Гидравлический удар в трубопроводах

Скорость распространения гидравлической ударной волны в трубопроводе. Полный и прямой гидравлический удар. Расчет ударного давления. Распространение ударной волны во времени, разновидности гидроудара. Способы борьбы с ударным повышением давления.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 19.06.2015
Размер файла 394,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Лекция

Гидравлический удар в трубопроводах

Теоретическое и экспериментальное исследование гидравлического удара в трубопроводах впервые было проведено известным русским учёным Николаем Егоровичем Жуковским в 1899 году. Это явление связано с тем, что при быстром закрытии трубопровода, по которому течёт жидкость, или быстром его открытии (т.е. соединении тупикового трубопровода с источником гидравлической энергии) возникает резкое, неодновременное по длине трубопровода изменение скорости и давления жидкости. Если в таком трубопроводе измерять скорость жидкости и давление, то обнаружится, что скорость меняется как по величине, так и по направлению, а давление - как в сторону увеличения, так и в сторону уменьшения по отношению к начальному. Это означает, что в трубопроводе возникает колебательный процесс, характеризующийся периодическим повышением и понижением давления. Такой процесс очень быстротечен и обусловлен упругими деформациями стенок трубы и самой жидкости.

Подробно рассмотрим его картину для случая полного и прямого гидравлического удара.

Будем считать, что в исходном состоянии трубопровод открыт. Жидкость движется по трубе со скоростью V>0. Давление в жидкости равно Ро.

гидравлический удар давление трубопровод

Трубопровод мгновенно закрывается. Слои жидкости, натолкнувшись на заслонку крана, останавливаются. Кинетическая энергия жидкости переходит в деформацию стенок трубы (труба у заслонки расширится), и жидкости (давление у заслонки повысится на величину Р). На остановившиеся у заслонки слои жидкости будут набегать следующие, вызывая сжатие жидкости и рост давления, который будет с некоторой скоростью распространяться в сторону противоположную направлению скорости движения жидкости. Переходная область в сечении A-A называется ударной волной. Скорость перемещения сечения A-A(фронта волны) называется скоростью распространения ударной волны и обозначается буквой а. Такой процесс проходит в период времени .

В момент времени весь трубопровод окажется расширенным, а жидкость сжатой и неподвижной. Но такое состояние неравновесное. Поскольку у источника давление Ро, а в трубе Р = Ро+Р, то жидкость начнёт двигаться в сторону меньшего давления, т.е. из трубы в резервуар.

Этот процесс начинается от начала трубы. Жидкость будет вытекать из трубы в резервуар с некоторой скоростью V. Сечение A-A (ударная волна) начнёт перемещаться к концу трубы со скоростью а. При этом давление в трубе будет снижаться до P0.

Этот процесс будет происходить в период времени .

Энергия деформации жидкости переходит в кинетическую энергию, и жидкость приобретает некоторую скорость V, но направленную в обратную сторону. Во всём трубопроводе устанавливается давление Ро. По инерции жидкость продолжает двигаться к началу трубы и начинает испытывать деформации растяжения, что приводит к уменьшению давления вблизи заслонки.

Возникает отрицательная ударная волна, движущаяся от конца трубы к началу со скоростью а, и за фронтом волны остается сжатая труба. Кинетическая энергия снова превращается в энергию деформации (сжатия).

В момент времени вся труба окажется сжатой, а волна достигает начала трубы. Давление вблизи источника выше, чем во фронте. Из-за этого слои жидкости под действием перепада давления начинают двигаться к концу трубы (к заслонке) с некоторой скоростью V>0, а давление поднимается до Ро.

Поэтому период времени происходит процесс выравнивания давления в трубопроводе. При этом происходит движение ударной волны со скоростью а от начала трубы к её концу.

В момент времени ударная волна достигает конца трубы.

Далее весь процесс начинается сначала. При исследовании этого процесса возникает три основных вопроса. Первый - какова скорость протекания этого колебательного процесса и от чего она зависит? Второй вопрос - как сильно меняется давление в трубопроводе за счёт описанного процесса? И третий - как долго может протекать этот процесс?

Скорость распространения гидравлической ударной волны в трубопроводе

Изменения давления и скорости потока в трубопроводах происходят не мгновенно в связи с упругостью твёрдых стенок трубы и сжимаемостью рабочей среды, а с некоторой конечной скоростью, обусловленной необходимостью компенсации упругих деформаций жидкости и трубы. Рассмотрим случай когда в трубопроводе длиной L и площадью сечения щ под давлением Р находится жидкость, плотность которой с. Предположим, что в момент времени t в сечении 1 - 1 давление повысится на величину dp. Это повышение вызывает увеличение плотности на величину dс, а также расширение внутреннего диаметра трубы. Следовательно, площадь проходного сечения увеличится на величину dщ. В результате увеличится объём W участка трубы на величину dW. За счёт этого произойдет увеличение массы жидкости находящейся в трубе на участке длиной L. Масса увеличится за счёт увеличения, во-первых, плотности жидкости, во-вторых, за счёт увеличения объёма W.

