Теория гравитации
Рассмотрение сущности гравитационных взаимодействий и гравитационного излучения. Изучение классической теории тяготения Ньютона. Теоретические особенности теорий Эйнштейна-Картана, Бранса-Дикке, Лесажа. Анализ квантовой и петлевой теории гравитации.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.05.2015 |
Размер файла | 42,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
РЕФЕРАТ На тему:
«Теория гравитации»
Оглавление
Введение
Гравитационные взаимодействия
Небесная механика и некоторые её задачи
Сильные гравитационные поля
Гравитационное излучение
Тонкие эффекты гравитации
Классическая теория тяготения Ньютона
Альтернативные теории гравитации
Общая теория относительности
Теория Эйнштейна -- Картана
Теория Бранса -- Дикке
Теория Лесажа
Квантовая теория гравитации
Теория струн
Петлевая квантовая гравитация
Причинная динамическая триангуляция
Литература
гравитация излучение тяготение эйнштейн
Введение
Гравитамция (притяжение, всемимрное тяготемние, тяготемние) (от лат. gravitas -- «тяжесть») -- универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырёх типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.
Гравитационные взаимодействия
В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы и, разделёнными расстоянием, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния -- то есть:
F=G (m1m2/r2)
Здесь G-- гравитационная постоянная, равная примерно 6,6725Ч10?11 мі/(кг·сІ).
Закон всемирного тяготения -- одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.
Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.
Большие космические объекты -- планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.
Гравитация -- слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами в космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).
Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.
Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления -- орбиты планет, и за простое притяжение к поверхности Земли и падения тел.
Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так -- если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.
Небесная механика и некоторые её задачи
Раздел механики, изучающий движение тел в пустом пространстве только под действием гравитации, называется небесной механикой.
Наиболее простой задачей небесной механики является гравитационное взаимодействие двух точечных или сферических тел в пустом пространстве. Эта задача в рамках классической механики решается аналитически в замкнутой форме; результат её решения часто формулируют в виде трёх законов Кеплера.
При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе эта неустойчивость не позволяет предсказать точно движение планет на масштабах, превышающих сотню миллионов лет.
В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: Солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы, аттракторы, хаотичность и т. д. Наглядный пример таких явлений -- сложная структура колец Сатурна.
Несмотря на попытки точно описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса.
Сильные гравитационные поля
В сильных гравитационных полях, а также при движении в гравитационном поле с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности (ОТО):
· изменение геометрии пространства-времени;
· как следствие, отклонение закона тяготения от ньютоновского;
· и в экстремальных случаях -- возникновение чёрных дыр;
· запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений;
· как следствие, появление гравитационных волн;
· эффекты нелинейности: гравитация имеет свойство взаимодействовать сама с собой, поэтому принцип суперпозиции в сильных полях уже не выполняется.
Гравитационное излучение
Одним из важных предсказаний ОТО является гравитационное излучение, наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако существуют весомые косвенные свидетельства в пользу его существования, а именно: потери энергии в тесных двойных системах, содержащих компактные гравитирующие объекты (такие как нейтронные звезды или чёрные дыры), в частности, в знаменитой системе PSR B1913+16 (пульсаре Халса -- Тейлора) -- хорошо согласуются с моделью ОТО, в которой эта энергия уносится именно гравитационным излучением.
Начиная с 1969 года (эксперименты Вебера (англ.)), предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (LIGO, VIRGO, TAMA (англ.), GEO 600), а также проект космического гравитационного детектора LISA (Laser Interferometer Space Antenna -- лазерно-интерферометрическая космическая антенна). Наземный детектор в России разрабатывается в Научном Центре Гравитационно-Волновых Исследований «Дулкын»[2] республики Татарстан.
Тонкие эффекты гравитации
Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и поэтому их обнаружение и экспериментальная проверка весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.
Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле. В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли. Обработка полученных данных велась до мая 2011 года и подтвердила существование и величину эффектов геодезической прецессии и увлечения инерциальных систем отсчёта, хотя и с точностью, несколько меньшей изначально предполагавшейся.
После интенсивной работы по анализу и извлечению помех измерений, окончательные итоги миссии были объявлены на пресс-конференции по NASA-TV 4 мая 2011 года и опубликованы в Physical Review Letters[3]. Измеренная величина геодезической прецессии составила ?6601,8±18,3 миллисекунды дуги в год, а эффекта увлечения -- ?37,2±7,2 миллисекунды дуги в год (ср. с теоретическими значениями ?6606,1 mas/год и ?39,2 mas/год).
