Движение материальной точки. Понятие потенциала, движение заряженных частиц в электрическом и магнитном поле
Понятие пространства и времени. Кинематические характеристики движения тела в трёхмерном пространстве. Криволинейное ускорение, связь между потенциалом и напряженностью. Эквипотенциальные поверхности, движение заряженных частиц и уравнения магнитостатики.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 27.05.2015 |
Размер файла | 645,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Пространство-время (пространственно-временной континуум) -- физическая модель, дополняющая пространство равноправным временным измерением и таким образом, создающая теоретико-физическую конструкцию, которая называется пространственно-временным континуумом.
Пространственно-временные отношения. Относительность движения. Система отсчета.
Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин, и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.
Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея -- Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи -- пространство-время. Пространство и время не существуют вне материи и независимо от нее.
Относительность механического движения - это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта.
Система отсчёта -- это совокупность тела отсчёта, связанной с ним системы координат и системы отсчёта времени, по отношению к которым рассматривается движение (или равновесие) каких-либо материальных точек или тел[2][3].
Математически движение тела (или материальной точки) по отношению к выбранной системе отсчёта описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой системе отсчёта. Эти уравнения называются уравнениями движения. Например, в декартовых координатах х, y, z движение точки определяется уравнениями
, , .
В современной физике любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна вообще, можно лишь определить её движение, например, по отношению к Земле, Солнцу, звёздам и т. п.
Материальная точка в 2х о
Скалярными величинами (скалярами) называют величины, характеризующиеся числовым значением и знаком. Скалярами являются длина ? l, масса ? m, путь ? s, время ? t, температура ? T, электрический заряд ? q, энергия ? W, координаты и т.д.
К скалярным величинам применяются все алгебраические действия (сложение, вычитание, умножение и т.д.).
1. Скалярные и векторные величины
Физические величины могут быть скалярными и векторными.
К скалярным величинам относятся те, к которым нельзя приложить понятие «направление». В механике это длина, площадь, объём, масса, а также работа, энергия, мощность и время.
К векторным величинам относятся те, которые имеют определённое направление в пространстве. В механике это перемещение и все производные от него -- скорость, ускорение, импульс, сила, давление. При их сложении обязательно нужно учитывать их взаимную ориентацию. Однородные величины, направленные в одну сторону, суммируются, а противоположные -- вычитаются, а в общем случае их влияние определяется проекцией на нужное направление.
Векторные величины выделены надчеркиванием над названием и обозначением.
Как правило, величины, зависящие как от векторных, так и от скалярных величин, сами являются векторными и вычисляются как произведение трёхмерного вектора на число. Например, сила зависит от скалярной массы и векторного ускорения и является векторной величиной. Наоборот, если оба сомножителя являются векторами или оба -- скалярами, результат обычно скалярный. Так, мощность определяется двумя скалярными величинами -- работой (энергией) и временем -- и является скалярной величиной. В то же время работа, определяемая двумя векторными величинами -- силой и перемещением -- считается скалярной величиной и вычисляется как скалярное произведение трёхмерных векторов силы и перемещения. Но есть и исключения -- скажем, сила Лоренца или скорость прецессии являются векторными величинами, вычисляемыми как векторное произведение других векторных величин.
Векторными величинами, или векторами, называют величины, имеющие и численное значение, и направление. Например, если сказано, что автомобиль движется со скоростью 100 километров в час (то есть дано численное значение скорости), то про его скорость известно не все, потому что неизвестно, куда, в каком направлении он двигается. Примеры - скорость, сила, перемещение (перемещением движущейся точки в данный момент времени называют вектор с началом в точке начала ее движения, и концом в точке ее расположения в этот момент.
Скалярными называют величины, имеющие численное значение, но не имеющие направления. Примеры - количество каких-нибудь предметов, длина, плотность.
Векторные величины обозначают в тексте буквами со стрелками (например, или ), а на чертежах - стрелками, при этом длина стрелки равна численному значению вектора, а направление совпадает с направлением вектора.
Кинематические характеристики движения материальной точки в трехмерном пространстве
Положение материальной точки в пространстве описывается тремя координатами. Если положение точки изменяется с течением времени, то ее координаты становятся функциями времени. Закон движения в таком случае задается тремя функциями ? зависимостями трех координат от времени:
Система функций (1) полностью определяет движение материальной точки, то есть позволяет найти ее положение в произвольный момент времени. Основное отличие движения в пространстве от движения вдоль заданной прямой заключается в наличии трех координат. Поэтому следует говорить о трех скоростях, трех ускорениях, которые определяются полностью аналогично одномерному случаю.
