Жидкие кристаллы
История открытия жидких кристаллов, их свойства, строение и применение. Изучение структуры холестерической жидкости. Описание эффекта Фредерикса. Механизм прохождения поляризованного света в оптических системах. Разработка жидкокристаллических экранов.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 28.05.2015 |
Размер файла | 867,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
МИНОБРНАУКИ РОССИИ
Борисоглебский филиал
Федеральное государственное бюджетное образовательное учреждение Высшего профессионального образования
«Воронежский государственный университет»
Факультет физико-математического и естественнонаучного образования
Кафедра прикладной математики, информатики, физики и методики их преподавания.
Реферат
по дисциплине «Основы физики»
на тему: «Жидкие кристаллы»
Студент: Дроздов Михаил Николаевич
Руководитель:
доцент, кандидат физико-математических наук,
доцент кафедры прикладной математики,
информатики, физики и методики их преподавания
Зюзин Сергей Евгеньевич
Борисоглебск
2014
Содержание
Введение
1. История открытия жидких кристаллов
2. Группы жидких кристаллов
3. Применение жидких кристаллов
Список литературы
Введение
Жидкие кристаллы -- вещества, обладающие одновременно свойствами как жидкостей (текучесть), так и кристаллов (анизотропия). По структуре жидкие кристаллы представляют собой жидкости, похожие на желе, состоящие из молекул вытянутой формы, определённым образом упорядоченных во всем объёме этой жидкости.
Наиболее характерным свойством жидкие кристаллы является их способность изменять ориентацию молекул под воздействием электрических полей, что открывает широкие возможности для применения их в промышленности.
По типу жидкие кристаллы обычно разделяют на две большие группы: нематики и смектики. В свою очередь нематики подразделяются на собственно нематические и холестерические жидкие кристаллы.
1. История открытия жидких кристаллов
Жидкие кристаллы открыл в 1888 г. австрийский ботаник Ф. Рейнитцер. Он обратил внимание, что у кристаллов холестерилбензоната и холестерилацетата было две точки плавления и, соответственно, два разных жидких состояния -- мутное и прозрачное.
Однако, учёные не обратили особого внимания на необычные свойства этих жидкостей. Долгое время физики и химики в принципе не признавали жидких кристаллов, потому что их существование разрушало теорию о трёх состояниях вещества: твёрдом, жидком и газообразном. Учёные относили жидкие кристаллы то к коллоидным растворам, то к эмульсиям. Научное доказательство было предоставлено профессором университета Карлсруэ Отто Леманном после многолетних исследований, но даже после появления в 1904 году написанной им книги «Жидкие кристаллы», открытию не нашлось применения.
В 1963 г. американец Дж. Фергюсон использовал важнейшее свойство жидких кристаллов -- изменять цвет под воздействием температуры -- для обнаружения невидимых простым глазом тепловых полей. После того как ему выдали патент на изобретение, интерес к жидким кристаллам резко возрос.
В 1965 г. в США собралась Первая международная конференция, посвящённая жидким кристаллам. В 1968 г. американские учёные создали принципиально новые индикаторы для систем отображения информации.
Принцип их действия основан на том, что молекулы жидких кристаллов, поворачиваясь в электрическом поле, по-разному отражают и пропускают свет. Под воздействием напряжения, которое подавали на проводники, впаянные в экран, на нём возникало изображение, состоящее из микроскопических точек.
И всё же только после 1973 г., когда группа английских химиков под руководством Джорджа Грея синтезировала жидкие кристаллы из относительно дешёвого и доступного сырья, эти вещества получили широкое распространение в разнообразных устройствах.
2. Группы жидких кристаллов
По своим общим свойствам жидкие кристаллы можно разделить на две большие группы:
ь термотропные жидкие кристаллы, образующиеся в результате нагревания твердого вещества и существующие в определенном интервале температур и давлений
ь и лиотропные жидкие кристаллы, которые представляют собой двух или более компонентные системы, образующиеся в смесях стержне видных молекул данного вещества и воды или других полярных растворителей.