Классическая теория тяготения Ньютона
Классимческая теомрия тяготемния Ньютомна (Закомн всеомбщего тяготемния Ньютомна) -- закон, описывающий гравитационное взаимодействие в рамках классической механики. Этот закон был открыт Ньютоном около 1666 года. Он гласит, что сила гравитационного притяжения между двумя материальными точками массы m1и m2, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними -- то есть:
Свойства ньютоновского тяготения:
· В ньютоновской теории каждое массивное тело порождает силовое поле притяжения к этому телу, которое называется гравитационным полем. Это поле потенциально, и функция гравитационного потенциала для материальной точки с массой М определяется формулой:
В общем случае, когда плотность вещества с распределена произвольно, ц удовлетворяет уравнению Пуассона:
Решение этого уравнения записывается в виде:
где r -- расстояние между элементом объёма dV и точкой, в которой определяется потенциал ц, С -- произвольная постоянная.
· Сила притяжения, действующая в гравитационном поле на материальную точку с массой m, связана с потенциалом формулой:
· Сферически симметричное тело создаёт за своими пределами такое же поле, как материальная точка той же массы, расположенная в центре тела.
· Траектория материальной точки в гравитационном поле, создаваемом много большей по массе материальной точкой, подчиняется законам Кеплера. В частности, планеты и кометы в Солнечной системе движутся по эллипсам или гиперболам. Влияние других планет, искажающее эту картину, можно учесть с помощью теории возмущений.
Точность закона всемирного тяготения Ньютона
Экспериментальная оценка степени точности закона тяготения Ньютона является одним из подтверждений общей теории относительности. Опыты по измерению квадрупольного взаимодействия вращающегося тела и неподвижной антенны показали, что приращение в выражении для зависимости ньютоновского потенциала на расстояниях нескольких метров находится в пределах . Другие опыты также подтвердили отсутствие модификаций в законе всемирного тяготения.
Закон всемирного тяготения Ньютона в 2007 г. был проверен и на расстояниях, меньших одного сантиметра (от 55 мкм до 9.53 мм). С учетом погрешностей эксперимента в исследованном диапазоне расстояний отклонений от закона Ньютона не обнаружено.
Альтернативные теории гравитации
В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.
Существует современная каноническая классическая теория гравитации -- общая теория относительности, и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой. Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.
Общая теория относительности
В стандартном подходе общей теории относительности (ОТО) гравитация рассматривается изначально не как силовое взаимодействие, а как проявление искривления пространства-времени. Таким образом, в ОТО гравитация интерпретируется как геометрический эффект, причём пространство-время рассматривается в рамках неевклидовой римановой (точнее псевдо-римановой) геометрии. Гравитационное поле (обобщение ньютоновского гравитационного потенциала), иногда называемое также полем тяготения, в ОТО отождествляется с тензорным метрическим полем -- метрикой четырёхмерного пространства-времени, а напряжённость гравитационного поля -- с аффинной связностью пространства-времени, определяемой метрикой.
Стандартной задачей ОТО является определение компонент метрического тензора, в совокупности задающих геометрические свойства пространства-времени, по известному распределению источников энергии-импульса в рассматриваемой системе четырёхмерных координат. В свою очередь знание метрики позволяет рассчитывать движение пробных частиц, что эквивалентно знанию свойств поля тяготения в данной системе. В связи с тензорным характером уравнений ОТО, а также со стандартным фундаментальным обоснованием её формулировки, считается, что гравитация также носит тензорный характер. Одним из следствий является то, что гравитационное излучение должно быть не ниже квадрупольного порядка.
Известно, что в ОТО имеются затруднения в связи с неинвариантностью энергии гравитационного поля, поскольку данная энергия не описывается тензором и может быть теоретически определена разными способами. В классической ОТО также возникает проблема описания спин-орбитального взаимодействия (так как спин протяжённого объекта также не имеет однозначного определения). Считается, что существуют определённые проблемы с однозначностью результатов и обоснованием непротиворечивости (проблема гравитационных сингулярностей).
Однако экспериментально ОТО подтверждается до самого последнего времени (2012 год). Кроме того, многие альтернативные эйнштейновскому, но стандартные для современной физики подходы к формулировке теории гравитации приводят к результату, совпадающему с ОТО в низкоэнергетическом приближении, которое только и доступно сейчас экспериментальной проверке.
