Динамика идеальной жидкости

Анализ методов изучения движения жидкости. Особенности уравнения неразрывности. Понятие об элементарной струйке. Основные виды движения жидкости. Характеристика основ уравнения Эйлера. Исследование аспектов применения метода Лагранжа в гидравлике.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 23.06.2015
Размер файла 39,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Тема: Динамика идеальной жидкости. Основные виды движения жидкости. Методы изучения движения жидкости. Понятие об элементарной струйке. Уравнение Эйлера для идеальной жидкости. Уравнение неразрывности

1. Динамика идеальной жидкости. Основные виды движения жидкости. Понятие об элементарной струйке

жидкость неразрывность гидравлика лагранж

Гидродинамикой - наз. Раздел гидравлики изучающий движение жидкости, а также взаимодействие между жидкостью и твердыми телами при их относительном движении.

Движение жидкости может быть установившимся (стационарным) или не установившимся (не стационарным)

Установившимся - наз. движение жидкости неизменное во времени, при котором давление и скорость являются функциями только координат, но не зависит от времени. Давление и скорость могут изменятся при перемещении частицы жидкости из одного положения в другое, но в данной не подвижной относительно русла точке давление и скорость при установившимся движении не изменяются во времени, т. е.

В частном случае установившееся движение может быть равномерным, когда скорость каждой частицы не изменяется с изменением ее координат, и поле скоростей остается неизменным вдоль потока.

Неустановившимся - наз.движение жидкости, все или некоторые характеристики которого изменяются во времени, т. е. давление и скорость зависят как от координат , так и от времени.

Примеры установившегося и неустановившегося движения.

При неустановившемся течении траектории различных частиц, проходящих через данную точку пространства, могут иметь разную форму. Поэтому для рассмотрения картины течения, возникающей в каждый данный момент времени, вводится понятие линии тока.

Размещено на http://www.allbest.ru

Линией тока - наз. Кривая в каждой точке который вектор скорости в данный момент времени направлен по касательной. Очевидно, что в условиях установившегося течения линия тока совпадает с траекторией частицы и не изменяет своей формы с течением времени.

Если в движущейся жидкости взять бесконечно малый замкнутый контур и через все его точки провести линии тока, то образуется трубчатая поверхность, наз. - трубкой тока. Часть потока заключается внутри тока, наз. - элементарной струйкой. При стремлении поперечных размеров струйки к нулю она в пределе стягивается в линию тока.

В любой точке трубки тока, т.е. боковой поверхности струйки, векторы скорости направлены по касательной, а нормальные поверхности составляющие скорости отсутствуют, следовательно, при установившемся движении одна частица жидкости в одной точке трубки тока не может проникнуть внутрь струйки или выйти наружу. Т.о. трубка тока является как бы непроницаемой стенкой, а элементарная струйка представляет собой самостоятельный элементарный поток.

Различают напорные и безнапорные течения жидкости.

2. Методы изучения движения жидкости

В гидромеханике существуют два метода изучения движения жидкости: метод Лагранжа и метод Эйлера.

Метод Лагранжа заключается в изучении движения каждой отдельной частицы жидкости. В этом случае движение определяется положением частицы жидкости в функции от времени t. Движение частицы будет определено, если точно определить координаты x, y, и z в заданный момент времени t, что дает возможность построить траекторию движения частицы жидкости. Величины x, y, и z являются переменными Лагранжа, а их изменения за время dt позволяет получить значение dx, dy и dz, а затем путь

Проекции скорости на координатные оси определяются зависимостями

, , ,

а местная скорость

Метод Лагранжа сводится к определению семейства траекторий движения частиц движущейся жидкости.

Учитывая, что для установления движения линии тока совпадают с траекторией движущихся частиц, можно записать

=

Это выражение называется уравнением линии тока. Метод Лагранжа в гидравлике не нашел

Широкого применения ввиду его относительной сложности.

Метод Эйлера основан на изучении поля скоростей, под которым понимается значение величины и скоростей во всех точках пространства, занятого движущейся жидкостью.

Переменными Эйлера являются значения скоростей , которые определяются в зависимости от координат точек пространства и времени, т. е.

Метод Эйлера нашел широкое применение в гидравлике. Он позволяет определить скорость в любой момент времени, но в то же время не позволяет изучить движение отдельной частицы жидкости.

Рассмотрим теперь понятие расхода жидкости и средней скорости.

Расходом Q называется количество жидкости, протекающее через сечение потока в единицу времени.

или

Средней скоростью называется одинаковая по всему сечению потока скорость, при которой расход равен действительному.

Средней скоростью в данном живом сечении потока называется такая фиктивная, но одинаковая во всех точках сечения величина, при которой через данное сечение проходит такое, же количество жидкости, как и при действии распределенных скоростей.

3. Уравнение Эйлера для движения идеальной жидкости

Уравнение Эйлера которое выражают условия равновесия жидкости, уже были нами получены:

(4.1)

Чтобы получить уравнения движения воспользуемся принципом Даламбера для перехода от равновесия к движению необходимо к действующим силам прибавить силы инерции.

С учетом того, что уравнение (4.1) приведено к единицы массы, соответствующие силы инерции будут:

; ;

Прибавляя силы инерции, действующие силы к силам получим:

(4.2)

Уравнения (4.2) были получе6ны в 1755г. Академиком Российской Академии наук Эйлером и названо дифференциальным уравнением движения невязкой жидкости.