Так, вместо скорости движения вдоль оси можно (и нужно) определить три скорости движения вдоль трех осей, вместо ускорения ? три ускорения вдоль трех осей:
Дальнейшая процедура построения законов движения полностью аналогична рассмотренному одномерному движению.
В модели равномерного движения все три скорости постоянны, а закон движения имеет вид
При равноускоренном движении, когда все три ускорения постоянны, скорости изменяются по линейному закону, а координаты описываются квадратичными функциями:
Таким образом, координатный способ описания движения в пространстве принципиально ничем не отличается от описания движения вдоль прямой ? только уравнений (и начальных условий) становится в три раза больше.
Координатный способ описания движения является универсальным. Однако он имеет несколько существенных недостатков. Прежде всего, он очень громоздкий ? требует написания большого числа однотипных формул, часто отличающихся только индексами (подобно уравнениям (2)). Еще более существенным недостатком этого метода является необходимость «привязываться» к конкретной системе отсчета. Поэтому в кинематике (да и во всей физике) часто используется векторный метод описания механического движения (и других физических явлений).
Возможно, что не все знакомы с основами векторного исчисления, поэтому на время прервем последовательное изложение физических проблем и сделаем небольшое математическое отступление.
Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их инертности (массы) и действующих на них сил.
Основной задачей кинематики является нахождение положения тела в любой момент времени, если известны его положение, скорость и ускорение в начальный момент времени.
Механическое движение - это изменение положения тел (или частей тела) относительно друг друга в пространстве с течением времени.
Для определения положения движущегося тела (или точки) в разные моменты времени с телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, образующую вместе с этим телом систему отсчета.
Тело отсчета - тело (или группа тел), принимаемое в данном случае за неподвижное, относительно которого рассматривается движение других тел.
Система отсчета - это система координат, связанная с телом отсчета, и выбранный способ измерения времени (рис. 1).
Рис. 1
Материальная точка - тело, размерами которого в данных условиях можно пренебречь.
Этой моделью пользуются в тех случаях, когда линейные размеры рассматриваемых тел много меньше всех прочих расстояний в данной задаче или когда тело движется поступательно.
Поступательным называется движение тела, при котором прямая, проходящая через любые две точки тела, перемещается, оставаясь параллельной самой себе. При поступательном движении все точки тела описывают одинаковые траектории и в любой момент времени имеют одинаковые скорости и ускорения. Поэтому для описания такого движения тела достаточно описать движение его одной произвольной точки.
В дальнейшем под словом "тело" будем понимать "материальная точка".
Линия, которую описывает движущееся тело в определенной системе отсчета, называется траекторией. На практике форму траектории задают с помощью математических формул
у=f(х)
-- уравнение траектории или изображают на рисунке. Вид траектории зависит от выбора системы отсчета. Например, траекторией тела, свободно падающего в вагоне, который движется равномерно и прямолинейно, является прямая вертикальная линия в системе отсчета, связанной с вагоном, и парабола в системе отсчета, связанной с Землей.
В зависимости от вида траектории различают прямолинейное и криволинейное движение.
Путь s - скалярная физическая величина, определяемая длиной траектории, описанной телом за некоторый промежуток времени. Путь всегда положителен: s> 0.
Перемещение тела за определенный промежуток времени - направленный отрезок прямой, соединяющий начальное (точка М0) и конечное (точка М) положение тела:
,
где и -- радиус-векторы тела в эти моменты времени.
Проекция перемещения на ось Ох:
?rx =?х = х-х0,
где x0 и x - координаты тела в начальный и конечный моменты времени.
Модуль перемещения не может быть больше пути:
?s.
Знак равенства относится к случаю прямолинейного движения, если направление движения не изменяется.
Зная перемещение и начальное положение тела, можно найти его положение в момент времени t:
2. Способы задания движения точки
Для задания движения точки можно применять один из следующих трех способов:
1) векторный, 2) координатный, 3) естественный.
1. Векторный способ задания движения точки.
Пусть точка М движется по отношению к некоторой системе отсчета Oxyz. Положение этой точки в любой момент времени можно определить, задав ее радиус-вектор , проведенный из начала координат О в точку М (рис. 3).
