Методы рентгеноструктурного анализа
Метод Лауэ с использованием неподвижного монокристалла для изучения атомной структуры. Метод развертки слоевой линии с вращающимся монокристаллом. Метод порошков с поликристаллическим агрегатом. Схемы съемок рентгенограмм. Образование конусов дифракции.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.05.2015 |
Размер файла | 228,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Учреждение образования “Брестский государственный университет имени А.С. Пушкина”
Реферат
Методы рентгеноструктурного анализа
Брест, 2010
В рентгеноструктурном анализе в основном используются три метода
1. Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.
2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.
3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет собой поликристаллический агрегат.
монокристалл рентгенограмма дифракция
Метод Лауэ
Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате.
Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U- напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хоть бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).
Рис. 1
Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ё l min ) ) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).
Рис. 2 Камера РКСО
Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволока, расположенная параллельно оси гониометрической головки. Тень от этой проволоки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4, то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч.
Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей). (См. рис. 3)
Рис. 3 Схема съемки рентгенограмм по методу Лауэ (а - на просвет, б - на отражение, F - фокус рентгеновской трубки, К - диафрагмы, O - образец, Пл - пленка)
Метод вращения монокристалла
Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры. При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Первичный пучок вырезается диафрагмой (с двумя круглыми отверстиями) и попадает на кристалл. Кристалл устанавливается на гониометрической головке так, чтобы одно из его важных направлений (типа [100], [010], [001]) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора. Дифракционная картина регистрируется на фотопленке, расположенной по оси цилиндрической поверхности кассеты определенного диаметра (86,6 или 57,3 мм).
При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ. Для этой цели в камере вращения предусмотрена возможность установки кассеты с плоской пленкой. Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями. Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно. Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим.
При вращении кристалла вокруг главного кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.
Метод порошка
При обычном методе исследования поликристаллических материалов тонкий столбик из измельченного порошка или другого мелкозернистого материала освещается узким пучком рентгеновских лучей с определенной длиной волны. Картина дифракции лучей фиксируется на узкую полоску фотопленки, свернутую в виде цилиндра, по оси которого располагается исследуемый образец. Сравнительно реже применяется съемка на плоскую фотографическую пленку.
Принципиальная схема метода дана на рис. 4.
Рис. 4 Принципиальная схема съемки по методу порошка:
1 - диафрагма; 2 - место входа лучей;
3 - образец: 4 - место выхода лучей;
5 - корпус камеры; 6 - (фотопленка)
Когда пучок монохроматических лучей падает на образец, состоящий из множества мелких кристалликов с разнообразной ориентировкой, то в образце всегда найдется известное количество кристалликов, которые будут расположены таким образом, что некоторые группы плоскостей будут образовывать с падающим лучом угол , удовлетворяющий условиям отражения.
Однако в различных кристалликах рассматриваемые плоскости отражения, составляя один и тот же угол с направлением первичного луча, могут быть по-разному повернуты относительно этого луча, в результате чего отраженные лучи, составляя с первичным лучом один и тот же угол 2, будут лежать в различных плоскостях. Поскольку все виды ориентации кристалликов одинаково вероятны, то отраженные лучи образуют конус, ось которого совпадает с направлением первичного луча.
Для того чтобы более детально разобраться в возникновении конусов дифракционных лучей и в образовании соответствующей дифракционной картины, обратимся к следующей модели. Выделим из большого количества кристалликов исследуемого образца один хорошо образованный кристалл.
Пусть грань (100) этого кристалла (рис. 5) образует с направлением первичного луча как раз требуемый угол скольжения? .
Рис. 5 Схема, поясняющая образование конусов дифракции
В этих условиях от плоскости произойдет отражение, и отклоненный луч даст на фотопластинке, помещенной перпендикулярно направлению первичного луча, почернение в некоторой точке Р. Будем далее поворачивать кристалл вокруг направления первичного луча (O1O) таким образом, чтобы падающий луч все время составлял с плоскостью отражения (100) угол (это может быть достигнуто, если линию тп, лежащую в плоскости отражения, поворачивать так вокруг направления O1O, чтобы она описывал конус, образуя все время с направлением угол ). Тогда отраженный луч опишет конус, осью которого является первичный луч (O1O), и угол при вершине равен 4. При непрерывном вращении кристалла след отраженного луча на фотопластинке опишет непрерывную кривую в виде окружности (кольца).
