Структура дискретного канала

Дискретный канал и его параметры, порядок измерения. Модели частичного его описания, их классификация и разновидности. Сущность модуляции и критерии ее измерения, формирование сигналов. Зависимость вероятности появления искаженной комбинации от ее длины.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 20.06.2015
Размер файла 361,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

1. Дискретный канал и его параметры

Дискретный канал - канал связи, используемый для передачи дискретных сообщений.

Состав и параметры электрических цепей на входе и выходе ДК определены соответствующими стандартами. Характеристики могут быть экономичными, технологичными и техническими. Основными являются технические характеристики. Они могут быть внешними и внутренними.

Внешние - информационные, технико-экономические, технико-эксплуатационные.

На скорость передачи существует несколько определений.

Техническая скорость характеризует быстродействие аппаратуры входящих в состав передающей части.

(1)

где mi - основание кода в i-ом канале.

Информационная скорость передачи - связана с пропускной способностью канала. Она появляется с появлением и быстрым развитием новых технологий. Информационная скорость зависит от технической скорости, от статистических свойств источника, от типа КС, принимаемых сигналов и помех, действующих в канале. Предельным значением является пропускная способность КС:

(2)

где ?F - полоса КС;

По скорости передачи дискретных каналов и соответствующих УПС принято подразделять на:

- низкоскоростные (до 300 бит/сек);

- среднескоростные (600 - 19600 бит/сек);

- высокоскоростные (более 24000 бит/сек).

Эффективная скорость передачи - количество знаков в единицу времени, предоставленных получателю с учетом непроизводительных затрат времени (время фазирования СС, время отводимое на избыточные символы).

Относительная скорость передачи:

(3)

Достоверность передачи информации - используется в связи, что в каждом канале имеются посторонние излучатели, которые искажают сигнал и затрудняют процесс определения вида передаваемого единичного элемента. По способу преобразования сообщений в сигнал помехи бывают аддитивные и мультипликативные. По форме: гармонические, импульсные и флуктуационные.

Помехи приводят к ошибкам в приеме единичных элементов, они случайны. В этих условиях вероятность характеризуется безошибочностью передачи. Оценкой верности передачи может служить отношение числа ошибочных символов к общему

(4)

Часто вероятность передатчика оказывается меньше требуемой, следовательно, принимают меры по увеличению вероятности ошибок, устранение принимаемых ошибок, включение в канал некоторых дополнительных устройств, которые уменьшают свойства каналов, следовательно, уменьшают ошибки. Улучшение верности связано с дополнительными материальными затратами.

Надежность - дискретный канал, как и любая ДС не может работать безотказно.

Отказом называют событие, заканчивающееся в полной или частичной утробе системы работоспособности. Применительно к системе передачи данных отказ - событие, вызывающее задержку принимаемого сообщения на время tзад>tдоп. При этом tдоп в разных системах различна. Свойство системы связи, обеспечивающее нормальное выполнение всех заданных функций называются надежностью. Надежность характеризуется средним временем наработки на отказ Tо, средним временем восстановления Tв, и коэффициентом готовности:

(5)

Вероятность безотказной работы показывает, с какой вероятностью система может работать без единого отказа.

2. Модель частичного описания дискретного канала

Зависимость вероятности появления искаженной комбинации от ее длины n и вероятность появления комбинации длиной n с t ошибками.

Зависимость вероятности появления искаженной комбинации от ее длины n характеризуется как отношение числа искаженной комбинации к общему числу переданных кодовых комбинаций.

(6)

Эта вероятность является неубывающей величиной функции n. Когда n=1, то Р=РОШ, когда, Р=1.

В модели Пуртова вероятность вычисляется:

(7)

где б - показатель группирования ошибок.

Если б = 0, то пакетирование ошибок отсутствует и появление ошибок следует считать независимым.

Если 0.5 < б < 0.7, то это пакетирование ошибок наблюдается на кабельных линиях связи, т.к. кратковременные прерывания приводят к появлению групп с большой плотностью ошибок.

