Состояние и перспективы развития альтернативных источников энергии

Традиционные источники энергии, типы и функциональные особенности станций. Нетрадиционные способы получения энергии: ветроэнергетические установки, гелиоэнергетика, их положительные и отрицательные стороны, оценка современных достижений и перспективы.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 16.06.2015
Размер файла 54,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. Проанализировать и выбрать стратегические научные направления в области развития биоэнергетики. При выборе направлений необходимо ориентироваться на развитие биоэнергетики в европейских странах. При этом должны приниматься во внимание позиции всех заинтересованных сторон: государства, промышленности, общества, потребителей.

3. Оценить рыночный потенциал существующих и разрабатываемых технологий.

4. Обеспечить приток инвестиций в развитие биоэнергетики.

Для того чтобы развитие биоэнергетики в России было успешным и отвечало целям и задачам по формированию высокотехнологичных производств по глубокой и комплексной переработке древесины, необходимо активизировать работу по формированию биоэнергетического направления в рамках Лесной технологической платформы, обеспечивая тем самым его совместимость с приоритетами развития стран Европы. При этом необходимо учитывать все стадии формирования и переработки лесных ресурсов, включая спрос на оборудование, материалы, работы и услуги, обеспечивающие производство и доставку биоэнергетической продукции потребителю.

10. Вторичные энергоресурсы

При производстве любых продуктов потребления затрачивается энергия, которая и идет на производство работы по созданию продукта. Учитывая обратимость работы и энергии, часть энергии можно вернуть, «испортив» продукт, например, путем сжигания. Если продукт исчерпал свой срок службы или выполнил возлагаемые на него функции, то желательно вернуть хотя бы часть затраченной на его производство энергии. Если это удастся, то полученную энергию можно использовать для производства другой работы или для получения тепла. То есть, часть энергии, затраченной на производство продукции, можно использовать вторично. В соответствии с этим, те материальные объекты, которые могут вернуть часть энергии, называются вторичными энергоресурсами.

Отметим, что теоретически можно освободить энергию, заключенную в любом веществе. Например, расплавив металл, можно затем получать тепловую энергию при его охлаждении и возвращения в исходное твердое состояние. В крайнем случае, не отвергается возможность освобождения энергии атомарных связей. Однако на этих примерах уже можно увидеть, что для освобождения энергии, заключенной в каком-то материальном объекте, необходимо то же приложить энергию для производства работы по освобождению заключенной энергии. Для многих материальных объектов соотношение подведенной и полученной энергии оказывается невыгодным.

С учетом этого, вторичными энергоресурсами можно считать только те, которые позволяют высвободить энергии больше, чем требуется для ее высвобождения

Наряду с использованием вторичных материальных ресурсов имеются большие возможности в использовании вторичных топливно-энергетических ресурсов. Уже многие годы применяется утилизация отходящих дымовых газов металлургического оборудования и топок для подогрева воды и воздуха. Она осуществляется с помощью теплообменных регенераторов и рекуператоров. Разрабатываются новые, более совершенные способы утилизации тепла и установки для их реализации. Тем не менее фактически используется лишь незначительная доля возможного, экономически оправданного уровня потребления вторичных энергоресурсов.

Высокоэффективное использование вторичных энергетических ресурсов достигается на мощных комбинированных установках, объединяющих в одной поточной схеме несколько технологических процессов. Это отечественные установки ЛК-6у, КТ-1, КГ-1, КМ-2 и др. Они запроектированы по схеме жестких технологических связей между отдельными блоками, входящими в их состав, с высокой степенью регенерации тепла и потенциальной энергии отходящих потоков.

Наряду с утилизацией вторичных материальных ресурсов большие возможности имеются в использовании вторичных топливно-энергетических ресурсов (ВЭР) технологических установок и в первую очередь тепла отходящих дымовых газов металлургического оборудования и нагревательных печей. Если учесть, что затраты энергии и топлива на производство промышленной продукции достигают 15% ее себестоимости, становится очевидным, что этот аспект производства заслуживает самого пристального внимания.

То же можно сказать об использовании тепла за счет отходящих горячих потоков для предварительного подогрева перерабатываемого сырья. Чем выше температура предварительного подогрева, тем лучше используется вторичное тепло, тем меньше поверхность холодильников и расход охлаждающей воды и воздуха. Однако при этом увеличивается поверхность теплообменников, растет температура на выходе дымовых газов из трубчатой печи, снижается ее к. п. д. (при отсутствии рекуператоров или котлов-утилизаторов) и т.д.

11. Экологические проблемы использования альтернативных источников энергии

Солнечные станции являются еще недостаточно изученными объекта-ми, поэтому отнесение их к экологически чистым электростанциям нельзя назвать полностью обоснованным. В лучшем случае к экологически чистой можно отнести конечную стадию - стадию эксплуатации СЭС, и то относительно.

Солнечные станции являются достаточно землеемкими. Удельная землеемкость СЭС изменяется от 0,001 до 0,006 га/кВт с наиболее вероятными значениями 0,003-0,004 га/кВт. Это меньше, чем для ГЭС, но больше, чем для ТЭС и АЭС. При этом надо учесть, что солнечные станции весьма материалоемки (металл, стекло, бетон и т.д.), к тому же в приведенных значениях землеемкости не учитываются изъятие земли на стадиях добычи и обработки сырья. В случае создания СЭС с солнечными прудами удельная землеемкость повысится и увеличится опасность загрязнения подземных вод рассолами.