Если в кристалле имеется другое семейство плоскостей с соответствующим межплоскостным расстоянием d1, составляющих с первичным лучом необходимый угол отражения , то при повороте кристалла на фотопластинке получится новое кольцо и т. д. Таким образом, при соответствующем поворачивании кристаллика вокруг направления первичного луча на фотопластинке получается система концентрических кругов (колец), с центром в точке выхода первичного луча.
Каждое такое кольцо в общем случае является отражением лучей с определенной длиной волны от системы плоскостей с индексами (hkl). Если падающий пучок лучей не строго монохроматичен (что обычно всегда имеет место, так как используются характеристические лучи К-серии) и содержит в своем составе несколько длин волн, то для одного и того же семейства параллельных плоскостей на рентгенограмме получится соответствующее число близлежащих колец. Будем ли мы поворачивать один кристалл вокруг направления первичного луча или расположим вокруг этого луча множество мелких, различно ориентированных кристалликов, картина отражения будет совершенно одинаковой. В этом случае различные положения кристалликов пол и кристаллического образца будут как бы соответствовать определенным положениям поворачиваемого нами кристалла -- эта идея и положена в основу метода порошков.
Стремление зафиксировать отражения от плоскостей под различными углами привело к применению вместо плоской фотопластинки, позволяющей улавливать отражения в очень ограниченном диапазоне углов, узкой полоски фотопленки, свернутой в виде цилиндра и почти целиком окружающей образец. При съемке на такую пленку при пересечении конусов дифракционных лучей на пленке получаются неполные кольца (рис. 6), т. е. ряд дуг, расположенных симметрично относительно центра.
Рис. 6. Рентгенограмма порошка
При малых углах получающиеся линии близки к кругам, а для конуса с углом 4 =180° они становятся прямыми. Для углов , больших 45°, линии меняют направление радиуса кривизны. Число линий, получающихся на рентгенограмме, зависит от структуры кристаллического вещества и длины волны применяемых лучей. В случае сложной структуры и коротковолнового излучения число линий может быть очень велико.
Линии рентгенограммы имеют различную интенсивность и ширину. Интенсивность этих линий определяется числом и расположением атомов в элементарной ячейке и их рассеивающей способностью, а распределение интенсивности вдоль самих линий, т. е. структура линий (точечная, сплошная -- равномерное и неравномерное почернение вдоль линий) зависит от размеров отдельных кристалликов и их ориентировки. Если кристаллики расположены беспорядочно, а их размеры (линейные) меньше 0,01--0,002 мм, линии на рентгенограмме получаются сплошными. Кристаллики большого размера дают на рентгенограмме линии, состоящие из отдельных точек, так как в этом случае число различных положений плоскостей при той же величине освещаемого участка недостаточно для образования непрерывно зачерненной линии.
Если отдельные кристаллы, образующие поликристаллы, имеют преимущественную ориентировку (холоднотянутая проволока, прокатанная полоса и т д.), то на линиях вдоль кольца обнаруживаются характерные максимумы почернения. Часто анализ расположения этих максимумов позволяет выявлять соответствующие закономерности в ориентировке кристалликов поликристаллического вещества. Ширина линий рентгенограммы зависит от размеров отдельных кристалликов, диаметра образца и поглощения в нем рентгеновских лучей. При очень малых размерах кристалликов от 10-6 см. и меньше линии расширяются, причем чем меньше размеры кристалликов, тем больше расширение линий. Основываясь на этой зависимости, по ширине интерференционных линий можно определить средние размеры отдельных кристалликов.
2L = 4R * (1)
Расстояние между соответствующими симметричными, линиями на рентгенограмме определяется углом при вершине конуса дифракционных лучей и положением пленки относительно исследуемого образца. Эти величины связаны следующим простым соотношением:
Расстояние между симметричными линиями на рентгенограмме, как дуга окружности, равно радиусу окружности R, умноженному на соответствующий центральный угол 4, т. е. угол при вершине конуса дифракционных лучей. 2L--расстояние между симметричными линиями, измеренное по' экваториальной лилии рентгенограммы; R--радиус цилиндрической фотопленки; --угол скольжения (в радианах).
Выражая угол в градусах, получим:
(2)
Вышеуказанная формула является одной из основных расчетных формул, применяемых при расчете рентгенограмм порошков. По этой формуле, зная радиус цилиндрической пленки и расстояние между линиями на рентгенограмме, можно определить угол скольжения, а по нему, используя уравнение Вульфа-Брэгга, соответствующее расстояние между плоскостями и периоды кристаллической решетки исследуемого вещества.