Эти стержне видные молекулы имеют на одном конце полярную группу, а большая часть стержня представляет собой гибкую гидрофобную углеводородную цепь. Такие вещества называются амфифилами. Примером амфифилов могут служить фосфолипиды.
Амфифильные молекулы, как правило, плохо растворяются в воде, склонны образовывать агрегаты таким образом, что их полярные группы на границе раздела фаз направлены к жидкой фазе.
При низких температурах смешивание жидкого амфифила с водой приводит к расслоению системы на две фазы. Одним из вариантов амфифилов со сложной структурой может служить система мыло-вода. Здесь имеется алифатический анион СН3-(СН2) и положительный ион Nа+, К+, и др. Полярная группа СО2- стремится к тесному контакту с молекулами воды, тогда как неполярная группа, амфифильная цепь, избегает контакта с водой. Это явление типично для амфифилов.
Термотропные жидкие кристаллы подразделяются на три больших класса.
Нематические жидкие кристаллы. В этих кристаллах отсутствует дальний порядок в расположении центров тяжести молекул, у них нет слоистой структуры, их молекулы скользят непрерывно в направлении своих длинных осей, вращаясь вокруг них, но при этом сохраняют ориентационный порядок: длинные оси направлены вдоль одного преимущественного направления. Они ведут себя подобно обычным жидкостям. Нематические фазы встречаются только в таких веществах, у молекул которых нет различия между правой и левой формами, их молекулы тождественны своему зеркальному изображению (ахиральны).
Смектические жидкие кристаллы. Имеют слоистую структуру, слои могут перемещаться друг относительно друга. Толщина смектического слоя определяется длиной молекул, однако вязкость смектиков значительно выше чем у нематиков и плотность по нормали к поверхности слоя может сильно меняться.
Холестерические жидкие кристаллы. -- образуются, в основном, соединениями холестерина и других стероидов. Это нематические жидкие кристаллы, но их длинные оси повернуты друг относительно друга так, что они образуют спирали, очень чувствительные к изменению температуры вследствие чрезвычайно малой энергии образования этой структуры (порядка 0,01 Дж/моль). Холестерики ярко окрашены и малейшее изменение температуры (до тысячных долей градуса) приводит к изменению шага спирали и, соответственно, изменению окраски жидких кристаллов.
Во всех приведенных типах жидких кристаллов характерным является ориентация дипольных молекул в определенном направлении, которое определяется единичным вектором -- называемым «директором».
В недавнее время открыты так называемые колончатые фазы, которые образуются только дискообразными молекулами, расположенными слоями друг на друге в виде многослойных колонн, с параллельными оптическими осями. Часто их называют «жидкими нитями», вдоль которых молекулы обладают трансляционными степенями свободы. Этот класс соединений был предсказан академиком Л. Д. Ландау, а открыт лишь в 1977 Чандрасекаром.
У жидких кристаллов необычные оптические свойства. Нематики и смектики -- оптически одноосные кристаллы. Холестерики вследствие периодического строения сильно отражают свет в видимой области спектра. Поскольку в нематиках и холестериках носителями свойств является жидкая фаза, то она легко деформируется под влиянием внешнего воздействия, а так как шаг спирали в холестериках очень чувствителен к температуре, то, следовательно, и отражение света резко меняется с температурой, приводя к изменению цвета вещества.
Холестерическая жидкость. Структура холестерической жидкости во многом сходна с нематической, но имеет одно существенное отличие.
Рис. 4
Можно сказать, что холестерик обладает нематическим состоянием послойно, то есть состоит из стопки нематических слоёв (рис4,а). но оси этих параллельных друг другу слоёв развёрнуты на некоторый угол, причём для двух соседних слоёв этот угол составляет малую величину б=0,5°.
Расстояние между соседними слоями примерно равно поперечному размеру молекулы а. если двигаться вдоль оси Z, перпендикулярной плоскости слоёв, то через число слоёв N=р/а ориентация молекул станет такой же, как и в самом первом слое.