Если 0.3 < б < 0.5, то это пакетирование ошибок наблюдается в радиорелейных линиях связи, где наряду с интервалами большой плотности ошибок наблюдаются интервалы с редкими ошибками.

Если 0.3 < б < 0.4, то наблюдается в радиотелеграфных каналах.

Распределение ошибок в комбинациях различной длины оценивает и вероятность комбинаций длиной n c t наперед заданными ошибками.

(8)

Сравнение результатов вычисленных значений вероятностей по формулам (2) и (3) показывает, что группирование ошибок приводит к увеличению числа кодовых комбинаций, пораженных ошибками большей кратности. Также можно заключить, что при группировании ошибок уменьшается число искаженных кодовых комбинаций, заданной длины n. Это понятно также из чисто физических соображений. При одном и том же числе ошибок пакетирование приводит к сосредоточению их на отдельных комбинациях (кратность ошибок возрастает), а число искаженных кодовых комбинаций уменьшается.

3. Классификация дискретных каналов

Классификацию дискретных каналов можно проводить по различным признакам или характеристикам.

По передаваемому переносчику и сигналу каналу бывают (непрерывный сигнал - непрерывный переносчик):

- непрерывно-дискретный;

- дискретно-непрерывный;

- дискретно-дискретный.

Различают понятие дискретная информация и дискретная передача.

С математической точки зрения канал можно определить алфавитом единичных элементов на входе и выходе канала. Зависимость этой вероятности зависит от характера ошибок в дискретном канале. Если при передаче i-ого единичного элемента i=j - ошибок не произошло, если при приеме элемент принял новый элемент, отличающийся от j, то произошла ошибка.

Каналы, в которых P(aj/ai) не зависит от времени при любых i и j называются стационарные, в противном случае - нестационарные.

Каналы, в которых вероятность перехода не зависит от значения ранее принятого элемента, то это канал без памяти.

Если i не равно j, P(aj/ai)=const, то канал симметричен, в противном случае - несимметричен.

Большинство каналов являются симметричными и обладают памятью. Каналы космической связи симметричны, но не обладают памятью.

4. Модели каналов

При анализе систем КС используют 3 основных модели для аналоговых и дискретных систем и 4 модели только для дискретных систем.

Основные математические модели КС:

- канал с аддитивным шумом;

- линейный фильтрованный канал;

- линейный фильтрованный канал и переменными параметрами.

Математические модели для дискретных КС:

- ДКС без памяти;

- ДКС с памятью;

- двоичный симметричный КС;

- КС с двоичных источников.

В данной модели передаваемый сигнал S(t) подвергается влиянию добавочного шума n(t), который может возникнуть от посторонних электрических помех, электронных компонентов, усилителей или из-за явления интерференции. Данная модель применила к любому КС, но при наличие процесса затухания в суммарную реакцию необходимо добавить коэффициент затухания.

r(t)=бS(t)+n(t) (9)

Линейный фильтрованный канал применим для физических каналов содержащих линейные фильтры для ограничения полосы частот и устранения явления интерференции. с(t) является импульсной характеристикой линейного фильтра.

Линейный фильтрованный канал с переменными параметрами характерен специфическим физическим каналам, таким как акустический КС, ионосферные радиоканалы, которые возникают при меняющемся во времени передаваемом сигнале и описываются переменными параметрами.

Дискретные модели КС без памяти характеризуется входным алфавитом или двоичной последовательностью символов, а также набором входной вероятности передаваемого сигнала.

В ДКС с памятью в пакете передаваемых данных имеются помехи или канал подвергается воздействию замирания, то условная вероятность выражается как суммарная совместная вероятность всех элементов последовательности.

Двоичный симметричный КС является частным случаем дискретного канала без памяти, когда входными и выходными алфавитами могут быть только 0 и 1. Следовательно, вероятность имеют симметричный вид.

ДКС двоичных источников генерирует произвольную последовательность символов, при этом конечный дискретный источник определяется не только этой последовательностью и вероятность возникновения их, а также введением таких функций как самоинформация и математическое ожидание.

