Истечение жидкости из отверстий и насадков

Изучение процесса истечения жидкости из трубных отверстий и коротких трубок различной формы и сечений. Сжатие струи при вытекании из резервуара. Истечение через малое отверстие в тонкой стенке резервуарной колбы, определение скорости потока жидкости.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 23.06.2015
Размер файла 66,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Истечение жидкости из отверстий и насадков

    • 1.1 Сжатие струи
    • Истечение жидкости из отверстий и насадков (коротких трубок различной формы и сечений) характерно тем, что в этом процессе потенциальная энергия жидкости на очень коротком расстоянии и за очень короткое время превращается в кинетическую энергию струи (или капель в общем случае). При этом происходят какие-то, большие или не очень, потери напора. Подобные режимы течения жидкости возникают при вытекании жидкости из резервуаров, баков, котлов в атмосферу или пространство, заполненное жидкостью. Аналогичные явления происходят при протекании жидкости через малые отверстия и щели в направляющей, контрольной и регулирующей аппаратуре различных гидравлических систем.
    • Основной вопрос, на который нужно найти ответ, состоит в том, как определить расход и скорость истечения через отверстия или насадки различной формы.

Сжатие струи

Размещено на http://www.allbest.ru/

При вытекании жидкости из резервуара через отверстие в тонкой стенке, диаметр которого значительно меньше размеров резервуара, а края отверстия имеют прямоугольную форму, диаметр вытекающей струи будет меньше размеров диаметра отверстия. Это происходит потому, что жидкость, вытекающая из резервуара, попадает в отверстие со всех направлений, а после прохождения отверстия направление движения всех частиц жидкости становится одинаковым. Изменение направления движения частиц жидкости в силу их инерционности мгновенно произойти не может. Поэтому сжатие струи обусловлено необходимостью постепенного изменения направления движения жидкости при прохождении отверстия. Так как размеры резервуара много больше размеров отверстия, боковые поверхности и свободная поверхность не могут оказывать влияния на направление входа жидкости в отверстие, то в этом случае наблюдается совершенное сжатие струи. Такое сжатие является наибольшим, и оно достигается на расстоянии примерно равном диаметру отверстия. Степень сжатия выражается коэффициентом сжатия :

,

где - площадь и диаметр отверстия,

- площадь и диаметр совершенно сжатой струи.

В том случае, если истечение происходит из резервуара такой формы, что его стенки влияют на траекторию движения частиц при входе в отверстие, наблюдается несовершенное сжатие струи.

Размещено на http://www.allbest.ru/

Вследствие того, что боковые стенки резервуара перед отверстием формируют направление движения жидкости, струя после отверстия сжимается в меньшей степени, чем при вытекании из практически бесконечного резервуара. По этой причине меняется коэффициент сжатия струи. Формулы для определения этого сжатия для разных жидкостей и разных условий истечения - эмпирические. Например, для круглого центрального отверстия в тонкой торцовой стенке трубы и для маловязких жидкостей коэффициент сжатия можно находить по следующей эмпирической формуле в долях от коэффициента сжатия при совершенном сжатии струи

;

где ;

где, в свою очередь, - площадь отверстия,

- площадь сечения резервуара (в приведённом примере площадь поперечного сечения трубы).

1.2 Истечение через малое отверстие в тонкой стенке

Рассмотрим большой резервуар с жидкостью, из которого через малое отверстие в боковой стенке вытекает струйка. Термины «большой резервуар» и «малое отверстие» означает, что эти размеры не сказываются на изменении высоты жидкости (напора) в резервуаре при вытекании из него жидкости. Термин «тонкая стенка» означает, что после сжатия струя вытекающей жидкости не касается цилиндрической поверхности отверстия.

Рассмотрим два сечения в этом резервуаре, обозначенные индексами 0 и С. Запишем уравнение Бернулли для этих условий:

.

Размещено на http://www.allbest.ru/

Для описанных условий можно считать, что движения жидкости в сечении 0 нет, следовательно, скоростной напор равен нулю. Разницей нивелирных высот, из-за их малого влияния можно пренебречь. Коэффициентом в данном случае обозначено сопротивление отверстия. Этот коэффициент учитывает потери энергии жидкости на сжатие струи и трение в струйках жидкости вблизи отверстии при формировании вытекающей струи. С учетом этого уравнение примет вид:

жидкость истечение резервуар струя

.

После перегруппировки членов получим

.

Выразим отсюда скорость

.

Заменим скорость отношением расхода к площади живого сечения потока и вновь перегруппируем

.

Проанализируем полученное выражение. Заметим, что индекс « с » относится к струе, и это единственный индекс, относящийся к движущейся жидкости «на выходе» рассматриваемого проходного сечения (определение приведено ниже). Опустим этот индекс. Величина

- называется коэффициентом скорости. Если считать распределение скоростей в струе равномерным (), а жидкость идеальной, в которой нет потерь на трение, то коэффициент . Тогда коэффициент скорости .