Теория Эйнштейна -- Картана
Теория Эйнштейна -- Картана (ЭК) была разработана как расширение ОТО, внутренне включающее в себя описание воздействия на пространство-время кроме энергии-импульса также и спина объектов[5]. В теории ЭК вводится аффинное кручение, а вместо псевдоримановой геометрии для пространства-времени используется геометрия Римана -- Картана. В результате от метрической теории переходят к аффинной теории пространства-времени. Результирующие уравнения для описания пространства-времени распадаются на два класса. Один из них аналогичен ОТО, с тем отличием, что в тензор кривизны включены компоненты с аффинным кручением. Второй класс уравнений задаёт связь тензора кручения и тензора спина материи и излучения. Получаемые поправки к ОТО в условиях современной Вселенной настолько малы, что пока не видно даже гипотетических путей для их измерения.
Теория Бранса -- Дикке
В скалярно-тензорных теориях, самой известной из которых является теория Бранса -- Дикке (или Йордана -- Бранса -- Дикке), гравитационное поле как эффективная метрика пространства-времени определяется воздействием не только тензора энергии-импульса материи, как в ОТО, но и дополнительного гравитационного скалярного поля. Источником скалярного поля считается свёрнутый тензор энергии-импульса материи. Следовательно, скалярно-тензорные теории, как ОТО и РТГ, относятся к метрическим теориям, дающим объяснение гравитации, используя только геометрию пространства-времени и его метрические свойства. Наличие скалярного поля приводит к двум группам уравнений для компонент гравитационного поля: одна для метрики, вторая -- для скалярного поля. Теория Бранса -- Дикке вследствие наличия скалярного поля может рассматриваться также как действующая в пятимерном многообразии, состоящем из пространства-времени и скалярного поля.
Подобное распадение уравнений на два класса имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского[7]. Благодаря наличию безразмерного параметра в теории Йордана -- Бранса -- Дикке появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов. При этом при стремлении параметра к бесконечности предсказания теории становятся всё более близкими к ОТО, так что опровергнуть теорию Йордана -- Бранса -- Дикке невозможно никаким экспериментом, подтверждающим общую теорию относительности.
Теория Лесажа
Теория утверждает, что сила гравитации -- это результат движения крошечных частиц, двигающихся на высокой скорости во всех направлениях во Вселенной. Интенсивность потока частиц предполагается одинаковой во всех направлениях, таким образом, изолированный объект A ударяется частицами со всех сторон, в результате чего он подвергается давлению вовнутрь объекта, но не подвергается направленной силе P1.
Однако, в случае присутствия второго объекта B, часть частиц, которые иначе бы ударили по объекту A со стороны B, перехватывается, таким образом B работает как экран, т.е. с направления В объект A ударит меньше частиц, чем с противоположного направления. Аналогично, объект B будет ударен меньшим количеством частиц со стороны A, по сравнению с противоположной стороной. То есть, можно сказать, что объекты A и B «экранируют» друг друга, и оба тела прижимаются друг к другу результирующим дисбалансом сил (P2). Таким образом, кажущееся притяжение между телами в данной теории на самом деле является уменьшенным давлением на тело со стороны других тел. По этой причине данную теорию иногда называют «push гравитация» или «теневая гравитация», хотя наиболее часто встречается название «гравитация Лесажа».
Природа столкновений
Если соударение тела A и гравитационной частицы полностью упруго, интенсивность отраженных частиц будет настолько же сильной, как и приходящих частиц, т.е. чистая направленная сила не возникнет. Данное утверждение верно и в том случае, если мы введём второе тело В, которое будет действовать как экран для гравитационных частиц в направлении тела A. Гравитационная частица C, которая в обычной ситуации ударила бы по объекту A, блокируется В, но другая частица D, которая в обычной ситуации не ударила бы по A, перенаправляется упругим отражением на объект B, и следовательно заменяет C. Таким образом, если столкновение полностью упруго, отраженные частицы между объектами A и B полностью компенсируют любой «экранирующий» эффект. Чтобы объяснить суть гравитационной силы, мы должны предположить, что соударение частиц не является полностью упругим, или хотя бы то что отражённые частицы замедляются, т.е. их импульс уменьшается после столкновения. Это приведёт к тому что от объекта А отходит поток с уменьшенным импульсом, но приходит поток с неизменённым импульсом, таким образом появляется чистый направленный импульс к центру объекта A (P3). Если принять это предположение, то отраженные частицы в случае 2 взаимодействующих тел, полностью не компенсируют экранирующий эффект, из-за того, что отражённый поток слабее, чем падающий на тело поток.