4. Уравнение неразрывности

Уравнение неразрывности или сплошной жидкости основано на законе сохранения массы и исходит из положения механики сплошных сред о том, что в нутрии движущейся жидкости не может произойти разрыв, т. е. установится пустота.

Размещено на http://www.allbest.ru

Уравнение неразрывности может быть представлено в дифференциальной форме для частицы жидкости и элементарной струйки, а также в конечных величинах для потока жидкости.

Выделим в потоке элементарный объем. Рассмотрим изменение протекающей массы жидкости по оси Ox. Скорость жидкости вытекающей через левую грань Ux, тогда скорость вытекающей через правую Принимая с=const, можно записать, что через0 левую грань за время dt пройдет масса

;

Uxdt=dx;

А через правую

Разность этих масс составит

Рассматривая по аналогии изменение массы жидкости по осям Oy и Oz, запишем

и

Закон сохранения массы требует, чтобы общее изменение массы, прошедшей через выбранный объем, равнялось нулю

=0

(4.3)

Уравнение (4.3) называется уравнением неразрывности или сплошности в дифференциальной форме для произвольного движения не6сжимаемой жидкости.

При установившемся движении уравнение неразрывности можно вывести исходя из свойств элементарной струйки, в соответствии с которым жидкость из струйки не вытекает в стороны и не притекает в нее извне, но в то же время местные скорости разные по длине струйки. Отсюда следует, что количество жидкости, притекающей к струйке в начальном сечении и вытекающей из нее в конечном сечении, равны между собой и общий объем жидкости в струйке не изменяется т. е. элементарные расходы в единицу времени:

втекает ,

вытекает

тогда (4.4)

Выражение (4.4) и является уравнением неразрывности для элементарной струйки.

Для потока жидкости уравнение неразрывности будет иметь вид:

или

Т. е. отношение средних скоростей в сечениях потока обратно пропорционально отношению их площадей. Из этого следует, что при установившемся сечении с уменьшением площади сечения средняя скорость увеличивается и наоборот.

Размещено на Allbest.ru

...

Подобные документы

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.

    презентация [1,4 M], добавлен 14.10.2013

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.

    презентация [392,0 K], добавлен 29.01.2014

  • Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

    контрольная работа [169,0 K], добавлен 01.06.2015

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

    реферат [1,8 M], добавлен 18.06.2007

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Жидкости, обладающие свойством сплошности и уравнение неразрывности. Обобщенный закон трения, сопротивление смещению частиц относительно других в жидкостях и газах. Основы теории подобия, получение критериев подобия методом масштабных преобразований.

    презентация [281,4 K], добавлен 14.10.2013

  • Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.

    презентация [299,5 K], добавлен 29.09.2013

  • Дифференциальные уравнения неустановившейся фильтрации газа. Основное решение линеаризованного уравнения Лейбензона. Исследование прямолинейно-параллельного установившегося фильтрационного потока несжимаемой жидкости по закону Дарси в однородном пласте.

    курсовая работа [550,5 K], добавлен 29.10.2014

  • Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа [489,5 K], добавлен 01.12.2013

  • Создание модели движения жидкости по сложному трубопроводу с параллельным соединением труб и элементов. Уравнения механики жидкости и газа для подсчета потерь на трение. Определение числа Рейнольдса. Система уравнений Бернулли в дифференциальной форме.

    контрольная работа [383,5 K], добавлен 28.10.2014

  • Движение частиц жидкости в виде суммы неких упорядоченными форм. Тип движения жидкости в цилиндрических ячейках, выполняющий функции организатора. Нарушение симметрии направлений в результате случайной флуктуации и устойчивость цилиндрических ячеек.

    реферат [1,1 M], добавлен 26.09.2009

  • Динамические уравнения Эйлера при наличии силы тяжести. Уравнения движения тяжелого твердого тела вокруг неподвижной точки. Первые интегралы системы. Вывод уравнения для угла нутации в случае Лагранжа. Быстро вращающееся тело: псевдорегулярная прецессия.

    презентация [422,2 K], добавлен 30.07.2013

  • Исследование относительного движения материальной точки в подвижной системе отсчета с помощью дифференциального уравнения. Изучение движения механической системы с применением общих теорем динамики и уравнений Лагранжа. Реакция в опоре вращающегося тела.

    курсовая работа [212,5 K], добавлен 08.06.2009

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Построение эпюры гидростатического давления жидкости на стенку, к которой прикреплена крышка. Расчет расхода жидкости, вытекающей через насадок из резервуара. Применение уравнения Д. Бернулли в гидродинамике. Выбор поправочного коэффициента Кориолиса.

    контрольная работа [1,2 M], добавлен 24.03.2012

  • Основные понятия гидродинамики. Условие неразрывности струи, уравнение Бернулли. Внутреннее трение (вязкость) жидкости. Течение вязкой жидкости. Факторы, влияющие на вязкость крови в организме. Особенности течения крови в крупных и мелких сосудах.

    реферат [215,7 K], добавлен 06.03.2011

  • Основное уравнение гидростатики, его формирование и анализ. Давление жидкости на криволинейные поверхности. Закон Архимеда. Режимы движения жидкости и гидравлические сопротивления. Расчет длинных трубопроводов и порядок определения силы удара в трубах.

    контрольная работа [137,3 K], добавлен 17.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.