Отсюда становится понятным физический смысл коэффициента скорости. Он выражает отношение действительного расхода через проходное сечение к теоретическому расходу. Действительным расходом называют расход, который на самом деле проходит через проходное сечение. Теоретический расход это такой, который мог бы протекать через проходное сечение при отсутствии потерь. Учтём, что

,

где - коэффициент сжатия струи. После подстановки этих обозначений в коэффициент перед знаком радикала получим

. Произведение

носит название коэффициент расхода. Тогда окончательно будем иметь формулу

,

или в другой форме, с учётом того, что

.

В этих формулах - разность давлений до проходного сечения и после него.

С помощью полученного выражения решается задача определения расхода для всех случаев течения жидкости под действием разности давлений. Кроме того, из данного выражения видно, что причиной течения жидкости является разность давлений. Жидкость всегда движется из области высокого давления область низкого давления. По существу приведённое выражение можно считать инженерной формой уравнения Бернулли.

При прохождении жидкости через малое отверстие происходит «смятие» струи. На немецком языке «мятие» - «drosseln». Поэтому в технике истечение через малое отверстие называют дросселированием. Гидравлический аппарат, предназначенный для дросселирования, называется дросселем, а отверстие в этом гидроаппарате называется проходным сечением.

Наиболее сложной задачей практического применения этого уравнения является определение коэффициента , значение которого зависит от степени сжатия струи и режима её течения, структуры распределения скоростей вблизи проходного сечения, которая в свою очередь зависит от формы входа в проходное сечение. Этот коэффициент определён экспериментально. Он, как и коэффициенты ц и е, зависит от числа Рейнольдса и эти зависимости можно представить с помощью графика.

Размещено на http://www.allbest.ru/

На графике буквами Reт обозначено число Рейнольдса, посчитанное по теоретической скорости, соответствующей теоретическому расходу.

С увеличением скорости истечения и связанным с этим увеличением Reт коэффициент скорости ц быстро нарастает и при Reт> ? стремится к значению ц =1,0. Это свидетельствует о значительном уменьшении гидравлического сопротивления отверстия за счёт снижения влияния вязкости.

Коэффициент сжатия струи е с увеличением Reт уменьшается и при Reт > ? стремится к значению е = 0,6.

Коэффициент расхода м, являясь произведением коэффициентов ц и е, на первом этапе растёт, достигая максимального значения м = 0,69 при Reт ? 350, а затем плавно снижается до м ? 0,6.

Таким образом, только за счёт коэффициента м величина расхода уменьшается на 30 - 40 % относительно теоретически возможного.

1.3 Истечение через насадки

Размещено на http://www.allbest.ru/

Насадком называется короткая трубка длиной от двух до шести диаметров, присоединённая к выходу отверстия, через которое истекает жидкость. Роль насадка может выполнять и отверстие в толстой стенке, когда диаметр отверстия значительно меньше её толщины. Насадки отличаются формой и размерами. Наиболее существенные отличия между насадками состоят в форме входного отверстия, которая, как уже отмечалось выше, может существенно влиять на величину расхода при той же самой площади проходного сечения. Простейшим насадком является цилиндрический насадок. Течение в нём может происходить в двух разных режимах. В первом случае на острых входных кромках насадка происходит совершенное сжатие струи и далее она движется, не касаясь стенок насадка. В этом случае истечение ничем не отличается от истечения через малое отверстие в тонкой стенке. Скорость при этом истечении высокая, а расход минимален.

Во втором случае, как и при истечении через отверстие в тонкой стенке, струя жидкости вначале сжимается на некотором удалении от входного сечения, образуя вихревую зону, давление в этом сечении струи становится меньше атмосферного. Далее струя постепенно расширяется и заполняет всё сечение насадка. Из-за того, что сжатия на выходе насадка нет (е = 1,0) а коэффициент расхода через такой насадок равняется .

Размещено на http://www.allbest.ru/

При этом расход жидкости через насадок при прочих равных условиях превышает расход в первом случае, а скорость жидкости становится меньше из-за более высокого сопротивления.

Ещё лучшие условия истечения наблюдаются при движении жидкости через так называемый тороидальный насадок, который обеспечивает более высокий коэффициент расхода. Его значение, в зависимости от увеличения радиуса скругления кромки, доходит до .

Размещено на http://www.allbest.ru/

Когда радиус кривизны становится больше длины насадка, насадок становится коноидальным. Коэффициент расхода в таких условиях истечения приближается к значению .

Размещено на Allbest.ru

...

Подобные документы

  • Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

    реферат [175,5 K], добавлен 19.05.2014

  • Вычисление параметров и характеристик напора при истечении через отверстие в тонкой стенке и насадке с острой входной кромкой (цилиндрической и наружной), с коническим входом, с внутренней цилиндрической, с конически сходящейся и расходящейся насадками.