Рис. 3
При движении точки М вектор будет с течением времени изменяться и по модулю, и по направлению. Следовательно, является переменным вектором (вектором-функцией), зависящим от аргумента t:
Равенство определяет закон движения точки в векторной форме, так как оно позволяет в любой момент времени построить соответствующий вектор и найти положение движущейся точки.
Геометрическое место концов вектора , т.е. годограф этого вектора, определяет траекторию движущейся точки.
2. Координатный способ задания движения точки.
Положение точки можно непосредственно определять ее декартовыми координатами х, у, z (рис.3), которые при движении точки будут с течением времени изменяться. Чтобы знать закон движения точки, т.е. ее положение в пространстве в любой момент времени, надо знать значения координат точки для каждого момента времени, т.е. знать зависимости
x=f1(t), y=f2(t), z=f3(t).
Уравнения представляют собой уравнения движения точки в прямоугольных декартовых координатах. Они определяют закон движения точки при координатном способе задания движения.
Чтобы получить уравнение траектории надо из уравнений движения исключить параметр t.
Нетрудно установить зависимость между векторным и координатным способами задания движения.
Разложим вектор на составляющие по осям координат:
где rx, ry, rz - проекции вектора на оси; - единичные векторы, направленные по осям, орты осей.
Так как начало вектора находится в начале координат, то проекции вектора будут равны координатам точки M. Поэтому
Вектор скорости точки
Одной из основных кинематических характеристик движения точки является векторная величина, называемая скоростью точки.
Скорость - мера механического состояния тела. Она характеризует быстроту изменения положения тела относительно данной системы отсчета и является векторной физической величиной.
3. Скорость и ускорение при криволинейном движении. Тангенциальное и нормальное ускорения
Криволинейные движения - движения, траектории которых представляют собой не прямые, а кривые линии.
Криволинейное движение - это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции vxи vy ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времени t определяется по формулам
vx=v0x+axt, x=x0+v0xt+axt+axt2/2; vy=v0y+ayt, y=y0+v0yt+ayt2/2
Частным случаем криволинейного движения - является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением
|a|=v2/r
где r - радиус окружности.
Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.
При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:
,
- нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:
v - мгновенное значение скорости, r - радиус кривизна траектории в данной точке.
- тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.
Полное ускорение, с которым движется материальная точка, равно:
Тангенциальное ускорение характеризует быстроту изменения скорости движения по численному значению и направлена по касательной к траектории.
Следовательно
Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:
4. Потенциал
Из механики известно, что работа консервативных сил связана с изменением потенциальной энергии. Система "заряд -- электростатическое поле" обладает потенциальной энергией (энергией электростатического взаимодействия). Поэтому, если не учитывать взаимодействие заряда с гравитационным полем и окружающей средой, то работа, совершаемая при перемещении заряда в электростатическом поле, равна изменению потенциальной энергии заряда, взятому с противоположным знаком:
Если Wp2 = 0, то в каждой точке электростатического поля потенциальная энергия заряда q0 равна работе, которая была бы совершена при перемещении заряда q0 из данной точки в точку с нулевой энергией.
Пусть электростатическое поле создано в некоторой области пространства положительным зарядом q (рис. 4).
Рис. 4
Будем помещать в точку М этого поля различные пробные положительные заряды q0. Потенциальная энергия их различна, но отношение
для данной точки поля и служит характеристикой поля, называемой потенциалом поля в данной точке:
Единицей потенциала в СИ является вольт (В) или джоуль на кулон (Дж/Кл).
Потенциалом электростатического поля в данной точке называют скалярную физическую величину, характеризующую энергетическое состояние поля в данной точке пространства и численно равную отношению потенциальной энергии, которой обладает пробный положительный заряд, помещенный в эту точку, к значению заряда.
Потенциал -- это энергетическая характеристика поля в отличие от напряженности поля, являющейся силовой характеристикой поля.
Необходимо отметить, что потенциальная энергия заряда в данной точке поля, а значит, и потенциал зависят от выбора нулевой точки. Нулевой эта точка называется потому, что потенциальную энергию (соответственно потенциал) заряда, помещенного в эту точку поля, уславливаются считать равной нулю.
Нулевой уровень потенциальной энергии выбирается произвольно, поэтому потенциал можно определить только с точностью до некоторой постоянной, значение которой зависит от того, в какой точке пространства выбрано его нулевое значение.