Расстояние h=а*2р/а, через которое повторяется ориентация молекул в пространстве, представляет собой удвоенный период своеобразной решётки (рис 4,б). Величину принято называть шагом спирали, которую образуют в пространстве концы молекул, лежащих в последовательных слоях.
Описанная периодическая решётка - её называют холестерической спиралью - удивительна тем, что чёткая периодичность в ней касается только ориентации молекул. В то же время в каждом нематическом слое молекулы могут свободно перемещаться, меняться местами; словом, холестерическая жидкость свободно течёт вдоль таких плоскостей, но спираль при этом почти не нарушается.
Молекулы могут перемещаться и из слоя в слой, поворачиваясь при этом на угол б, но это даётся им не так легко. Всё это и определяет особые свойства холестерической жидкости, схожие за свойствами твёрдого кристалла.
Особенности структуры холестерической жидкости наиболее сильно проявляются при изменении температуры вещества, и при различных внешних воздействиях.
Холестерическая спираль обладает яркими оптическими свойствами, чувствительна к малейшим повреждениям столь своеобразной решётки. Всё это вызвало громадный интерес к изучению и применению холестерических жидких кристаллов. Чем вызвана такая структура холестерика?
Объяснения заключается в особенности строения молекул, из которых состоят эти вещества. Молекулы холестерика - почти такие же, как в нематической жидкости, но имеют на своём конце небольшой отросток (рис 5, а). Этот отросток образуется обычно одним или несколькими атомами, которые выступают из основной плоскости, содержащей подавляющее большинство атомов молекулы. Симметрия молекулы нарушается из-за отростка и напоминает симметрию руки, которая бывает только правой и только левой.
Как сказывается такая форма молекул на ориентационном порядке жидкости? Подобные молекулы можно расположить параллельно друг другу в определённой плоскости, например в плоскости, в которой лежат сами молекулы.
Именно эти плоскости и образуют отдельные слои холестерика (рис 5, б). А как могут быть «пристроены» друг к другу эти слои? Очевидно, что молекулы слоя 2 могут быть параллельны молекулам слоя 1, если слои расположены друг от друга на расстоянии, примерно равном высоте отростков. В этом случае отростки не мешают молекулам оставаться параллельными.
Рис. 5
Если расстояние между слоями меньше высоты отростков, то векторы n1 и n2 не могут быть строго параллельны - мешают отростки. Поэтому между векторами n1 и n2 имеется малый угол б.
Таким образом, мы приходим к выводу, что несимметричные молекулы должны образовывать стопку нематических слоёв, причём от слоя к слою молекулы должны поворачиваться на определённый угол б. В зависимости от того, как изогнуты отростки отдельных молекул, холестерические спирали могут быть либо правыми, либо левыми.
Смектическая жидкость. Строение особых молекул, описанных выше, объясняет большое разнообразие структуры жидких кристаллов-растворов. Например, при определённой концентрации таких молекул в воде могут получаться жидкие кристаллы, в которых молекулы не только одинаково ориентируется, но и образуют жесткую кристаллическую решетку.
Только эта решетка лишь отчасти похожа на обычную решётку твёрдого тела, периодическую в трёх взаимно перпендикулярных направлениях. Таких направлений в особых жидких кристаллах может быть только два или даже одно.
Рис. 6
На рисунке 6,б изображена стопка слоёв, образующихся при не очень малой концентрации молекул в воде. Хвосты молекул как бы «прячутся» от воды за оболочками из дипольных головок. Вода является прослойкой между двойными слоями молекул.
Стопка таких слоёв образует кристаллическую решётку, периодическую только в одном направлении - вдоль оси Z. В этом направлении жесткость решётки почти такая же, как в твёрдом теле, в то время как в поперечных направлениях слои могут свободно скользить, то есть вдоль слоёв система ведёт себя как жидкость.
Такая структура сродни мылу, поэтому такие жидкие кристаллы называются смектическими. Они похожи на холестерики своей слоистостью, но периоды решёток в этих двух случаях различны. В холестериках период составляет несколько тысяч ангстрем, а в смектиках - несколько десятков ангстрем (что соответствует длине молекулы).