5. Модуляция

дискретный модуляция сигнал

Сигналы формируются путем изменения тех или иных параметров физического носителя в соответствии с передаваемым сообщением. Этот процесс (изменения параметров носителя) принято называть модуляцией.

Общий принцип модуляции состоит в изменении одного или нескольких параметров несущего колебания (переносчика) f(t,б,в, …) в соответствии с передаваемым сообщением. Так если в качестве переносчика выбрано гармоническое колебание f(t)=Ucos(щ0t+ц), то можно образовать три вида модуляции: амплитудную (АМ), частотную (ЧМ) и фазовую (ФМ).

Формы сигналов при двоичном коде для различных видов дискретной модуляции

Амплитудная модуляция состоит в пропорциональном первичному сигналу x(t) изменении амплитуды переносчика UAM=U0+ax(t). В простейшем случае гармонического сигнала x(t)=XcosЩt амплитуда равна:

(10)

В результате имеем АМ колебание:

(11)

Графики колебаний x(t), u и uAM

Спектр АМ колебания

На рисунке 1.5 изображены графики колебаний x(t), u и uAM. Максимальное отклонение амплитуды UAM от U0 представляет амплитуду огибающей UЩ=aX. Отношение амплитуды огибающей к амплитуде несущего (немодулированного) колебания:

(12)

m - называется коэффициентом модуляции. Обычно m<1. Коэффициент модуляции, выраженный в процентах, т.е. (m=100%) называют глубиной модуляции. Коэффициент модуляции пропорционален амплитуде модулирующего сигнала.

Используя выражения (12), выражение (11) записывают в виде:

(13)

Для определения спектра АМ колебания раскроем скобки в выражении(1.13):

(14)

Согласно (14) АМ колебание является суммой трех высокочастотных гармонических колебаний близких частот (поскольку Щ<<щ0 или F<<f0):

- колебания несущей частоты f0 с амплитудой U0;

- колебания верхней боковой частоты f0+F;

- колебания нижней боковой частоты f0-F.

Спектр АМ колебания (14) приведен на рисунке 1.6. Ширина спектра равна удвоенной частоте модуляции: ?fAM=2F. Амплитуда несущего колебания при модуляции не изменяется; амплитуды колебании боковых частот (верхней и нижней) пропорциональны глубины модуляции, т.е. амплитуде X модулирующего сигнала. При m=1 амплитуды колебаний боковых частот достигают половины несущей (0,5U0).

Несущее колебание никакой информации не содержит, и в процессе модуляции оно не меняется. Поэтому можно ограничиться передачей только боковых полос, что и реализуется в системах связи на двух боковых полосах (ДБП) без несущей. Больше того, поскольку каждая боковая полоса содержит полную информацию о первичном сигнале, можно обойтись передачей только одной боковой полосы (ОБП). Модуляция, в результате которой получаются колебания одной боковой полосы, называется однополосной (ОМ).

Очевидными достоинствами систем связи ДБП и ОБП являются возможности использования мощности передатчика на передачу только боковых полос (двух или одной) сигнала, что позволяет повысить дальность и надежность связи. При однополосной модуляции, кроме того, вдвое уменьшается ширина спектра модулированного колебания, что позволяет соответственно увеличить число сигналов, передаваемых по линии связи в заданной полосе частот.

Фазовая модуляция заключается в пропорциональном первичному сигналу x(t) изменении фазы ц переносчика u=U0cos(щ0t+ц).

(15)

где a - коэффициент пропорциональности.

Амплитуда колебания при фазовой модуляции не изменяется, поэтому аналитическое выражение ФМ колебания

(16)

Если модуляция осуществляется гармоническим сигналом x(t)=XsinЩt, то мгновенная фаза

(17)

Первые два слагаемых (1.17) определяют фазу немодулированного колебания, третье - изменение фазы колебания в результате модуляции.