В технике принято считать нулевой точкой любую заземленную точку, т.е. соединенную проводником с землей. В физике за начало отсчета потенциальной энергии (и потенциала) принимается любая точка, бесконечно удаленная от зарядов, создающих поле. Если нулевая точка выбрана, то потенциальная энергия (соответственно и потенциал в данной точке) заряда q0 становится определенной величиной.
На расстоянии r от точечного заряда q, создающего поле, потенциал определяется формулой
При указанном выше выборе нулевой точки потенциал в любой точке поля, создаваемого положительным зарядом q, положителен, а поля, создаваемого отрицательным зарядом, отрицателен:
По этой формуле можно рассчитывать потенциал поля, образованного равномерно заряженной проводящей сферой радиусом R в точках, находящихся на поверхности сферы и вне ее. Внутри сферы потенциал такой же, как и на поверхности, т.е.
Если электростатическое поле создается системой зарядов, то имеет место принцип суперпозиции: потенциал в любой точке такого поля равен алгебраической сумме потенциалов, создаваемых в этой точке каждым зарядом в отдельности:
Зная потенциал поля в данной точке, можно рассчитать потенциальную энергию заряда q0 помещенного в эту точку: Wp1 = q0. Если положить, что Wp2 = 0, то из уравнения (1) будем иметь
Потенциальная энергия заряда q0 в данной точке поля будет равна работе сил электростатического поля по перемещению заряда q0 из данной точки в нулевую. Из последней формулы имеем
Потенциал поля в данной точке численно равен работе по перемещению единичного положительного заряда из данной точки в нулевую (в бесконечность).
Потенциальная энергия заряда q0 помещенного в электростатическое поле точечного заряда q на расстоянии r от него,
Если q и q0 -- одноименные заряды, то , если q и q0 -- разные по знаку заряды, то .
Отметим еще раз, что по этой формуле можно рассчитать потенциальную энергию взаимодействия двух точечных зарядов, если за нулевое значение Wp выбрано ее значение при r = бесконечности.
Если электростатическое поле образовано системой n точечных электрических зарядов, то потенциальная энергия системы определяется по формуле
где -- потенциал поля, созданного всеми зарядами, кроме заряда qi, в той точке поля, где находится заряд qi.
Связь между потенциалом и напряженностью электрического поля.
Потенциал является важной характеристикой электрического поля, он определяет всевозможные энергетические характеристики процессов, проходящих в электрическом поле. Кроме того, расчет потенциала поля проще расчета напряженности, хотя бы потому, что является скалярной (а не векторной) величиной. Безусловно, что потенциал и напряженность поля связаны меду собой, сейчас мы установим эту связь. Пусть в произвольном электростатическом поле точечный заряд q совершил малое перемещение Дr из точки 1 в точку 2 (Рис. 179). Пренебрегая изменением напряженности поля E на этом участке, работу, совершенную полем можно записать в виде
дA=F ? ?Дr ? =qE ? ?Дr ? .
По определению эта величина равна разности потенциалов, взятой с противоположным знаком, деленной на величину заряда, поэтому
Дц=ц 2 ?ц 1 =?дAq =?E ? ?Дr ? . (1)
Если расстояние между точками 1 и 2 не является малым, то необходимо эти точки соединить произвольной линией (Рис. 180), разбить ее на малые участки Дr ? 1 ,Дr ? 2 ,Дr ? 3 ,… и просуммировать разности потенциалов между (1) ними
ц 1 ?ц 2 =E ? 1 ?Дr ? 1 +E ? 2 ?Дr ? 2 +E ? 3 ?Дr ? 3 +… . (2)
Формула (2) позволяет рассчитать разность потенциалов между произвольными точками, по известным значениям напряженности поля во всех точках.
Как и следовало ожидать, связь между разностью потенциалов и напряженностью поля аналогична связи между изменением потенциальной энергии и действующей силой. Так, если вдоль некоторой прямой (назовем ее осью X), проекция вектора напряженности на эту ось изменяется по некоторому закону EX(x), то площадь под графиком этой функции между точками с координатами x1 и x2 численно равна разности потенциалов между этими точками, взятой с противоположным знаком.
Заметим, что если двигаться вдоль направления вектора напряженности, то потенциал поля будет уменьшаться, так как при таком движении поле совершает положительную работу, поэтому энергия взаимодействия уменьшается.