Рис. 7
При определенной концентрации раствора возникает кристаллическая решётка, периодическая в двух направлениях. При этом дипольные молекулы собираются в жидкие столбики или «нити», которые и образуют такую решётку, похожую на стопку карандашей (рис 7,а).
Подобные отчасти твёрдые кристаллы существуют не только в растворах. Ими могут быть и отдельные вещества, изменяющие своё состояние при изменении температуры. При этом обычно с понижением температуры состояния меняются в такой последовательности: обыкновенная жидкость - нематическая жидкость или холестерик - смектик - твёрдый кристалл. Долгое время не находили жидкокристаллических веществ с решётками, периодическими в двух направлениях, но недавно были обнаружены и они.
На рис 7,б такая решётка, образованная жидкими столбиками дискообразных молекул. Интересно, что в последнем случае существует и ориентационный порядок: плоскости дисков в столбике параллельны друг другу, хотя центры дисков располагаются хаотически вдоль оси жидкого столбика.
Эффект Фредерикса. Наибольшее впечатление производят оптические свойства жидких кристаллов, сделавшие эти объекты столь популярными. В жидких кристаллах направление оптических осей можно изменять с помощью самых разных воздействий, в том числе электрическими или магнитными полями.
Эффект изменения направления ориентации молекул в нематической жидкости под действием поля наблюдался ещё в предвоенные годы известным советским учёным В.Фредериксом и носит теперь его имя. Пользуясь популярными сейчас электронными часами и калькуляторами на жидких кристаллах, вы наблюдаете это явление - эффект Фредерикса.
Прежде чем описать эффект Фредерикса, необходимо напомним, что такое поляризованный свет. В луче поляризованного света вектор напряжённости электрического поля Е колеблется вдоль единственного направления.
Обычный естественный свет не имеет такой определённой поляризации, так как он состоит из всевозможных волн, каждая из которых имеет произвольное направление колебаний вектора Е, а все вместе они составляют неполяризованный световой пучок.
Особые кристаллы - поляризаторы - преобразуют неполяризованный свет в линейно поляризованный, поскольку они могут пропускать сквозь себя только волны, в которых вектор Е ориентирован совершенно определённо по отношению к оптической оси поляризатора. Например, кристалл турмалина пропускает сквозь себя лишь свет, поляризованный вдоль оптической оси этого кристалла, в то время как волны с перпендикулярной поляризацией им сильно поглощаются.
Если на пути светового пучка расположить два поляризатора, оси которых параллельны, то свет пройдёт сквозь оптическую систему, показанную на рис 8,а, а если оси поляризаторов скрещены, то свет сквозь эту систему пройти не сможет (рис 8,б).
Рис. 8
Поместим теперь между двумя скрещёнными поляризаторами два стекла, а между ними - нематическую жидкость, предварительно слегка пополировав стекла вдоль определённого направления. Такая полировка стёкол нужна для того, чтобы сориентировать в заданном направлении оптическую ось жидкого кристалла (n).
Например, при параллельной полировке стёкол молекулы, прилипшие к стёклам параллельно микробороздам на стеклянной поверхности, задают благодаря описанным межмолекулярным взаимодействиям такую же ориентацию вектора nи в глубине слоя нематической жидкости (рис9,а). Если неполированные стёкла предварительно обработать специальными химическими веществами, то можно добиться ориентации оси nперпендикулярно стеклянной поверхности (рис 9,б).
Наконец, если полированные стёкла развернуть перпендикулярно друг другу, то можно получить закрученную по толщине слоя ориентацию вектора n (рис 9,в).
Рис. 9
Как же проходит поляризованный свет сквозь ориентированный слой нематической жидкости и сквозь изображённые оптические системы вообще? Если поляризация света параллельна оси n, то свет проходит сквозь жидкий кристалл, не изменяя своей поляризации (9,а). То же происходит и в случае, если поляризация света перпендикулярна оптической оси (рис9,б). В случае закрученной ориентации nполяризация света также поворачивается вслед за осью n(рис9.в).