Фазомодулированное колебание наглядно характеризуется векторной диаграммой рисунок 1.7, построенной на плоскости, вращающейся по часовой стрелке угловой частотой щ0. Немодулированному колебанию соответствует подвижный вектор U0. Фазовая модуляция заключается в периодическом изменении с частотой Щ повороте вектора U относительно U0 на угол ?ц(t)=aXsinЩt. Крайние положения вектора U обозначены U' и U''. Максимальное отклонение фазы модулированного колебания от фазы немодулированного колебания:

(18)

где M - индекс модуляции. Индекс модуляции М пропорционален амплитуде Х модулирующего сигнала.

Векторная диаграмма фазомодулированного колебания

Используя (18), перепишем ФМ колебание (16) как

u=U0cos(щ0t+ц0+MsinЩt) (19)

Мгновенная частота ФМ колебания

щ=U(щ0+MЩcosЩt) (20)

Таким образом, ФМ колебание в разные моменты времени имеет различные мгновенные частоты, отличающиеся от частоты несущего колебания щ0 на величину ?щ= MЩcosЩt, что позволяет рассматривать ФМ колебание как модулированное по частоте.

Частотная модуляция заключается в пропорциональном изменении первичному сигнала x(t) мгновенной частоты переносчика:

щ=щ0+ax(t) (21)

где a - коэффициент пропорциональности.

Мгновенная фаза ЧМ колебания

(22)

Аналитическое выражение ЧМ колебания с учетом постоянства амплитуды можно записать в виде:

(23)

Девиация частоты - максимальное ее отклонение от несущей частоты щ0, вызванное модуляцией:

A=aX (24)

Аналитическое выражение этого ЧМ колебания:

(25)

Слагаемое (?щД/Щ)sinЩt характеризует изменение фазы, получающееся при ЧМ. Это позволяет рассматривать ЧМ колебание, как ФМ колебание с индексом модуляции

(26)

и записать его аналогично:

(27)

Из сказанного следует, что ФМ и ЧМ колебания имеют много общего. Так колебание вида (1.27) может быть результатом как ФМ, так и ЧМ гармоническим первичным сигналом. Кроме того, ФМ и ЧМ характеризуются одними и теми же параметрами (индексом модуляции М и девиацией частоты ?fД), связанными между собой одинаковыми соотношениями: (1.21) и (1.24).

Наряду с отмеченным сходством частотной и фазовой модуляции между ними имеется и существенное отличие, связанное с различным характером зависимости величин М и ?fД от частоты F первичного сигнала:

- при ФМ индекс модуляции не зависит от частоты F, а девиация частоты пропорциональна F;

- при ЧМ девиация частоты не зависит от частоты F, а индекс модуляции обратно пропорционален F.

6. Структурная схема с РОС

Передача с РОС аналогична телефонному разговору в условиях плохой слышимости, когда один из собеседников, плохо расслышав какое-либо слово или фразу, просит другого повторить их еще раз, а при хорошей слышимости или подтверждает факт получения информации, или во всяком случае, не просит повторения.

Полученная по каналу ОС информация анализируется передатчиком, и по результатам анализа передатчик принимает решение о передаче следующей кодовой комбинации или о повторении ранее переданных. После этого передатчик передает служебные сигналы о принятом решении, а затем соответствующие кодовые комбинации. В соответствии с полученными от передатчика служебными сигналами приемник или выдает накопленную кодовую комбинацию получателю информации, или стирает ее и запоминает вновь переданную.

Виды системы с РОС: системы с ожиданием служебных сигналов, системы с непрерывной передачей и блокировкой, системы с адресным переносом. В настоящее время известны многочисленные алгоритмы работы систем с ОС. Наиболее распространенными являются системы: с РОС с ожиданием сигнала ОС; с безадресным повторением и блокировкой приемника с адресным повторением.

Системы с ожиданием после передачи комбинации либо ожидают сигнал с обратной связи, либо передают ту же кодовую комбинацию, но передачу следующей кодовой комбинации начинают только после получения подтверждения по ранее переданной комбинации.

