатым насосам.

Широкое распространение центробежных насосов стало возможным только на основе применения электрической энергии и, в частности, при использовании электродвигателя трехфазного переменного тока, разработанного инженером В. О. Доливо-Добровольским (Россия, 1888 - 1889 гг.) К этому времени относится изобретение русским инженером В. А. Пушечниковым специального малогабаритного насоса для подъема подземных вод с больших глубин.

В России внедрение насосов в промышленность непосредственно связано с развитием горно-рудного дела. В 18 в. К. Д. Фролов и другие мастера горного дела применяли установки с поршневыми насосами для откачки воды из шахт.

В 18 в. был изобретен паровой двигатель. В 1738 г. Д. Бернулли вывел основополагающее уравнение жидкости, которое носит его имя. В 1750 г. Л. Эйлер впервые сделал математический анализ рабочего процесса, происходящего в центробежном насосе и реактивной турбине, и дал основное уравнение рабочего процесса турбомашин.

Примерно с начала 20-х годов 19-го века изменилось само назначение насосов. Если первоначально они предназначались только для подъема воды, то с этого времени они все шире применяются для перемещения жидкостей с различными вязкостью и концентрацией взвешенных частиц, а также химических жидкостей с различными степенью агрессивности и температурой.

Машины для перемещения воздуха и газов появились значительно позже насосов. Изобретателем воздушного поршневого нагнетателя - прототипа современных компрессоров с одной ступенью сжатия - считается немецкий физик О. Герике(1640г.).

В настоящее время отечественная промышленность выпускает насосы всех типов, необходимые для народного хозяйства страны, начиная от миниатюрных микронасосов для медицинской техники и кончая гигантскими осевыми насосами для ирригационных систем и энергетики.

1. Понятие теплового насоса, классификация и область применения

Тепловой насос - термодинамическая установка, в которой теплота от низкопотенциального источника передается потребителю при более высокой температуре. При этом затрачивается механическая энергия.

Большую перспективу представляет использование тепловых насосов в системах горячего водоснабжения (ГВС) зданий. Известно, что в годовом цикле на ГВС расходуется примерно столько же тепла, как и на отопление зданий. Примером здания, в котором тепловые насосы использованы для ГВС, является многоэтажный жилой дом, построенный в Москве в Никулино-2. В этом здании в качестве источника низкопотенциальной тепловой энергии используется тепло земли и тепло удаляемого вентиляционного воздуха. Подробно эта система будет рассмотрена ниже.

Источником низкопотенциальной тепловой энергии может быть тепло как естественного, так и искусственного происхождения. В качестве естественных источников низкопотенциального тепла могут быть использованы:

* тепло земли (тепло грунта);

* подземные воды (грунтовые, артезианские, термальные);

* наружный воздух.

В качестве искусственных источников низкопотенциального тепла могут выступать:

* удаляемый вентиляционный воздух;

* канализационные стоки (сточные воды);

* промышленные сбросы;

* тепло технологических процессов;

* бытовые тепловыделения.

Таким образом, существуют большие потенциальные возможности использования энергии вокруг нас, и тепловой насос представляется наиболее удачным путем реализации этого потенциала.

Ранее тепловой насос использовался в первую очередь для кондиционирования (охлаждения) воздуха. Система была способна также обеспечить определенную отопительную мощность, в большей или меньшей степени удовлетворяющую потребности в тепле в зимний период. Однако характеристики этого оборудования стремительно меняются: сейчас во многих странах Европы тепловые насосы используются в отоплении и ГВС. Такое положение связано с поиском экологичных решений: вместо традиционного сжигания ископаемого топлива - использование альтернативных источников энергии, например, солнечной. Для массового потребителя одним из наиболее предпочтительных вариантов использования нетрадиционных источников энергии является использование низкопотенциального тепла посредством тепловых насосов.