Обратно-квадратичная зависимость
Из нашего предположения, что некоторые (или все) гравитационные частицы, сходящиеся на объекте, абсорбируются или замедляются данным объектом, следует, что интенсивность потока гравитационных частиц, испускаемого от массивного объекта, меньше чем интенсивность потока падающего на данный объект. Можно предположить, что этот дисбаланс импульса потока и соответственно силы приложенной на любое тело вблизи объекта, распределён по сферической поверхности с центром на данном объекте (P4). Дисбаланс импульса потока над всей сферической поверхностью, окружающей объект, не зависит от размера окружающей сферы, в то же время площадь поверхности сферы увеличивается пропорционально квадрату радиуса. Следовательно, дисбаланс импульса на единицу площади уменьшается в обратно-квадратичной зависимости от расстояния.
Пропорциональность массе
Из фактов, показанных выше, возникает сила, которая прямо пропорциональна только поверхности тела. Но сила гравитации пропорциональна также массам. Чтобы удовлетворить необходимость в пропорциональности от массы, теория утверждает, что: а) базовые элементы материи очень малы, таким образом, материя в основном состоит из пустого пространства; б) что гравитационные частицы настолько малы, что только очень малая часть из них перехватывается материей. В результате чего, «тень» каждого тела прямо пропорциональна поверхности каждого из базовых элементов материи. Если теперь предположить, что элементарные непрозрачные (для гравитационных частиц) элементы всей материи идентичны (т.е. имеют такое же отношение плотности к поверхности), то из этого следует, что экранирующий эффект (хотя бы приблизительно) пропорционален массе (P5).
Квантовая теория гравитации
Несмотря на более чем полувековую историю попыток, гравитация -- единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами -- калибровочными бозонами со спином 2. Однако получающаяся теория неперенормируема, и поэтому считается неудовлетворительной.
В последние десятилетия разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и причинная динамическая триангуляция.
Теория струн
Теомрия струн -- направление теоретической физики, изучающее динамику и взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.
Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10?35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строения адронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.
Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби -- Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби -- Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта», в связи с чем некоторые учёные сомневаются, заслуживает ли теория струн статуса научной.
Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном -- алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере.
Петлевая квантовая гравитация
В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.
Причинная динамическая триангуляция
В ней пространственно-временное многообразие строится из элементарных евклидовых симплексов (треугольник, тетраэдр, пентахор) размеров порядка планковских с учётом принципа причинности. Четырёхмерность и псевдоевклидовость пространства-времени в макроскопических масштабах в ней не постулируются, а являются следствием теории.
Литература
1. Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900--1915). М.: Наука, 1981. 352 c.
2. Визгин В. П. Единые теории в 1-й трети ХХ в. М.: Наука, 1985. 304 c.
3. Иваненко Д. Д., Сарданашвили Г. А. Гравитация. 3-е изд. М.: УРСС, 2008. 200 с.
4. Мизнер Ч., Торн К., Уилер Дж. Гравитация. М.: Мир, 1977.
5. Торн К. Черные дыры и складки времени. Дерзкое наследие Эйнштейна. М.: Государственное издательство физико-математической литературы, 2009.
Размещено на Allbest.ru
...Подобные документы
История создания общей теории относительности Эйнштейна. Принцип эквивалентности и геометризация тяготения. Черные дыры. Гравитационные линзы и коричневые карлики. Релятивистская и калибровочная теории гравитации. Модифицированная ньютоновская динамика.
реферат [188,4 K], добавлен 10.12.2013Этапы расчетов границы энергетических зон окрестностей планеты Земля. Общая характеристика теории гравитации. Знакомство с основными особенностями известного третьего закона Кеплера, анализ сфер применения. Рассмотрение специальной теории относительности.
контрольная работа [1,4 M], добавлен 17.05.2014Фундаментальные физические взаимодействия - субстанциональные основания материальной организации Вселенной. Закон всемирного тяготения. Теория гравитации Ньютона. Анализ тенденций объединения взаимодействий на квантовом уровне. Квантовая теория поля.
презентация [8,1 M], добавлен 25.11.2016Обобщение закона тяготения Ньютона. Принцип эквивалентности сил инерции и сил тяготения. Потенциальная энергия тела. Теория тяготения Эйнштейна. Положения общей теории относительности (ОТО). Следствия из принципа эквивалентности, подтверждающие ОТО.