Системы с блокировкой осуществляют передачу непрерывной последовательности кодовых комбинаций при отсутствии сигналов ОС по предшествующим S комбинациям. После обнаружения ошибок в (S+1)-й комбинации выход системы блокируется на время приема S комбинаций, в запоминающем устройстве приемника системы ПДС стираются S ранее принятых комбинаций, и посылается сигнал переспроса. Передатчик повторяет передачу S последних переданных кодовых комбинаций.

Системы с адресным повторением отличает то, что кодовые комбинации с ошибками отмечаются условными номерами, в соответствии с которыми передатчик производит повторную передачу только этих комбинаций.

Алгоритм защиты от наложения и потери информации. Системы с ОС могут отбрасывать либо использовать информацию, содержащуюся в забракованных кодовых комбинациях, с целью принятия более правильного решения. Системы первого типа получили название систем без памяти, а второго - системы с памятью.

На рисунке 1.8 представлена структурная схемы системы с РОС-ож. Функционирует системы с РОС-ож следующим образом. Поступающая от источника информации (ИИ), m - элементная комбинация первичного кода через логическую ИЛИ записывается в накопитель передатчика (НК1). Одновременно с этим в кодирующем устройстве (КУ) формируются контрольные символы, представляющие собой контрольную последовательность блока (КПБ).

Структурная схема системы с РОС

Полученная n - элементная комбинация подается на вход прямого канала (ПК). С выхода ПК комбинация поступает на входы решающего устройства (РУ) и декодирующего устройства (ДКУ). ДКУ на основании m информационных символов, принимаемых из прямого канала, формирует свою контрольную последовательность блока. Решающее устройство сравнивает две КПБ (принимаемую из ПК и выработанную ДКУ) и принимает одно из двух решение: либо информационная часть комбинации (m-элементный первичный код) выдается получателю информации ПИ, либо стирается. Одновременно в ДКУ производится выделение информационной части и запись полученной m - элементной комбинации в накопитель приемника (НК2).

Структурная схема алгоритма системы с РОСНП

В случае отсутствия ошибок или необнаруженных ошибок принимается решение о выдаче информации ПИ и устройство управления приемника (УУ2) выдает сигнал, открывающий элемент И2, что обеспечивает выдачу m - элементной комбинации из НК2 к ПИ. Устройством формирования сигнала обратной связи (УФС) вырабатывается сигнал подтверждения приема комбинации, который по обратному каналу (ОК) передается в передатчик. Если приходящий из ОК сигнал дешифрирован устройством декодирования сигнала обратной связи (УДС) как сигнал подтверждения, то на вход устройства управления передатчика (УУ1) передатчика подается соответствующий импульс, по которому УУ1 производит запрос от ИИ следующей комбинации. Логическая схема И1 в этом случае закрыта, и комбинация, записанная в НК1, стирается при поступлении новой.

В случае обнаружения ошибок РУ принимает решение о стирании комбинации, записанной в НК2, при этом УУ2 вырабатываются управляющие импульсы, запирающие логическую схему И2 и формирующие в УФС сигнал переспроса. При дешифровании схемой УДС поступающего на его вход сигнала как сигнала переспроса, блок УУ1 вырабатывает управляющие импульсы, с помощью которых через схемы И1, ИЛИ и КУ в ПК производится повторная передача комбинации, хранящейся в НК1.

Размещено на Allbest.ru

...

Подобные документы

  • Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.

    презентация [127,3 K], добавлен 02.08.2012

  • Разработка измерительного канала контроля физического параметра технологической установки: выбор технических средств измерения, расчет погрешности измерительного канала, дроссельного устройства, расходомерных диафрагм и автоматического потенциометра.

    курсовая работа [414,1 K], добавлен 07.03.2010

  • Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.

    курсовая работа [199,1 K], добавлен 17.11.2010

  • Понятие и содержание, классификация погрешностей по форме представления, причине появления и характеру проявления и способам измерения. Погрешность измерения и принцип неопределенности Гейзенберга, методика и подходы к ее оценке в современных условиях.

    реферат [18,4 K], добавлен 09.01.2015

  • Структура и параметры МДП-транзистора с индуцированным каналом, его топология и поперечное сечение. Выбор длины канала, диэлектрика под затвором транзистора, удельного сопротивления подложки. Расчет порогового напряжения, крутизны характеристики передачи.