Существуют разные варианты классификации тепловых насосов. Ограничимся делением систем по их оперативным функциям на две основных категории:

* тепловые насосы только для отопления и/или горячего водоснабжения, применяемые для обеспечения комфортной температуры в помещении и/или приготовления горячей санитарной воды;

* интегрированные системы на основе тепловых насосов, обеспечивающие отопление помещений, охлаждение, приготовление горячей санитарной воды и иногда утилизацию отводимого воздуха. Подогрев воды может осуществляться либо отбором тепла перегрева подаваемого газа с компрессора, либо комбинацией отбора тепла перегрева и использования регенерированного тепла конденсатора.

Тепловые насосы, предназначенные исключительно для приготовления горячей санитарной воды, зачастую в качестве источника тепла используют воздух среды, но равным образом могут использовать и отводимый воздух.

Следует отметить, что постепенно увеличивается предложение тепловых насосов класса реверсивные "воздух-вода", чаще всего поставляемых в комплекте с расширительным баком и насосным агрегатом. По отдельному заказу поставляется накопительный резервуар. Такие насосы можно врезать непосредственно в существующие водопроводные системы.

В Германии и других странах Северной Европы распространены тепловые насосы, которые используют тепло, содержащееся в грунте. Диапазон тепловой мощности разработанных моделей самый широкий - от 5 до 70 кВт.

По данным на 1997 год из 90 млн. тепловых насосов, установленных в мире, только около 5 %, или 4,28 млн. аппаратов, смонтировано в Европе. Совсем немного по сравнению с 57 млн. систем, имеющихся в Японии, где такое оборудование является основным в обеспечении отопления жилого фонда. В Соединенных Штатах насчитывается 13,5 млн. установленных агрегатов, а еще только развивающийся китайский рынок достиг уровня 10 млн. систем. Подобное нерасположение Европы имеет свои причины, однако в последнее время отношение к тепловым насосам меняется. Примерная оценка числа тепловых насосов, установленных в главных странах Сообщества в жилом фонде, торгово-административных и промышленных сооружениях, приводится в табл. 1. Основную долю составляют страны Южной Европы: Испания, Италия и Греция.

Количество тепловых насосов установленных в Европе, по данным на 1996год

Страна

Жилой фонд*

Торгово-административный фонд

Промышленный фонд**

Всего на 1996год

Австрия

133100

4300

нет данных

137400

Дания

31300

2000

1000

34300

Франция

53000

61000

675

114675

Германия

363120

5300

300

368720

Греция

570840

266220

нет данных

837060

Италия***

800000

20000

нет данных

820000

Голландия****

2856

136

159

3151

Норвегия

13500

6400

726

20626

Испания

802000

411000

7390

1200390

Швеция

250000

нет данных

нет данных

250150

Швейцария

39500

3400

нет данных

42900

Англия

13900

414060

600

428560

Всего

3073116

>1193816

>11000

>4277932

В жилом фонде имеется 3 млн. установленных тепловых насосов. Однако по степени охвата показатель небольшой - около 1 %. Хотя очевидно, что установленные в торгово-административном фонде 1,2 млн. агрегатов, составляя абсолютное наименьшее значение, будут иметь несколько больший охват.

Примерно 77 % установленных в Европе тепловых насосов используют наружный воздух в качестве источника тепла, хотя в Швеции, Швейцарии и Австрии преобладают тепловые насосы, забирающие тепло из грунта по заглубленному змеевиковому теплообменнику: данные по этим странам составляют соответственно 28, 40 и 82 %. В Северной Европе зачастую тепловые насосы применяются только для отопления и приготовления горячей санитарной воды.

2. Источники низкопотенциальной тепловой энергии

Тепловой насос предназначен для использования энергии, получаемой от источника тепла низкой температуры. Тепловые, энергетические и экономические характеристики тепловых насосов тесно взаимосвязаны с характеристиками источников, из которых насосы берут тепло. Идеальный источник тепла должен давать стабильную высокую температуру в течение отопительного сезона, не быть коррозийным и загрязняющим, иметь благоприятные теплофизические характеристики, не требовать существенных инвестиций и расходов по обслуживанию. В большинстве случаев имеющийся источник тепла является ключевым фактором, определяющим эксплуатационные характеристики теплового насоса.