Для вычисления периодов решетки удобно пользоваться преобразованной формой уравнения Вульфа-Брэгга, заменяя в уравнении межплоскостное расстояние d, выраженное через соответствующие значения периодов решетки и индексы плоскостей.
Анализ приведенных формул позволяет сделать ряд практических выводов.
1. Чем больше длина волны применяемых лучей, тем дальше от центра располагаются линии, соответствующие отражениям. от одних и тех же плоскостей одного и того же кристалла. Правильность такого утверждения вытекает из того факта, что большим длинам волн будут соответствовать большие углы скольжения, а при увеличении последних, согласно уравнению (2), увеличивается расстояние между линиями на рентгенограмме. Таким образом, длина волны применяемых лучей является весьма важным фактором, определяющим построение самой рентгенограммы. Снимая рентгенограммы с одного и того же вещества на разных излучениях, мы никогда не получим тождественной картины. Полученные рентгенограммы будут отличаться одна от другой и по положению линий и по числу их. На рентгенограммах, полученных на излучении с большими длинами волн, число этих линий будет меньше, и, наоборот, при съемке рентгенограмм на коротковолновом излучении число линий возрастает.
2. С увеличением индексов плоскостей отражения соответствующие им линии будут располагаться дальше от центра рентгенограммы, так как с увеличением индексов увеличивается угол отражения, а следовательно, и расстояние между линиями на рентгенограмме.
3. Чем менее симметрична кристаллическая решетка, тем больше линий получается на рентгенограмме. Если взять, простую высокосимметричную кубическую решетку, то для всех шести граней куба, имеющих индексы (100), (010), (001) и симметрично расположенные плоскости с отрицательными индексами, на рентгенограмме получится одно кольцо (определяемое парой симметричных дуг), т.к. всем этим значениям индексов для одного порядка отражения будет соответствовать одно значение угла, а следовательно, и одно определенное значение 2L. В этом случае говорят, что такие плоскости структурно равноценны (эквивалентны). Число структурно эквивалентных плоскостей называется множителем повторяемости. Совершенно очевидно, что чем больше множитель повторяемости для плоскостей определенного типа, тем интенсивнее соответствующие линии на рентгенограмме.
На рентгенограмме поликристаллического образца с кубической решеткой, вследствие совпадения отражений от нескольких структурно эквивалентных плоскостей, получаются сравнительно малочисленные, но зато очень интенсивные линии. Чем ниже симметрия кристалла, тем на его рентгенограмме больше линий, интенсивность же этих линий будет меньше. Только что рассмотренные закономерности в построении рентгенограмм относятся к простым решеткам.
Если решетка кристалла сложная (объемноцентрированная - ОЦК или гранецентрированная - ГЦК), то в ней появляется ряд промежуточных плоскостей, причем отражения от этих плоскостей могут гасить отражения от основных плоскостей кристалла. Так, в ОЦК решетке будут давать отражения только те плоскости, для которых сумма индексов - четна. Для ГЦК решетки отражения возможны лишь тогда, когда индексы интерференции или все четные или все нечетные. Из этого следует, что для ОЦК решетки квадраты синусов углов относятся как простые четные числа: 2:4:6:8....., а для ГЦК: 3:4:8:11:12:16:19:20..., в последнем случае линии располагаются неравномерно и часто группируются парами. В примитивной решетке это отношение представляет собой натуральный ряд чисел.
Размещено на Allbest.ru
...Подобные документы
Характеристика трех методов рентгеноструктурного анализа. Роль метода Лауэ для изучения атомной структуры кристаллов. Использование метода вращения при определении атомной структуры кристаллов. Изучение поликристаллических материалов методом порошка.
реферат [777,4 K], добавлен 28.05.2010Дифракционный структурный метод. Взаимодействие рентгеновского излучения с электронами вещества. Основные разновидности рентгеноструктурного анализа. Исследование структуры мелкокристаллических материалов с помощью дифракции рентгеновских лучей.
презентация [668,0 K], добавлен 04.03.2014Метод диодного детектора (датчика). Эффект изменения проводимости полупроводника в сверхвысокочастотном электромагнитном поле, эквивалентная схема диода. Метод с использованием газоразрядного датчика. Структурная схема измерителя импульсной мощности.