Так как электростатическое поле является потенциальным, то результат суммирования в формуле (2) не зависит от выбранной линии, важно только, чтобы она начиналась в точке 1 и заканчивалась в точке 2. Кстати, с подобной конструкцией сумма скалярных произведений вектора на малый элемент траектории мы уже неоднократно встречались. Напомним, что такая сумма, вычисленная по замкнутой траектории, называется циркуляцией векторного поля.
Так как электростатическое поле потенциально, то циркуляция вектора напряженности электростатического поля по любой замкнутой линии равна нулю ГE = 0(Рис. 182).
Таким образом, мы сформулировали вторую важнейшую теорему для вектора напряженности стационарного электростатического поля. Никакого нового физического содержания в этой теореме нет - это просто повторение в иной форме свойства потенциальности. Заметим также, что теорема о циркуляции утверждает, что в электростатическом поле не может быть замкнутых силовых линий, все силовые линии начинаются и заканчиваются на электрических зарядах, или что равносильно - единственными источниками электростатического поля являются электрические заряды. Заметим, что данной утверждении справедливо, только в статических полях (не зависящих от времени), в дальнейшем мы познакомимся с электрическим полями, в которых существуют замкнутые силовые линии, такие поля порождаются изменяющимися магнитными полями.
Эквипотенциальные поверхности -- понятие, применимое к любому потенциальному векторному полю, например, к статическому электрическому полю или к ньютоновскому гравитационному полю. Эквипотенциальная поверхность -- это поверхность, на которой скалярный потенциал данного потенциального поля принимает постоянное значение (поверхность уровня потенциала). Другое, эквивалентное, определение -- поверхность, в любой своей точке ортогональная силовым линиям поля.
Поверхность проводника в электростатике является эквипотенциальной поверхностью. Кроме того, помещение проводника на эквипотенциальную поверхность не вызывает изменения конфигурации электростатического поля. Этот факт используется в методе изображений, который позволяет рассчитывать электростатическое поле для сложных конфигураций.
В (стационарном) гравитационном поле уровень неподвижной жидкости устанавливается по эквипотенциальной поверхности. В частности, приближенно можно утверждать, что по эквипотенциальной поверхности гравитационного поля Земли проходит уровень океанов[1]. Форма поверхности океанов[2], продолженная на поверхность Земли, называется геоидом и играет важную роль в геодезии. Геоид, таким образом, является эквипотенциальной поверхностью силы тяжести, состоящей из гравитационной и центробежной составляющей.
ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ, поверхность, во всех точках которой потенциал электрического поля имеет одинаковое значение
движение частица потенциал магнитостатика
j= const.
На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.
Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.
Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как ?j = 0.
Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.
Поток напряженности электрического поля
Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силовое действие на другие заряженные тела. Главное свойство электрического поля - действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела. Электрическое поле, окружающее заряженное тело, можно исследовать с помощью так называемого пробного заряда - небольшого по величине точечного заряда, который не вносит заметного перераспределения исследуемых зарядов. Для количественного определения электрического поля вводится силовая характеристика напряженность электрического поля.
Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:
Поток электрического поля определяется традиционно.
Выделим малую площадку площадью ДS, ориентация которой задается единичным вектором нормали n ? (рис. 157).
В пределах малой площадки электрическое поле можно считать однородным [1], тогда поток вектора напряженности ДФE определяется как произведение площади площадки на нормальную составляющую вектора напряженности
ДЦ E =EcosбДS=(E ? ?n ? ) ДS=E n ДS . (1)
Где
(E ? ?n ? )=Ecosб
-- скалярное произведение векторов E ? и n ? ; En -- нормальная к площадке компонента вектора напряженности.
В произвольном электростатическом поле поток вектора напряженности через произвольную поверхность, определяется следующим образом (рис. 158):
- поверхность разбивается на малые площадки ДS (которые можно считать плоскими);
- определяется вектор напряженности E ? на этой площадке (который в пределах площадки можно считать постоянным);
- вычисляется сумма потоков через все площадки, на которые разбита поверхность
Ц=ДЦ 1 +ДЦ 2 +ДЦ 3 +…=? i ДЦ i =? i E i cosб i ДS i .
Эта сумма называется потоком вектора напряженности электрического поля через заданную поверхность.
Теорема Гаусса.
Теорема Гаусса утверждает: Поток вектора напряженности электростатического поля через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную е0.