Что же происходит в слое жидкого кристалла при прохождении через него света? В жидком кристалле, поле проходящей световой волны приводит к разделению зарядов в молекулах и возникновению дипольных колебаний.
Предположим, что в молекуле кристалла электроны легко смещаются вдоль длинной оси молекулы, то есть вдоль направления n. Тогда в случае, изображённом на рисунке 9 а, по толщине слоя распространяются падающая волна и вторичные волны, причём векторы Е в волнах совпадают по направлению.
В случае, изображённом на рисунке 9 б диполи не образуются и вторичные волны не излучаются; значит, падающая волна проходит, не ослабляясь. Наконец, в случае 9 в поляризация света изменяет своё направление в соответствии с поворотом оптической оси nпо толщине слоя. Поворот вектора Е в такт с осью nобеспечивает излучение вторичных волн, не ослабляемое на любой глубине слоя. (это интерференционное явление возможно тогда, когда на пути светового луча находятся многочисленные диполи - источники вторичных волн, то есть когда толщина слоя намного больше длины волны света).
Так свет проходит сквозь слой нематической жидкости и доходит до второго поляризатора. И здесь возникает уже знакомая нам ситуация. В случаях а и б (рис9) свет сквозь оптическую систему пройти не может, а в случае в (рис9) он проходит беспрепятственно.
А теперь представим себе промежуточный случай, когда оси nна стенках скрещены между собой, но в толще слоя, благодаря какому-то воздействию, они повернулись почти перпендикулярно стёклам.
В этой ситуации свет практически не проходит сквозь второй поляризатор. Остался ещё один шаг до массового применения подобной системы. Надо научится управлять оптической осью нематической жидкости так, чтобы в отсутствии воздействия эта ось ориентировалась, как на рисунке 9 в, а при включении воздействия она наклонялась на заметный угол, как на рисунках 9,б и г. После выключения воздействия, молекулы занимают свои прежние позиции, вследствие условий на стеклянных поверхностях и взаимодействий между собой.
Оказалось, что именно в нематическом жидком кристалле это очень просто сделать с помощью электрического поля, заключив слой между полированными стёклами, на которые нанесены прозрачные электроды.
Подключив к этим электродам слабенькую батарейку и замкнув цепь, мы сделаем нашу оптическую систему светонепроницаемой, а разомкнув цепь - прозрачной, что и осуществил впервые Фредерикс.
Почему электрическое поле поворачивает молекулы так, как нам нужно, и сколь сильным оно при этом должно быть? Ответ на первую часть вопроса легко дать с помощью рисунка 10. Пусть молекула, у которой диполь легко образуется вдоль длинной оси, находится в электрическом поле и между векторами Е и nимеется некоторый угол.
Рис.10
кристалл жидкий поляризованный холестерический
Тогда в образовавшемся диполе на заряды +Q и -Q действуют силы
F+ =+QE и
F- = -QE;
таким образом, возникает пара сил, создающая крутящий момент.
Этот момент сил и поворачивает молекулу так, чтобы она своей длинной осью ориентировалась вдоль вектора Е.
Здесь важно заметить, что на самом деле необходимо повернуть одновременно очень большое число таких молекул, но при этом нет необходимости поворачивать каждую молекулу в отдельности. Поскольку молекулы, взаимодействующие между собой, ориентированы одинаково, то достаточно толкнуть одну, чтобы другие дружно повернулись вслед за первой.
Поэтому для осуществления описанного эффекта необходимое некоторое конечное значение разности потенциалов на электродах - пороговое напряжение.
Это пороговое значение определяется из условия равенства моментов двух сил: силы, действующие со стороны электрического поля, и возвращающей силы взаимодействия между молекулами, которая стремится ориентировать молекулы так, как сориентированы молекулы, прилипшие к стеклу.