Такая ситуация рассматривалась при выводе уравнения неразрывности потока в дифференциальной форме, с той только разницей, что там рассматривалось лишь изменение массы во времени, без учёта вызвавших это изменение причин

.

По аналогии с приведённым уравнением запишем выражение, описывающее изменение массы за счёт изменения давления

.

Жидкость под действием указанного повышения давления устремится с некоторой скоростью а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода.

С другой стороны, перемещение массы dm за время dt происходит под влиянием результирующей Fр сил давления, действующих вдоль линии движения на торцовые поверхности цилиндрического объёма длиной L

В этом случае уравнение импульса силы может быть представлено в следующем виде

.

Отсюда

.

Имея в виду, что , и подставив это в предыдущее выражение, получим

Заметим, что произведение

Приравняем оба выражения для и получим:

.

Выразим из последнего равенства величину a2

Разделим числитель и знаменатель на W, а первое слагаемое в знаменателе искусственно умножим и разделим на с:

.

Обратим внимание на то, что

а .

После подстановки этих равенств в последнее выражение и извлечения корня получим выражение для скорости распространения ударной волны, которая, по сути, является скоростью распространения упругих деформаций жидкости в трубе.

Здесь первое слагаемое под корнем характеризует упругие свойства рабочей среды (жидкости), а - второе упругие силы материала трубы.

Рассмотрим подробнее эти слагаемые.

Как известно из гидростатики, сила, действующая на цилиндрическую поверхность, равна произведению давления на проекцию площади этой поверхности в направлении действия силы. На рассматриваемый участок трубы с толщиной стенок д, длиной L и диаметром D действует изнутри давление P. Вследствие этого возникает разрывающая сила F, равная

.

В стенках трубы возникает сила сопротивления , равная произведению площади сечения стенок трубы на внутренние напряжения в материале стенок трубы, т.е.

.

Если приравнять две эти силы, получим равенство

,

из которого найдём выражение, определяющее внутреннее напряжение в стенках трубы :

Полагая, что относительное увеличение диаметра трубы, равное , прямо пропорционально напряжению в стенках трубы, можно записать

где Ет - коэффициент пропорциональности, который является модулем упругости материала трубы.

Из двух последних выражений следует, что абсолютное приращение радиуса сечения трубы может быть выражено формулой

Запишем выражение, определяющее увеличение площади сечения трубы:

где щ - начальная площадь сечения трубы,

щр - площадь сечения трубы при давлении P.

Пренебрегая малой величиной высшего порядка ДR2 и подставив выражение для ДR, получим

Продифференцировав это выражение по P и рассматривая щ как функцию, зависящую от P, получим:

В итоге слагаемое, описывающее упругие свойства материала трубы в выражении для скорости распространения ударной волны, можно представить в следующем виде:

Теперь рассмотрим слагаемое, описывающее упругость жидкости . Ранее при рассмотрении свойств жидкости было установлено, что если изменение объёма происходит за счёт изменения плотности, то можно определить коэффициент сжимаемости жидкости вw:

Часто этот коэффициент выражают через обратную величину, называемую модулем упругости жидкости Eж, т. е.:

Отсюда следует, что второе слагаемое, характеризующее упругие свойства рабочей среды, может быть представлено в виде:

Таким образом, окончательно выражение для скорости распространения ударной волны в упругом трубопроводе можно переписать в следующем виде:

где - плотность жидкости,

D - диаметр трубопровода,

- толщина стенки трубопровода,

Ет - объёмный модуль упругости материала трубы,

Еж - объёмный модуль упругости жидкости.

Из формулы следует, что скорость распространения ударной волны зависит от сжимаемости жидкости и упругих деформаций материала трубопровода.

Ударное давление

Для выяснения величины подъёма давления Р применим теорему о сохранении количества движения (импульса силы). Для этого рассмотрим элементарное перемещение участка жидкости длинной dL за время dt. Учтём, что при прямом гидроударе кинетическая энергия ударной волны полностью превращается в потенциальную, т.е. скорость жидкости V становится равной нулю 0. Импульс силы, под действием которого происходит это движение, равен:

.

Изменение количества движения рассматриваемого объёма длиной dL будет:

,

Повторимся: скорость во второй скобке равна 0, т.к. рассматриваемый объём жидкости останавливается.

Приравнивая эти выражения по теореме о сохранении количества движения, получим:

.

Отсюда выразим величину повышения давления ДP:

.