В качестве источников тепла в небольших системах на базе тепловых насосов широко используются наружный и отводимый воздух, почва и подпочвенная вода, для систем большой мощности применяются морская, озерная и речная вода, геотермические источники и грунтовые воды.

2.1 Воздух

Наружный воздух, будучи совершенно бесплатным и общедоступным, является наиболее предпочитаемым источником тепла. Тем не менее тепловые насосы, применяющие именно воздух, имеют фактор сезонной нагрузки (SPF) в среднем ниже на 10-30 % по сравнению с водяными тепловыми насосами. Это объясняется следующими обстоятельствами:

* быстрым снижением мощности и производительности с падением наружной температуры;

* относительно большой разностью температур конденсации и испарения в период минимальных зимних температур, что в целом снижает эффективность процесса;

* энергозатратами на размораживание испарительной батареи и функционирование соответствующих вентиляторов.

В условиях теплого и влажного климата на поверхности испарителя в диапазоне от 0 до 6 °С образуется изморось, что ведет к снижению мощности и производительности теплового насоса. Иней уменьшает площадь свободной поверхности и препятствует прохождению воздуха. Как следствие, снижается температура испарения, что, в свою очередь, способствует нарастанию инея и дальнейшему неуклонному снижению производительности вплоть до возможной полной остановки агрегата вследствие срабатывания контрольного датчика низкого давления, если прежде не будет устранено обледенение.

Размораживание батареи осуществляется путем инверсии охлаждающего цикла или иными, хотя и менее эффективными способами.

Энергопотребление имеет тенденцию к росту. Общий коэффициент производительности СОР сокращается с увеличением частоты размораживания. Применение специальной системы контроля, обеспечивающей размораживание по требованию (т. е. когда оно фактически необходимо), а не периодическое, может существенно повысить общую эффективность. тепловой насос батарея инверсия

Еще один источник тепла в жилых и торгово-административных сооружениях - отводимый вентиляционный воздух. Тепловой насос регенерирует тепло из отводимого воздуха и обеспечивает приготовление горячей воды или теплого воздуха для отопления помещений. В этом случае, однако, требуется постоянное вентилирование в течение всего отопительного сезона или даже целого года, если предусмотрено кондиционирование помещений в летний период. Существуют аппараты, в которых конструктивно изначально заложена возможность использования и отводимого вентиляционного, и наружного воздуха. В некоторых случаях тепловые насосы, применяющие отводимый воздух, используются в комбинации с рекуператорами "воздух-воздух".

Воздух как универсальный теплоноситель используется в больших установках круглогодичного кондиционирования. Он обладает низкими значениями коэффициентов теплоотдачи, поэтому для уменьшения поверхности испарителя приходится снижать температуру кипения рабочего тела, вследствие этого уменьшается степень совершенства теплонаносной установки. Данные испытания таких установок, использующих воздух в качестве источника тепла, свидетельствуют о том, что средний коэффициент m за отопительный сезон не превышает 2 - 2,5. В периоды пик, т. е. При эпизодически низких температурах наружного воздуха, включают запасные электронагреватели. Наилучшим методом борьбы с инеем является его автоматическое оттаивание, проводимое периодически.

2.2 Вода

Наиболее целесообразно применение отходов теплой воды промышленных предприятий, в том числе циркуляционной воды тепловых электростанций и др. Кроме того, используют также естественные горячие источники в курортных местностях.

Ввиду больших расходов употребление городской воды неэкономично. Однако водные источники из сравнительно глубоких слоев почвы, имеющие температуру близкую к среднегодовой, обеспечивают более высокий коэффициент преобразования m по сравнению с воздухом.

Подпочвенные воды есть во многих местах, они имеют достаточно стабильную температуру в диапазоне от 4 до 10 °С. Для использования воды как источника тепла применяются, главным образом, открытые системы: подпочвенная вода откачивается и подается на теплообменник системного агрегата, где у воды отбирается часть содержащегося в ней тепла. Вода, охлажденная таким образом, отводится в сливной колодец или в поверхностные воды. Открытые системы требуют самого тщательного проектирования в целях предотвращения проблем с замерзанием, коррозией и накоплением отложений.