наиболее общей формулировкой теоремы Гаусса: поток вектора электрической индукции через замкнутую поверхность произвольной формы равен суммарному заряду в объеме, охваченном этой поверхностью, и не зависит от зарядов, расположенных вне рассматриваемой поверхности. Теорему Гаусса можно записать и для потока вектора напряженности электрического поля:
Из теоремы Гаусса следует важное свойство электрического поля: силовые линии начинаются или заканчиваются только на электрических зарядах или уходят в бесконечность. Еще раз подчеркнем, что, несмотря на то, что напряжённость электрического поля E и электрическая индукция D зависят от расположения в пространстве всех зарядов, потоки этих векторов через произвольную замкнутую поверхность S определяются только теми зарядами, которые расположены внутри поверхности S.
В вакууме
Поле равномерно заряженной плоскости. у - поверхностная плотность заряда. S - замкнутая гауссова поверхность.
В этом случае гауссову поверхность S целесообразно выбрать в виде цилиндра некоторой длины, закрытого с обоих торцов. Ось цилиндра направлена перпендикулярно заряженной плоскости, а его торцы расположены на одинаковом расстоянии от нее. В силу симметрии поле равномерно заряженной плоскости должно быть везде направлено по нормали. Применение теоремы Гаусса дает:
где у - поверхностная плотность заряда, то есть заряд, приходящийся на единицу площади. Полученное выражение для электрического поля однородно заряженной плоскости применимо и в случае плоских заряженных площадок конечного размера. В этом случае расстояние от точки, в которой определяется напряженность поля, до заряженной площадки должно быть значительно меньше размеров площадки
Сила Лоренца -- сила, с которой электромагнитное поле согласно классической (неквантовой) электродинамике действует на точечную заряженную частицу. Иногда силой Лоренца называют силу, действующую на движущийся со скоростью заряд лишь со стороны магнитного поля, нередко же полную силу -- со стороны электромагнитного поля вообще[1], иначе говоря, со стороны электрического и магнитного полей. В Международной системе единиц (СИ) выражается как:
Макроскопическим проявлением силы Лоренца является сила Ампера.
Сила ампера
На проводник с током, находящийся в магнитном поле, действует сила, равная
F = I*L*B*sinб
I - сила тока в проводнике;
B - модуль вектора индукции магнитного поля;
L - длина проводника, находящегося в магнитном поле;
б - угол между вектором магнитного поля инаправлением тока в проводнике.
Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.
Максимальная сила Ампера равна:
F = I*L*B
Ей соответствует б=90°
Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.
Магнитная индукция -- векторная величина, являющаяся силовой характеристикой магнитного поля (его действия на заряженные частицы) в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд, движущийся со скоростью .
Более конкретно, -- это такой вектор, что сила Лоренца , действующая со стороны магнитного поля[1] на заряд , движущийся со скоростью, равна
где косым крестом обозначено векторное произведение, б -- угол между векторами скорости и магнитной индукции (направление вектора перпендикулярно им обоим и направлено по правилу левой руки).
Также магнитная индукция может быть определена[2] как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.
Движение заряженных частиц в электрическом и магнитном полях.
Электрические и магнитные поля действуют на движущиеся заряженные частицы с известной силой. Поэтому эти поля могут использоваться для управления движением заряженных частиц. Потоки движущихся заряженных частиц широко используются в различных приборах, принципы действия и применения некоторых из них мы рассмотрим в данном параграфе.
Описание движения заряженной частицы проводится на основании второго закона Ньютона, уравнение которого имеет вид
где qE ? сила, действующая на частицу с электрическим зарядом q со стороны электрического поля; qv x B ? сила Лоренца, действующая на частицу со стороны магнитного поля. В общем случае напряженность электрического поля E и индукция магнитного поля B могут зависеть от координат (в неоднородных полях) и времени (в нестационарных полях). Для однозначного решения уравнения (1) его необходимо дополнить начальными условиями: положением частицы ro и скоростью vo в некоторый момент времени to.
При описании распространения потоков частиц в некоторых случаях необходимо также учитывать взаимодействия частиц между собой, или принимать во внимание зависимость характеристик полей от положения и скоростей других частиц. Наконец, при записи уравнения (1) принято, что частицы движутся в вакууме, где отсутствуют силы сопротивления среды. Движение частиц в средах, обладающих сопротивлением, описываются в рамках уравнений для электрического тока. При движении частиц в электромагнитном поле, как правило, пренебрегают действием силы тяжести, которая обычно значительно меньше электромагнитных сил.