Оказывается, что независимо от толщины слоя, пороговое напряжение может составлять доли вольта, причём толщина слоёв составляет сотую долю миллиметра. Это во много раз меньше, чем требуется для получения таких же оптических эффектов в твёрдых кристаллах, что и обусловило громадный практический интерес к жидким кристаллам при создании циферблатов всевозможных типов.
Эти явления широко используются в различных приложениях, например, для нахождения горячих точек в микроцепях, локализации переломов и опухолей у человека, визуализации изображения в инфракрасных лучах и др.
Характеристики многих электрооптических устройств, работающих на лиотропных ЖК, определяются анизотропией их электропроводности, которая, в свою очередь, связана с анизотропией электронной поляризуемости.
Для некоторых веществ вследствие анизотропии свойств жидких кристаллов удельная электропроводность изменяет свой знак. Например, для н-октилоксибензойной кислоты она проходит через нуль при температуре 146° С, и связывают это со структурными особенностями мезофазы и с поляризуемостью молекул. Ориентация молекул нематической фазы, как правило, совпадает с направлением наибольшей проводимости.
Все формы жизни так или иначе связаны с деятельностью живой клетки, многие структурные звенья которой похожи на структуру жидких кристаллов. Обладая замечательными диэлектрическими свойствами, жидкие кристаллы образуют внутриклеточные гетерогенные поверхности, они регулируют взаимоотношения между клеткой и внешней средой, а также между отдельными клетками и тканями, сообщают необходимую инертность составным частям клетки, защищая ее от ферментативного влияния. Таким образом, установление закономерностей поведения жидких кристаллов открывает новые перспективы в развитии молекулярной биологии.
3. Применение жидких кристаллов
Одно из важных направлений использования жидких кристаллов -- термография. Подбирая состав жидкокристаллического вещества, создают индикаторы для разных диапазонов температуры и для различных конструкций.
Например, жидкие кристаллы в виде плёнки наносят на транзисторы, интегральные схемы и печатные платы электронных схем. Неисправные элементы -- сильно нагретые или холодные, неработающие -- сразу заметны по ярким цветовым пятнам. Новые возможности получили врачи: жидкокристаллический индикатор на коже больного быстро диагностирует скрытое воспаление и даже опухоль.
С помощью жидких кристаллов обнаруживают парым вредных химических соединений и опасные для здоровья человека гамма- и ультрафиолетовое излучения.
На основе жидких кристаллов созданы измерители давления, детекторы ультразвука. Но самая многообещающая область применения жидкокристаллических веществ -- информационная техника. От первых индикаторов, знакомых всем по электронным часам, до цветных телевизоров с жидкокристаллическим экраном размером с почтовую открытку прошло лишь несколько лет. Такие телевизоры дают изображение весьма высокого качества, потребляя меньшее количество энергии.
Список литературы
1. Блинов Л.М., Пикин С.А. Жидкокристаллическое состояние вещества. - М.: Знание, 1986. - 64 с. - (Новое в жизни, науке, технике. Сер. “Физика”; №6).
2. Де Жен П. Физика жидких кристаллов. - Пер. с англ. под ред. А.Ф.Сонина. - М.: Мир, 1977.
3. Пикин С.А., Блинов Л.М. Жидкие кристаллы. - М.: Наука, 1982.
4. Чистяков И.Г. Жидкие кристаллы. - М.: Наука, 1966. - 272 с.
5. Чандрасекар С. Жидкие кристаллы. Пер. с англ. М.: Мир, 1980. 344
6. Каманина Н. В. Электрооптические системы на основе жидких кристаллов и фуллеренов - перспективные материалы наноэлектроники. Свойства и области применения. Учебное пособие. - СПб: СПбГУИТМО, 2008 - 137с.
Размещено на Allbest.ru
...Подобные документы
Рассмотрение истории открытия и направлений применения жидких кристаллов; их классификация на смектические, нематические и холестерические. Изучение оптических, диамагнитных, диэлектрических и акустооптических свойств жидкокристаллических веществ.
курсовая работа [968,9 K], добавлен 18.06.2012История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.