Большим недостатком тепловых насосов, работающих на подпочвенных водах, является высокая стоимость работ по монтажу водозабора. Кроме того, следует учитывать требования, порой весьма жесткие, местных администраций в вопросах организации сточных вод.

Речная и озерная вода с теоретической точки зрения представляется весьма привлекательным источником тепла, но имеет один существенный недостаток - чрезвычайно низкую температуру в зимний период (она может приближаться к 0 °С). Если используются вода рек, озер и морей, то в зимний период она может замерзать на стенках испарителя. По этой причине требуется особое внимание при проектировании системы в целях предотвращения замораживания испарителя.

Морская вода представляется в некоторых случаях отличным источником тепла и используется в основном в средних и крупных системах. На глубине от 25 до 50 м морская вода имеет постоянную температуру в диапазоне от 5 до 8 °С. И, как правило, проблем с образованием льда не возникает, поскольку точка замерзания здесь от -2 до -10 °С. Есть возможность использовать как системы прямого расширения, так и системы с рассолом. Важно лишь использовать теплообменники и насосные агрегаты, стойкие к воздействию коррозии, и предотвращать накопление отложений органического характера в водозаборном трубопроводе, теплообменниках, испарителях и пр.

Грунтовым водам свойственна относительно высокая и стабильная в течение года температура. Основные ограничения здесь могут составлять расстояние транспортировки и фактические ресурсы, объем которых может меняться. Примерами возможных источников тепла в данной категории носителей можно считать грунтовые воды на канализационных участках (очистные и прочие водостоки), промышленные водостоки, водостоки участков охлаждения промышленных конденсаторов или производства электроэнергии.

Водоём

Ближайший водоём - идеальный источник тепла для теплового насоса. При использовании в качестве источника тепла воды озера или реки контур укладывается на дно. Этот вариант является идеальным с любой точки зрения - «высокая» температура окружающей среды (температура воды в водоеме зимой всегда положительная), короткий внешний контур, высокий коэффициент преобразования энергии тепловым насосом.

На 1 метр трубопровода приходится ориентировочно 30 Вт тепловой мощности.Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длинной 300 метров.

Для того, чтобы трубопровод не всплывал, необходимо установить около 5 кг груза на 1 погонный метр трубопровода.

2.3 Грунт

Грунт применяют в качестве естественного источника тепла для зимнего отопления и летнего кондиционирования. Змеевики испарителя закладывают в грунт, причем выгодно используют его зонную аккумулирующую способность. По практическим данным, коэффициент m составляет от 2,2 до 3,2 в зависимости от внешних условий. Величины теплопередачи в грунте главным образом зависят от его влажности.

Тепловые насосы, использующие грунт в качестве источника тепла, применяются для обслуживания жилых и торгово-административных сооружений. Грунт, как и подпочвенные воды, имеет одно преимущество - относительно стабильную в течение года температуру. Тепло отбирается по трубам, уложенным в землю горизонтально или вертикально (спиралеобразно). Могут использоваться:

системы прямого расширения с охлаждающей жидкостью, испаряющейся по мере циркуляции в контуре трубопровода, заглубленного в грунт;

системы с рассольной жидкостью, прокачиваемой по трубопроводу, заглубленному в грунт.

В целом тепловые насосы рассольного типа имеют более низкую производительность по сравнению с агрегатами первого типа в силу происходящего в них "двойного" теплообмена (грунт - рассол, рассол - хладагент) и энергозатрат на обеспечения работы циркуляции рассола, хотя обслуживать такие системы существенно проще.

Тепловая емкость грунта варьируется в зависимости от его влажности и общих климатических условий конкретной местности. В силу производимого отбора тепла во время отопительного сезона его температура понижается.