Записанное уравнение движения справедливо для частиц, движущихся со скоростями, значительно меньшими скорости света. В противном случае необходимо использовать релятивистские уравнения движения теории относительности.
Рассмотрим некоторые частные простейшие случаи решения уравнения (1) для частиц, движущихся в стационарных полях.
Магнитостатика -- раздел классической электродинамики, изучающий взаимодействие постоянных токов посредством создаваемого ими постоянного магнитного поля и способы расчета магнитного поля в этом случае. Под случаем магнитостатики или приближением магнитостатики понимают выполнение этих условий (постоянства токов и полей -- или достаточно медленное их изменение со временем), чтобы можно было пользоваться методами магнитостатики в качестве практически точных или хотя бы приближенных. Магнитостатика вместе с электростатикой представляют собой частный случай (или приближение) классической электродинамики; их можно использовать совместно и независимо (расчет электрического и магнитного полей в этом случае не имеет взаимозависимостей -- в отличие от общего электродинамического случая).
Основные уравнения
Все основные уравнения магнитостатики линейны[1] (как и классической электродинамики вообще, частным случаем которой магнитостатика является). Это подразумевает важную роль в магнитостатике (тоже как и во всей электродинамике) принципа суперпозиции.
* Принцип суперпозиции для магнитостатики может быть сформулирован так: Магнитное поле, создаваемое несколькими токами, есть векторная сумма полей, которые бы создавались каждым из этих токов по отдельности.
Этот принцип одинаково формулируется и в принципе одинаково используется для вектора магнитной индукции и для векторного потенциала и применяется при расчетах повсеместно. Особенно очевидным и прямым образом это проявляется, когда при применении закона Био -- Савара (см. ниже) для расчета магнитного поля производится суммирование (интегрирование) бесконечно малых вкладов , создаваемых каждым бесконечно малым элементом тока, текущих в разных точках пространства (точно так же и при применении варианта этого закона для векторного потенциала).
Основные уравнения, используемые в магнитостатике[2]:
* Закон Био -- Савара -- Лапласа (величина магнитного поля, генерируемого в данной точке элементом тока)
* Теорема о циркуляции магнитного поля
* она же в дифференциальной форме:
* Выражение для силы Лоренца (силы, с которой на движущуюся заряженную частицу действует магнитное поле)
* Выражение для силы Ампера (силы, с которой на элемент тока действует магнитное поле)
(уравнения выше записаны в гауссовой системе единиц); в других системах единиц эти формулы отличаются только постоянными коэффициентами, например:
в системе СИ
Закон Био -- Савара -- Лапласа:
Теорема о циркуляции магнитного поля:
она же в дифференциальной форме:
Сила Лоренца:
Сила Ампера:
Здесь -- вектор магнитной индукции, I --сила тока в проводнике (а в теореме о циркуляции -- суммарный ток через поверхность), -- элемент проводника (в теореме о циркуляции -- элемент контура интегрирования), -- радиус-вектор, проведённый из элемента тока в точку, в которой определяется магнитное поле, -- плотность тока, -- величина заряда и скорость заряженной частицы.
* Для расчёта магнитного поля в магнитостатике можно пользоваться (и часто это весьма удобно) понятием магнитного заряда, делающим аналогию магнитостатики с электростатикой более детальной и позволяющим применять в магнитостатике формулы, аналогичные формулам электростатики -- но не для электрического, а для магнитного поля. Обычно (за исключением случая теоретического рассмотрения гипотетических магнитных монополей) подразумевается лишь чисто формальное использование, так как в реальности магнитные заряды не обнаружены. Такое формальное использование (фиктивных) магнитных зарядов возможно благодаря теореме эквивалентности поля магнитных зарядов и поля постоянных электрических токов. Фиктивные магнитные заряды можно использовать при решении разных задач как в качестве источников магнитного поля (например, магнитом или катушкой), так и для определения действия внешних магнитных полей на магнитное тело (магнит, катушку).
Размещено на Allbest.ru
...Подобные документы
Обзор разделов классической механики. Кинематические уравнения движения материальной точки. Проекция вектора скорости на оси координат. Нормальное и тангенциальное ускорение. Кинематика твердого тела. Поступательное и вращательное движение твердого тела.
презентация [8,5 M], добавлен 13.02.2016Исследование особенностей движения заряженной частицы в однородном магнитном поле. Установление функциональной зависимости радиуса траектории от свойств частицы и поля. Определение угловой скорости движения заряженной частицы по круговой траектории.