    задача [65,4 K], добавлен 03.06.2010

  • Поле вектора скорости: определение. Теорема о неразрывности струн. Уравнение Бернулли. Стационарное течение несжимаемой идеальной жидкости. Полная энергия рассматриваемого объема жидкости. Истечение жидкости из отверстия.

    реферат [1,8 M], добавлен 18.06.2007

  • Реальное течение капельных жидкостей и газов на удалении от омываемых твердых поверхностей. Уравнение движения идеальной жидкости. Уравнение Бернулли для несжимаемой жидкости. Истечение жидкости через отверстия. Геометрические характеристики карбюратора.

    презентация [224,8 K], добавлен 14.10.2013

  • Изучение механики материальной точки, твердого тела и сплошных сред. Характеристика плотности, давления, вязкости и скорости движения элементов жидкости. Закон Архимеда. Определение скорости истечения жидкости из отверстия. Деформация твердого тела.

    реферат [644,2 K], добавлен 21.03.2014

  • Физические свойства жидкости. Гидростатика и гидродинамика: движение жидкости по трубопроводам и в каналах; ее истечение через отверстия и насадки. Сельскохозяйственное водоснабжение и мелиорация. Сила давления на плоскую и криволинейную поверхности.

    методичка [6,3 M], добавлен 08.04.2013

  • Постоянство потока массы, вязкость жидкости и закон трения. Изменение давления жидкости в зависимости от скорости. Сопротивление, испытываемое телом при движении в жидкой среде. Падение давления в вязкой жидкости. Эффект Магнуса: вращение тела.

    реферат [37,9 K], добавлен 03.05.2011

  • Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

    контрольная работа [169,0 K], добавлен 01.06.2015

  • Определение веса находящейся в баке жидкости. Расход жидкости, нагнетаемой гидравлическим насосом в бак. Вязкость жидкости, при которой начнется открытие клапана. Зависимость расхода жидкости и избыточного давления в начальном сечении трубы от напора.

    контрольная работа [489,5 K], добавлен 01.12.2013

  • Изучение конструктивных особенностей резервуара для хранения нефтепродуктов. Построение переходной характеристики объекта при условии мгновенного изменения величины входного потока. Определение уровня жидкости в резервуаре нефтеперекачивающей станции.

    реферат [645,4 K], добавлен 20.04.2015

  • Три случая относительного покоя жидкости в движущемся сосуде. Методы для определения давления в любой точке жидкости. Относительный покой жидкости в сосуде, движущемся вертикально с постоянным ускорением. Безнапорные, напорные и гидравлические струи.

    презентация [443,4 K], добавлен 18.05.2019

  • Потенциальная энергия жидкости. Определение теоретической скорости и теоретического расхода (идеальная жидкость). Сравнение истечения через отверстие и внешний цилиндрический насадок. Кавитация в цилиндрическом насадке. Гидравлический удар в трубопроводе.

    презентация [337,3 K], добавлен 29.01.2014

  • Определение силы давления жидкости на плоскую и криволинейную стенку. Суть гидростатического парадокса. Тело давления. Выделение на криволинейной стенке цилиндрической формы элементарной площадки. Суммирование горизонтальных и вертикальных составляющих.

    презентация [1,8 M], добавлен 24.10.2013

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Исследование распространения акустических возмущений в смесях жидкости с газовыми пузырьками с учетом нестационарных и неравновесных эффектов межфазного взаимодействия. Расчет зависимости фазовой скорости и коэффициента затухания в пузырьковой жидкости.

    курсовая работа [433,2 K], добавлен 15.12.2014

  • Построение эпюры гидростатического давления жидкости на стенку, к которой прикреплена крышка. Расчет расхода жидкости, вытекающей через насадок из резервуара. Применение уравнения Д. Бернулли в гидродинамике. Выбор поправочного коэффициента Кориолиса.

    контрольная работа [1,2 M], добавлен 24.03.2012

  • Определение пористости материалов по капиллярному подъёму магнитной жидкости в неоднородном магнитном поле. Методика оценки диаметра капилляров по измерению скорости капиллярного подъёма магнитной жидкости при помощи датчиков.

    статья [1,2 M], добавлен 16.03.2007

  • Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.

    презентация [1,4 M], добавлен 14.10.2013

  • Основное свойство жидкости: изменение формы под действием механического воздействия. Идеальные и реальные жидкости. Понятие ньютоновских жидкостей. Методика определения свойств жидкости. Образование свободной поверхности и поверхностное натяжение.

    лабораторная работа [860,4 K], добавлен 07.12.2010

  • Структурная схема емкостного уровнемера. Данные наблюдений и расчетов. Определение уровня жидкости аналоговым емкостным измерителем. Определение чувствительности измерителя к изменению уровня жидкости. Оценка погрешностей измерения уровня жидкости.

    лабораторная работа [482,7 K], добавлен 28.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.