В условиях холодного климата большая часть энергии извлекается в форме латентного тепла, когда грунт промерзает. В летний период под действием солнца температура грунта вновь поднимается, и появляется возможность вернуться к первоначальным условиям. Действующие по такому принципу тепловые насосы обычно называют геотермическими, что по сути своей неверно, поскольку здесь не задействовано радиогенное тепло земли, содержащееся в глубинных скальных породах.

Геотермическими (скальными) источниками можно пользоваться в регионах, где подпочвенных вод мало или нет совсем. Тогда нужно пробурить колодцы глубиной от 100 до 200 м. В случае если требуется обеспечить высокую тепловую мощность, колодцы бурятся под определенным наклоном таким образом, чтобы добраться и упереться в большой скальный массив. Для таких тепловых насосов также применяется рассольная жидкость и пластмассовый сварной трубопровод, извлекающий тепло из скалы. В некоторых системах скальная порода используется для аккумулирования тепла или охлаждающей энергии. В силу высокой стоимости буровых работ скальные породы для обслуживания жилого сектора применяются довольно редко.

Скважина

При использовании в качестве источника тепла скалистой породы трубопровод опускается в скважину.

Можно пробурить несколько не глубоких скважин - это, возможно, обойдётся дешевле, чем одна глубокая. Главное - получить общую расчетную глубину.

Для предварительных расчетов используется следующее соотношение 50-60 Вт тепловой энергии на 1 метр скважины.

То есть, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 метров.

Земляной контур

При укладке контура в землю желательно использовать участок с влажным грунтом, лучше всего с близкими грунтовыми водами. Использование сухого грунта тоже возможно, но это приводит к увеличению длины контура. Трубопровод должен быть зарыт на глубину примерно 1 м, расстояние между соседними трубопроводами - примерно 0.8-1.0 м.

Удельная тепловая мощноть трубопровода, уложенного в землю трубопровода - 20-30 Вт/м. Т. е. для установки теплового насоса производительностью 10 кВт достаточно 350-450 м теплового контура, для чего хватит участка 20х20 кв.м.

Специальной подготовки почвы не требуется, влияния на растения трубопровод при правильном расчёте не оказывает.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие теплового насоса, классификация. Источники низкопотенциальной тепловой энергии. Область применения насосов, нагнетателей и компрессоров. Решение проблемы теплового перекоса с помощью циркуляционного насоса. Пассивное и активное кондиционирование.

    реферат [669,9 K], добавлен 26.12.2011

  • Тепловой расчет здания. Расчет теплопотерь через наружные стенки, окна, полы, расположенные на грунте, и двери. Система теплоснабжения с применением теплового насоса. Выбор источника низкопотенциального тепла. Расчет элементов теплонасосной установки.

    дипломная работа [1,8 M], добавлен 16.10.2011

  • Тепловой насос как компактная отопительная установка, его назначение и принцип действия, сферы и особенности применения. Внутреннее устройство теплового насоса, оценка его главных преимуществ перед традиционными методами получения тепловой энергии.

    реферат [83,3 K], добавлен 22.11.2010

  • Проектирование системы теплоснабжения с использованием теплового насоса (отопление и горячее водоснабжение). Теплотехнический расчет системы. Расчет системы теплового насоса, теплопередающая поверхность конденсатора и производительность хладагента.

    контрольная работа [158,3 K], добавлен 04.03.2012

  • История теплового аккумулирования энергии. Классификация аккумуляторов тепла. Аккумулирование энергии в атомной энергетике. Хемотермические энергоаккумулирующие системы. Водоаммиачные регуляторы мощности. Аккумуляция тепла в калориферных установках.

    реферат [1,5 M], добавлен 14.05.2014

  • Общее понятие теплофикации и когенерации. Условия эффективности использования газа в процессе теплофикации. Устройство теплофикационного прибора. Возникновение идеи централизованного теплоснабжения. Принцип работы и области применения теплового насоса.

    реферат [26,0 K], добавлен 16.09.2010

  • Выбор электродвигателя насоса по мощности и типу. Асинхронные двигатели для привода центробежного насоса для перекачки холодной воды, привода центробежного вентилятора, поршневого компрессора. Выбор теплового реле по номинальному току и пускателя.