реферат [608,6 K], добавлен 10.12.2013Исследование кристаллической структуры поверхности с помощью рентгеновских и электронных пучков. Дифракция электронов низких и медленных энергий (ДЭНЭ, ДМЭ), параметры. Тепловые колебания решетки, фактор Дебая-Валлера. Реализация ДЭНЭ, применение метода.
курсовая работа [3,2 M], добавлен 08.06.2012Постановка задачи дифракции и методы ее решения. Сведения о методах решения задач электродинамики. Метод вспомогательных источников. Вывод интегральных уравнений Фредгольма второго рода для двумерной задачи. Численное решение интегрального уравнения.
курсовая работа [1,2 M], добавлен 13.01.2011Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.
курсовая работа [2,0 M], добавлен 31.05.2012Как создаются квантовые структуры. Квантовые ямы, точки и нити. Метод молекулярно-лучевой эпитаксии. Мосгидридная газофазная эпитаксия. Метод коллоидного синтеза. Энергетические зоны на границе двух полупроводников. Методы изготовления квантовых нитей.
курсовая работа [203,3 K], добавлен 01.01.2014Метод контурных токов позволяет уменьшить количество уравнений системы. Метод узловых потенциалов. Положительное направление всех узловых напряжений принято считать к опорному узлу. Определить токи в ветвях.
реферат [105,0 K], добавлен 07.04.2007Основные положения и алгоритм решения задач методом эквивалентного генератора. Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей только два потенциальных узла. Составление эквивалентной схемы замещения.
презентация [1,8 M], добавлен 22.09.2013Измерение размеров малых объектов. Метод фазового контраста. Понятие об электронной оптике. Создание электронного микроскопа. Опыты по дифракции электронов. Исследования поверхностной геометрической структуры клеток, вирусов и других микрообъектов.
презентация [228,3 K], добавлен 12.05.2017Расчет резистивной цепи методом наложения. Система уравнений по методу законов Кирхгофа. Метод эквивалентного генератора. Матрично-топологический метод, применение. Классический, оперативный метод расчета. Графики характера тока, его изменение во времени.
курсовая работа [2,5 M], добавлен 10.06.2012Особенности применения метода эквивалентных синусоид для приближенного расчета режима в нелинейных цепях. Метод эквивалентного генератора для цепей с одним нелинейным элементом. Метод итераций для расчета сложных схем с применением вычислительной техники.
презентация [273,5 K], добавлен 28.10.2013Исследование распределения интенсивности света на экране с целью получения информации о свойствах световой волны - задача изучения дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля, увеличение интенсивности света с помощью зонной пластинки.
презентация [146,9 K], добавлен 18.04.2013Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.
презентация [571,8 K], добавлен 06.04.2015Применение метода междуузлового напряжения при анализе многоконтурной электрической схемы, имеющей два потенциальных узла. Нелинейные электрические цепи постоянного тока. Цепи с параллельным, последовательно-параллельным соединением резистивных элементов.
презентация [1,8 M], добавлен 25.07.2013Градиентный метод Флетчера-Ривса: стратегия поиска, алгоритм, пример. Постановка задачи оптимизации. Задача на минимум функции скорости и ускорения. Проблемы в составлении штрафной функции, необходимой для избавления ограничений и выборе параметра.
курсовая работа [339,9 K], добавлен 30.06.2011Метод молекулярного моделирования: статистическая механика и ансамбль, метод Монте-Карло, энергия молекулярной системы. Параметры моделирования. Коэффициент Джоуля-Томпсона и инверсное давление. Растворимость газов в полимерах. Фазовые диаграммы.
дипломная работа [2,4 M], добавлен 14.07.2013Понятие случайного процесса. Описания случайных процессов. Состояние системы с хаотической динамикой. Метод ансамблей Гиббса. Описание движения шаровидной частицы. Метод решения задач броуновского движения. Стохастическое дифференциальное уравнение.
презентация [194,5 K], добавлен 22.10.2013Сущность гипотезы де–Бройля о двойственной природе микрочастиц. Экспериментальное подтверждение корпускулярно-волнового дуализма материальных частиц. Метод Брэгга. Интерференция рентгеновских лучей в кристаллах методом Лауэ и методом Дебая—Шеррера.
курсовая работа [326,6 K], добавлен 10.05.2012Анализ естественных и искусственных радиоактивных веществ. Методы анализа, основанные на взаимодействии излучения с веществами. Радиоиндикаторные методы анализа. Метод анализа, основанный на упругом рассеянии заряженных частиц, на поглощении P-частиц.
реферат [23,4 K], добавлен 10.03.2011