После замены дроби скоростью a, окончательно будем иметь:

,

где V - скорость жидкости в трубопроводе до возникновения гидроудара,

- плотность жидкости,

а - скорость распространения ударной волны.

Если в эту формулу подставить выражение описывающее a, то придём к формуле, носящей имя Жуковского:

Протекание гидравлического удара во времени

Рассмотренный ранее процесс распространения ударной волны в трубопроводе не происходит бесконечно долго. В опытах Жуковского было зарегистрировано по 12 полных циклов. При этом величина ударного давления ?P постепенно уменьшалась.

Уменьшение давления вызвано трением в трубе и рассеиванием энергии в резервуаре, обеспечивающем исходный напор. На графике сплошной заштрихованной областью показано теоретическое изменение давления при гидроударе. Прерывистой линией показан примерный вид действительной картины изменения давления.

Разновидности гидроудара

Если трубопровод перекрыть не полностью, то скорость жидкости изменится не до нуля, а до значения V1 . В этом случае может возникнуть неполный гидроудар, при котором величина повышения давления (ударное давление) будет меньше, чем в первом случае, а формула Жуковского примет вид

Приведённые формулы справедливы только в том случае, если время закрытия крана tЗАК меньше фазы гидравлического удара , т.е. .

В том случае, если , возникает непрямой гидроудар. Для него характерно то, что отразившаяся от резервуара в начале трубы ударная волна возвращается к заслонке крана раньше, чем он будет полностью закрыт. Величина Р в этом случае будет меньше, чем при прямом гидроударе. Её приближенно (считая, что изменение Р в трубопроводе происходит по линейному закону) можно определить по формуле:

В гидроприводах технологических машин, станков и т.п. очень часто возникает так называемый гидроудар в тупиковом трубопроводе. В этом случае возможно увеличение ударного давления в два раза. Пояснить это можно следующим рисунком.

Трубопровод с низким начальным давлением отделён от источника гидравлической энергии высокого давления. При мгновенном (в реальных гидросистемах 0,008 - 0,001с) открытии заслонки крана давление в начале трубопровода внезапно возрастает на величину Р 1 - РО.

Возникает волна повышенного давления, которая движется к концу трубопровода со скоростью а. Скорость же движения жидкости становится равной

,

а давление отличается от Р0 на величину Р. В момент времени волна достигнет тупика, и вся труба окажется расширенной.

Т.к. дальнейшее движение жидкости невозможно, то передние её слои остановятся, а последующие по инерции будут набегать на них. Это вызовет дополнительное повышение давления в конце трубы на величину Р. Возникнет вторая, отражённая волна, которая движется к началу трубопровода со скоростью а. Давление за фронтом ударной волны становится

Р2 =Ро+2Р,

а скорость жидкости V=0.

Далее весь процесс продолжается как в случае полного гидроудара, но колебания давления происходят относительно величины

Р1=Ро+Р,

а не относительно Ро.

Способы борьбы с ударным повышением давления.

Самый эффективный способ заключается в оборудовании сети регулирующими устройствами ( вентили и задвижки), которые не позволяют осуществлять быстрое и изменение скорости в трубах.

Воздушные колпаки или компенсаторы ограничивают распространение удара и ослабляют действие.

На незащищенном участке трубы ударное повышение давления действует только в течении вместо Таким образом, импульс силы ослабевает (уменьшается) и трубы не рвутся.

Размещено на Allbest.ru

...

Подобные документы

  • Физические основы развития гидравлического удара. Фазы развития этого явления. Факторы, влияющие на силу гидроудара, его особенности, сущность. Условия отрыва жидкости, влияние на стенки трубы. Способы борьбы и методы предотвращения гидравлического удара.

    курсовая работа [195,3 K], добавлен 07.04.2015

  • Начальные параметры ударной волны, образующейся движением пластины. Параметры воздуха на фронте ударной волны в момент подхода волны к преграде. Расчет параметров продуктов детонации в начальный момент отражения от жесткой стенки и металлической пластины.

    курсовая работа [434,5 K], добавлен 20.09.2011

  • Действие ударной силы на материальную точку, основные понятия теории. Теорема об изменении количества движения механической системы при ударе и об изменении главного момента количеств движения. Прямой центральный удар шара о неподвижную поверхность.

    презентация [1,7 M], добавлен 26.09.2013

  • Влияние канального эффекта на скорость детонации шпурового заряда ВВ в зависимости от скорости распространения ударной волны по радиальному зазору между стенкой шпура и боковой поверхностью патронов ВВ. Определение оптимальных параметров заряжания ВВ.

    статья [643,9 K], добавлен 28.07.2012

  • Расчет расходов жидкости, поступающей в резервуары гидравлической системы, напора и полезной мощности насоса; потерь энергии, коэффициента гидравлического трения при ламинарном и турбулентном режиме. Определение давления графоаналитическим способом.