лабораторная работа [1,5 M], добавлен 26.10.2014Движение материальной точки в поле тяжести земли. Угловое ускорение. Скорость движения тел. Закон Кулона. Полная энергия тела. Сила, действующая на заряд. Поверхностная плотность заряда. Электростатическое поле. Приращение потенциальной энергии заряда.
контрольная работа [378,0 K], добавлен 10.03.2009Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.
дипломная работа [1,2 M], добавлен 24.06.2015Понятие и принцип работы ускорителей, их внутреннее устройство и основные элементы. Ускорение пучков частиц с высокой энергией в электрическом поле как способ их получения. Типы ускорителей и их функциональные особенности. Генератор Ван де Граафа.
контрольная работа [276,8 K], добавлен 18.09.2015Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.
презентация [4,2 M], добавлен 14.03.2016Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.
реферат [685,8 K], добавлен 01.12.2010Определение несвободного движения материальной точки. Принцип освобождаемости, уравнения связей и их классификация. Движение точки по гладкой неподвижной поверхности и по гладкой кривой. Метод множителей Лагранжа. Уравнения математического маятника.
презентация [370,6 K], добавлен 28.09.2013Движение электронов в вакууме в электрическом и магнитном полях, между плоскопараллельными электродами в однородном электрическом поле. Особенности движения в ускоряющем, тормозящем полях. Применение метода тормозящего поля для анализа энергии электронов.
курсовая работа [922,1 K], добавлен 28.12.2014Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.
курсовая работа [1,1 M], добавлен 06.02.2008Вывод формулы для нормального и тангенциального ускорения при движении материальной точки и твердого тела. Кинематические и динамические характеристики вращательного движения. Закон сохранения импульса и момента импульса. Движение в центральном поле.
реферат [716,3 K], добавлен 30.10.2014Уравнение Кеплера и движение вдоль орбиты. Задача двух тел: движение одного тела относительно другого и относительно центра масс. Формулировка ограниченной задачи трех тел. Движение в поле тяготения Земли. Условия появления искусственных спутников Земли.
презентация [447,3 K], добавлен 28.09.2013Прямолинейное движение точки на плоскости. Мгновенная скорость точки. Поиск радиуса вращающегося колеса. Зависимость пути от времени, ускорение и масса тела. Равноукоренное движение. Работа, совершаемая результирующей силой.
контрольная работа [195,3 K], добавлен 16.07.2007Понятие броуновского движения как теплового движения мельчайших частиц, взвешенных в жидкости или газе. Траектория движения частиц. Разработка Эйнштейном и Смолуховским первой количественной теории броуновского движения. Опыт исследователя Броуна.
презентация [83,5 K], добавлен 27.10.2014Ознакомление с основами движения электрона в однородном электрическом поле, ускоряющем, тормозящем, однородном поперечном, а также в магнитном поле. Анализ энергии электронов методом тормозящего поля. Рассмотрение основных опытов Дж. Франка и Г. Герца.
лекция [894,8 K], добавлен 19.10.2014Принцип относительности Галилея. Связь между координатами произвольной точки. Правило сложения скоростей в классической механике. Постулаты классической механики Ньютона. Движение быстрых заряженных частиц. Скорость распространения света в вакууме.
презентация [193,4 K], добавлен 28.06.2013Электроток в растворе, упорядоченное движение заряженных частиц, электролитическая диссоциация. Направленное движение электронов источника электрической энергии. Электролитическое промышленное получение алюминия, гальваностегия и активность металлов.
презентация [412,8 K], добавлен 26.03.2012Изучение Галилео Галилеем движения с ускорением. Изменение свободного падения в зависимости от географической широты, от высоты тела над Землей. Движение с постоянным ускорением: прямолинейное и криволинейное. Опыт Ньютона по изучению движения тел.
презентация [266,3 K], добавлен 25.09.2015Изучение сути закона Кулона - закона взаимодействия двух неподвижных точечных заряженных тел или частиц. Электрическое поле и линии его напряженности. Проводники и изоляторы в электрическом поле. Поляризация изоляторов (диэлектриков), помещенных в поле.
контрольная работа [27,3 K], добавлен 20.12.2012Броуновское движение как беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества. Формула Эйнштейна, ее справедливость. Причина броуновского движения, его особенности, хаотичность и интенсивность.
презентация [932,4 K], добавлен 14.01.2015