    практическая работа [244,0 K], добавлен 15.09.2013

  • Физический смысл регенерации тепла в цикле теплового двигателя и способы ее осуществления. Регенеративный цикл с одноступенчатым отбором пара. Многоступенчатый регенеративный подогрев питательной воды. КПД цикла с одноступенчатой регенерацией тепла.

    контрольная работа [1,1 M], добавлен 14.03.2015

  • Понятие о тепловом насосе. Принцип действия теплового насоса, цикл Карно. Основные составляющие части внутреннего контура. Основные виды установки. Достоинства и недостатки тепловых насосов, их применение и перспективы использования в городском хозяйстве.

    реферат [610,5 K], добавлен 24.12.2013

  • Расчет диаметров всасывающего и нагнетательного трубопроводов насосной станции. Уточнение диаметра труб и скорости движения воды. Построение характеристики сети и нахождение рабочей точки совместной работы насоса и сети. Расчет рабочих параметров насоса.

    курсовая работа [612,5 K], добавлен 28.04.2012

  • Эффективность цикла преобразования тепла в работу. Предварительное построение теплового процесса расширения пара в турбине в h-s-диаграмме. Расчет экономичности турбоустановке с регенеративным подогревом питательной воды по сравнению с конденсационной.

    курсовая работа [887,9 K], добавлен 16.07.2013

  • Механизм процесса теплоотдачи при кипении воды. Зависимость теплового потока от температурного напора (кривая кипения). Описание устройства измерительного участка. Измерение теплового потока и температурного напора. Источники погрешностей эксперимента.

    лабораторная работа [163,2 K], добавлен 01.12.2011

  • Расчет значения среднеинтегрального напора насоса по смеси и соответствующей ему величине среднеинтегральной подачи смеси путем интегрирования подачи от давления у входа до давления на выходе из насоса. Расчет кавитационного режима работы насоса.

    презентация [1,9 M], добавлен 04.05.2016

  • Принципиальная схема двигателя внутреннего сгорания и его характеристика. Определение изменения в процессах цикла внутренней энергии и энтропии, подведенной и отведенной теплоты, полезной работы. Расчет термического коэффициента полезного действия цикла.

    курсовая работа [209,1 K], добавлен 01.10.2012

  • Особенности разработки схемы теплового контроля водяного котла утилизатора КУВ-35/150, способы организации процесса регулирования питания. Этапы расчета узла измерения расхода сетевой воды за котлом. Анализ функциональной схемы теплового контроля.

    дипломная работа [1,8 M], добавлен 15.01.2013

  • История открытия инфракрасного излучения, источники, основное применение. Влияние инфракрасного излучения на человека. Особенности применения ИК-излучения в пищевой промышленности, в приборах для проверки денег. Эффект теплового воздействия на организм.

    презентация [373,2 K], добавлен 21.05.2014

  • Гидротермальные и петротермальные ресурсы геотермальной энергии. Главные преимущества источника энергии. Понятие и краткая характеристика сущности HDR-технологии. Мощность петротермальных паровых турбогенераторов, главные перспективы применения энергии.

    реферат [21,5 K], добавлен 14.01.2013

  • Особенности конструкции разработанной фритюрницы для приготовления картофеля фри. Расчет полезно используемого тепла. Определение потерь тепла в окружающую среду. Конструирование и расчет электронагревателей. Расход тепла на нестационарном режиме.

    курсовая работа [358,0 K], добавлен 16.05.2014

  • Системы преобразования энергии ветра, экологические и экономические аспекты ее использования. Характеристика и особенности применения волновых энергетических установок. Разница температур воды и воздуха как энергоресурс. Приливные электростанции.

    реферат [1,6 M], добавлен 03.01.2011

  • Определение теплопродукции и радиационно-конвективной теплопотери. Расчет теплового потока со всей поверхности тела человека. Топография плотности теплового потока при ходьбе человека в состоянии комфорта. Затраты тепла на нагревание вдыхаемого воздуха.

    презентация [350,7 K], добавлен 31.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.