учебное пособие [1,1 M], добавлен 14.12.2010Определение жидких кристаллов, их сущность, история открытия, свойства, особенности, классификация и направления использования. Характеристика классов термотропных жидких кристаллов. Трансляционные степени свободы колончатых фаз или "жидких нитей".
реферат [16,9 K], добавлен 28.12.2009Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.
контрольная работа [585,0 K], добавлен 06.12.2013История открытия жидких кристаллов, молекулярные аспекты их строения, виды и область применения. Получение жидкокристаллической фазы. Применение теории упругости и текучести для ЖК. Электрические свойства вещества. Сущность флексоэлектрического эффекта.
реферат [84,9 K], добавлен 30.11.2010Особенности и свойства жидкокристаллического состояния вещества. Структура смектических жидких кристаллов, свойства их модификаций. Сегнетоэлектрические характеристики. Исследование геликоидальной структуры смектика C* методом молекулярной динамики.
реферат [1,1 M], добавлен 18.12.2013Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.
курсовая работа [718,8 K], добавлен 09.12.2010Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.
реферат [1,1 M], добавлен 26.04.2010Успехи атомной физики, физики полупроводников и химии полимеров. Свойства жидкости с оптической осью. Классификация жидких кристаллов. Изменение направления оси в нематике под действием поля. Действие поля на оптическую ось. Правые и левые молекулы.
реферат [60,0 K], добавлен 19.04.2012Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.
лекция [2,0 M], добавлен 13.03.2007Физический механизм рассеяния отдельной частицей. Взаимное усиление или подавление рассеянных волн. Многократное рассеивание света. Полная интенсивность рассеяния скоплением частиц. Поляризация света при рассеянии. Применение поляризованного света.
курсовая работа [283,2 K], добавлен 05.06.2015Характеристики поляризованного света. Свойство двойного лучепреломления. Поляризация света при отражении и преломлении. Вращение плоскости поляризации. Сжатие или растяжение кристаллов. Действие магнитного поля. Угол поворота плоскости поляризации.
реферат [972,8 K], добавлен 21.03.2014Сущность и области применения в науке и технике поляризации света. Закон Малюса, выражающий зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор. Вращение плоскости поляризации оптически активными веществами.
реферат [490,8 K], добавлен 01.09.2014Сущность полиморфизма, история его открытия. Физические и химические свойства полиморфных модификаций углерода: алмаза и графита, их сравнительный анализ. Полиморфные превращения жидких кристаллов, тонких пленок дийодида олова, металлов и сплавов.
курсовая работа [493,4 K], добавлен 12.04.2012Понятие кристаллической (пространственной) решетки. Кристаллическая структура эффекта. Области применения промышленных пьезопленок. Обратный пьезоэлектрический эффект. Использование пьезоэлектрических кристаллов для получения электрической энергии.
курсовая работа [833,1 K], добавлен 14.04.2014Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.
реферат [132,9 K], добавлен 30.10.2006Поляризация при отражении и преломлении. Интерференция поляризованного света. Эллиптическая и круговая поляризация электромагнитной волны. Прохождение линейно поляризованного света лазера через вращающийся поляроид. Явление искусственной анизотропии.
презентация [4,0 M], добавлен 07.03.2016Описание структуры и параметров активированных кристаллов. Характеристики полиэдров Вороного-Дирихле. Исследование структуры и расчет параметров Джадда-Офельта для активированных кристаллов. Изучение структуры шеелитов методом пересекающихся сфер.
дипломная работа [1,1 M], добавлен 20.07.2015Кристаллы как твердые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре. Описание их свойств: анизотропности, однородности, способности к самоогоранении и температуры плавления.
контрольная работа [933,2 K], добавлен 06.10.2015Основные свойства полупроводников. Строение кристаллов. Представления электронной теории кристаллов. Статистика электронов в полупроводниках. Теория явлений переноса. Гальваномагнитные и термомагнитные явления. Оптический свойства полупроводников.
книга [3,8 M], добавлен 21.02.2009