    курсовая работа [88,0 K], добавлен 11.03.2012

  • Физические свойства природного газа. Описание газопотребляющих приборов. Определение расчетных расходов газа. Гидравлический расчет газораспределительной сети низкого давления. Принцип работы газорегуляторных пунктов и регуляторов газового давления.

    курсовая работа [222,5 K], добавлен 04.07.2014

  • Сущность понятия "удар"; измерение параметров ударного взаимодействия тел. Применение законов сохранения механической энергии и импульса при столкновении; изменение ударных сил с течением времени. Последовательность механических явлений при ударе.

    презентация [26,4 K], добавлен 04.08.2014

  • Изменение радиуса поры в зависимости от амплитуды прикладываемого давления. Характеристики отклика материалов на динамическое нагружение. Сопротивление действию импульсных растягивающих напряжений, возникающих при взаимодействии встречных волн разрежения.

    курсовая работа [315,3 K], добавлен 11.10.2013

  • Определение геометрической высоты всасывания насоса. Определение расхода жидкости, потерь напора, показаний дифманометра скоростной трубки. Расчет минимальной толщины стальных стенок трубы, при которой не происходит разрыв в момент гидравлического удара.

    курсовая работа [980,8 K], добавлен 02.04.2018

  • Гидравлический расчет газовой сети, состоящей из участков среднего и низкого давления. Определение основного направления главной магистрали системы. Минимизация используемых трубопроводов. Анализ значения скорости, диаметра и давления в тупиковых ветвях.

    курсовая работа [2,0 M], добавлен 19.12.2014

  • Уравнение Бернулли для начального сечения наполненного резервуара. Скорость распространения возмущений по трубе. Коэффициент гидравлического трения. Расходные характеристики разветвлений. Величина повышения давления в начальной фазе гидроудара.

    практическая работа [265,6 K], добавлен 05.06.2011

  • Система уравнений Максвелла в дифференциальной и интегральной формах. Исследования Р. Герца. Скорость распространения электромагнитных волн. Открытие фотоэлектрического эффекта. Расчет давления света. Энергия, импульс и масса ЭМП. Вектор Умова-Пойнтинга.

    презентация [2,7 M], добавлен 14.03.2016

  • Потенциальная энергия жидкости. Определение теоретической скорости и теоретического расхода (идеальная жидкость). Сравнение истечения через отверстие и внешний цилиндрический насадок. Кавитация в цилиндрическом насадке. Гидравлический удар в трубопроводе.

    презентация [337,3 K], добавлен 29.01.2014

  • Определение расчетных выходных параметров гидропривода. Назначение величины рабочего давления и выбор насоса. Определение диаметров трубопроводов, потерь давления в гидросистеме, внутренних утечек рабочей жидкости, расчёт времени рабочего цикла.

    курсовая работа [73,4 K], добавлен 04.06.2016

  • Понятие и общие характеристики плоской волны, их разновидности, отличительные признаки и свойства. Сущность гармонической волны. Уравнения однородной линейно поляризованной плоской монохроматической электромагнитной волны. Определение фазовой скорости.

    презентация [276,6 K], добавлен 13.08.2013

  • Определение частоты и сложение колебаний одного направления. Пропорциональные отклонения квазиупругих сил и раскрытие физической природы волны. Поляризация и длина продольных и поперечных волн. Общие параметры вектора направления и расчет скорости волны.

    презентация [157,4 K], добавлен 29.09.2013

  • Определение коэффициента теплоотдачи от внутренней поверхности стенки трубки к охлаждающей воде. Потери давления при прохождении охлаждающей воды через конденсатор. Расчет удаляемой паровоздушной смеси. Гидравлический и тепловой расчет конденсатора.

    контрольная работа [491,8 K], добавлен 19.11.2013

  • Материальный баланс колонны и рабочее флегмовое число. Расчет давления насыщенных паров толуола и ксилола. Определение объемов пара и жидкости, проходящих через колонну. Средние мольные массы жидкости. Определение числа тарелок, их гидравлический расчет.

    курсовая работа [262,6 K], добавлен 27.01.2014

  • Преобразование исходной системы уравнений к расчётной форме. Зависимость длины волны от скорости распространения. Механизмы возникновения волн на свободной поверхности жидкости. Зависимость между групповой скоростью волн и скоростью их распространения.

    курсовая работа [451,6 K], добавлен 23.01.2009

  • Излучение электрического диполя. Скорость для электромагнитной волны в вакууме. Структура электромагнитной волны, распространяющейся в однородной нейтральной непроводящей среде при отсутствии токов и свободных зарядов. Объемная плотность энергии.

    презентация [143,8 K], добавлен 18.04.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.