презентация [6,6 M], добавлен 13.02.2016Сущность гравитации - универсального фундаментального взаимодействия между материальными телами. Сходство между гравитационными и электромагнитными силами. Интересные факты о гравитации. Чёрные дыры в центрах галактик. Экспериментальная антигравитация.
реферат [28,3 K], добавлен 25.11.2014Обзор научной революции ХVII в. Рассмотрение особенностей построения механической картины мира. Изучение жизни и творчества Ньютона. Характеристика гипотезы обратных квадратов Гука и теории тяготения Ньютона. Анализ полемики картезианцев и ньютонианцев.
реферат [59,8 K], добавлен 26.04.2019Краткий очерк жизни, личностного и творческого становления английского физика и математика Исаака Ньютона. Разработка теории гравитации и вычисление с ее помощью орбиты Луны. Законы движения и их значение в классической механике. Опыты с призмой.
реферат [24,0 K], добавлен 13.06.2009Анализ основных научных и мировоззренческих идей физика-теоретика и крупного общественного деятеля Альберта Эйнштейна. Основополагающие принципы и постулаты специальной и общей теории относительности. Основы квантовой теории и релятивистской космологии.
реферат [18,5 K], добавлен 14.12.2010Вопросы о механизме формирования единого системного времени Вселенной. Природная обусловленность существования времени. Принципы причинности и парадоксы Ньютона. Анализ квантовых взаимодействий. Феномен моментального распространения гравитации.
реферат [45,3 K], добавлен 27.11.2010Гравитационные силы как один из видов фундаментальных сил. Теория тяготения Ньютона. Законы Кеплера и космические скорости. Тождественность инерциальной и гравитационной масс как основа общей теории относительности Эйнштейна. Теория наблюдения Коперника.
презентация [39,7 M], добавлен 13.02.2016Гравитационное взаимодействие как первое взаимодействие, описанное математическлй теорией. Небесная механика и некоторые её задачи. Сильные гравитационные поля. Гравитационное излучение. Тонкие эффекты гравитации. Классические теории гравитации.
презентация [1,8 M], добавлен 05.09.2011Сущность принципа относительности Эйнштейна, его роль в описании и изучении инерциальных систем отсчета. Понятие и трактовка теории относительности, постулаты и выводы из нее, практическое использование. Теория относительности для гравитационного поля.
реферат [14,5 K], добавлен 24.02.2009Единая геометрическая теория гравитации и электромагнетизма. Геометрия Римона-Картана с полностью антисимметричным кручением. Геометрическая интерпретация классического электромагнитного поля. Единый геометрический лагранжиан.
статья [239,9 K], добавлен 14.03.2007Начало развития квантовой механики. Формирование квантовых представлений. Проблемы интерпретации квантовой теории. Парадокс Эйнштейна-Подольского-Розена и его интерпретации. Неравенство Белла и открытие А.Аспекта. Физический вакуум и его свойства.
реферат [34,8 K], добавлен 06.01.2009Общая теория относительности с философской точки зрения. Анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Эксперимент с лифтом и эксперимент "Поезд Эйнштейна". Основные принципы Общей Теории Относительности (ОТО) Эйнштейна.
реферат [42,9 K], добавлен 27.07.2010Предпосылки создания теории относительности А.Эйнштейна. Относительность движения по Галилею. Принцип относительности и законы Ньютона. Преобразования Галилея. Принцип относительности в электродинамике. Теория относительности А.Эйнштейна.
реферат [16,0 K], добавлен 29.03.2003Почему упало яблоко? В чем состоит закон тяготения? Сила всемирного тяготения. "Дыры" в пространстве и времени. Роль масс притягивающихся тел. Почему гравитация в космосе не такая, как на земле? Движение планет. Ньютоновская теория гравитации.
курсовая работа [120,5 K], добавлен 25.04.2002Понятие "единой теории полей", анализ известных типов взаимодействий, направлений их объединения. Суть основных положений и достижений современной физики. Особенности физики элементарных частиц. Теории электрослабого взаимодействия, "всего", суперструн.
курсовая работа [636,9 K], добавлен 23.07.2010Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.
реферат [44,0 K], добавлен 17.02.2010Характеристика особенностей возникновения теплового излучения. Изучение законов теплового излучения черного тела Стефана - Больцмана и Вина. Развитие квантовой теории Эйнштейном. Связь между испускательной и поглощательной способностями черного тела.
курсовая работа [1,2 M], добавлен 28.03.2013