    курсовая работа [1,1 M], добавлен 24.11.2010

  • Прямые и косвенные измерения напряжения и силы тока. Применение закона Ома. Зависимость результатов прямого и косвенного измерений от значения угла поворота регулятора. Определение абсолютной погрешности косвенного измерения величины постоянного тока.

    лабораторная работа [191,6 K], добавлен 25.01.2015

  • Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.

    контрольная работа [2,3 M], добавлен 28.05.2014

  • Магнитометр как прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов), его разновидности и функциональные особенности. Феррозонд: понятие и типы, структура и элементы, принцип действия, назначение.

    реферат [329,0 K], добавлен 11.02.2014

  • Разработка измерительного канала для контроля расхода воды через водогрейный котел: выбор диафрагмы, установка дифманометра, учет погрешностей измерения. Расчет схемы автоматического моста КСМ-4, работающего в паре с термометром сопротивления ТСМ (50).

    курсовая работа [1,1 M], добавлен 07.03.2010

  • Разработка измерительного канала измерительного канала, его метрологическое обеспечение. Выбор математической модели ИК расхода вещества. Функциональная, структурная схема ИК, условия его эксплуатации. Блок распределения унифицированного токового сигнала.

    курсовая работа [755,7 K], добавлен 11.04.2014

  • Нахождение дискретных преобразований Фурье заданного дискретного сигнала. Односторонний и двусторонний спектры сигнала. Расчет отсчетов дискретного сигнала по полученному спектру. Восстановление аналогового сигнала по спектру дискретного сигнала.

    курсовая работа [986,2 K], добавлен 03.12.2009

  • Понятие и назначение лазера, принцип его работы и структурные компоненты. Типы лазеров и их характеристика. Методика и основные этапы измерения длины волны излучения лазера, и порядок сравнения спектров его индуцированного и спонтанного излучений.

    лабораторная работа [117,4 K], добавлен 26.10.2009

  • Физическая величина как свойство физического объекта, их понятия, системы и средства измерения. Понятие нефизических величин. Классификация по видам, методам, результатам измерения, условиям, определяющим точность результата. Понятие рядов измерений.

    презентация [1,6 M], добавлен 26.09.2012

  • Согласование средства измерения с объектом измерения. Влияние наблюдателя. Методы сопряжения. Влияние окружающей среды и помехи. Совершенствование методики измерения. Использование методов компенсации. Изменение формы входного сигнала или его спектра.

    презентация [10,7 M], добавлен 02.08.2012

  • Понятие и принципы распространения токов Фуко, их характерные особенности. Сущность скин-эффекта. Явление самоиндукции и ее ЭДС. Энергия магнитного поля, критерии и порядок ее измерения. Понятие взаимной индукции, факторы и порядок ее возникновения.

    презентация [307,9 K], добавлен 24.09.2013

  • Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.

    курс лекций [1,1 M], добавлен 18.04.2013

  • Анализ скорости звука в металлах методом их соударения, измерения времен соприкосновения и распространения волны. Измерения при соударении стержней одинаковых по размерам и материалу, из одинакового материала и одинакового сечения, но разной длины.

    лабораторная работа [203,1 K], добавлен 06.08.2013

  • Измерение поглощаемой мощности как наиболее распространенный вид измерения СВЧ мощности. Приемные преобразователи ваттметров проходящей мощности. Обзор основных методов для измерения импульсной мощности, характеристика их преимуществ и недостатков.

    реферат [814,2 K], добавлен 10.12.2013

  • Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.

    курсовая работа [1,4 M], добавлен 19.09.2019

  • Физические свойства эритроцитов. Методы измерения деформируемости эритроцитов. Зависимость вязкости крови от скорости сдвига. Изменения дискоидной формы эритроцитов при его деформации, возникающей при различных напряжениях сдвига. Многократная деформация.

    курсовая работа [947,8 K], добавлен 16.06.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.