Солнечные концентраторы вызывают большие по площади затенения земель, что приводит к сильным изменениям почвенных условий, растительности и т.д. Нежелательное экологическое действие в районе расположения станции вызывает нагрев воздуха при прохождении через него солнечного излучения, сконцентрированного зеркальными отражателями. Это приводит к изменению теплового баланса, влажности, направления ветров; в некоторых случаях возможны перегрев и возгорание систем, использующих концентраторы, со всеми вытекающими отсюда последствиями. Применение низкокипящих жидкостей и неизбежные их утечки в солнечных энергетических системах во время длительной эксплуатации могут привести к значительному загрязнению питьевой воды. Особую опасность представляют жидкости, содержащие хроматы и нитриты, являющиеся высокотоксичными веществами.

Гелиотехника косвенным образом оказывает влияние на окружающую среду. В районах ее развития должны возводиться крупные комплексы по производству бетона, стекла и стали. Во время изготовления кремниевых, кадмиевых и арсенидогелиевых фотоэлектрических элементов в воздухе производственных помещений появляются кремниевая пыль, кадмиевые и арсенидные соединения, опасные для здоровья людей.

Космические СЭС за счет СВЧ-излучения могут оказывать влияние на климат, создавать помехи теле- и радиосвязи, воздействовать на незащищенные живые организмы, попавшие в зону его влияния. В связи с этим необходимо использовать экологически чистый диапазон волн для передачи энергии на Землю.

Неблагоприятные воздействия солнечной энергии на окружающую среду могут проявляться:

? в отчуждении земельных площадей, их возможной деградации;

? в большой материалоемкости;

? в возможности утечки рабочих жидкостей, содержащих хлораты и нитриты;

? в опасности перегрева и возгорания систем, заражения продуктов токсичными веществами при использовании солнечных систем в сельском хозяйстве;

? в изменении теплового баланса, влажности, направления ветра в районе расположения станции;

? в затемнении больших территорий солнечными концентраторами, возможной деградации земель;

? в воздействии на климат космических СЭС;

? в создании помех телевизионной и радиосвязи;

? в передаче энергии на Землю в виде микроволнового излучения, опасного для живых организмов и человека.

12. Влияние ветроэнергетики на природную среду

Факторы воздействия ВЭС на природную среду, а также последствия этого влияния и основные мероприятия по снижению и устранению отрицательных проявлений приведены в табл. 18.1. Рассмотрим некоторые из них более подробно.

Под мощные промышленные ВЭС необходима площадь из расчета от 5 до 15 МВт/км2 в зависимости от розы ветров и местного рельефа района. Для ВЭС мощностью 1000 МВт потребуется площадь от 70 до 200 км2. Выделение таких площадей в промышленных регионах сопряжено с большими трудностями, хотя частично эти земли могут использоваться и под хозяйственные нужды. Например, в Калифорнии в 50 км от г. Сан-Франциско на перевале Алтамонт-Пасс земля, отведенная под парк мощной ВЭС, одновременно служит для сельскохозяйственных целей.

Методы устранения негативного влияния ВЭУ на окружающую среду

Факторы воздействия

Методы устранения

I. Изъятие земельных ресурсов, изменение свойств почвенного слоя

Размещение ВЭУ на неиспользуемых землях Оптимизация размещения - минимизация расхода земли Целенаправленный учет изменений свойств почвенного слоя Компенсационные расчеты с землепользователями

II. Акустическое воздействие (шумовые эффекты)

Изменение числа оборотов ветроколеса (ВК) Изменение форм лопасти ВК Удаление ВЭУ от объектов социальной инфраструктуры Замена материалов лопастей ВК

III. Влияние на ландшафт и его восприятие

Учет особенностей ландшафта при размещении ВЭУ Рекреационное использование ВЭУ Изыскание различных форм опорных конструкций, окраски и т.д.

IV. Электромагнитное излучение, телевидение и радиосвязь

Сооружение ретрансляторов Замена материалов лопастей ВК Внедрение специальной аппаратуры в конструкцию ВЭУ Удаление от коммуникаций

V. Влияние на орнитофауну на перелетных трассах и мор скую фауну при размещении ВЭС на акваториях

Анализ поражаемости птиц на трассах перелета и рыб на путях миграции Расчет вероятности поражения птиц и рыб

VI. Аварийные ситуации, опасность поломки и отлета поврежденных частей ВК

Расчет вероятности поломок ветроколеса, траектории и дальности отлета Оценка надежности безаварийной работы ВЭУ Зонирование производства вокруг ВЭУ

VII. Факторы, улучшающие экологическую ситуацию

Уменьшение силы ветра Снижение ветровой эрозии почв Уменьшение ветров с акваторий водоемов и водохранилищ

Наиболее важный фактор влияния ВЭС на окружающую среду - это акустическое воздействие. В зарубежной практике выполнено достаточно исследований и натурных изменений уровня и частоты шума для различных ВЭУ с ветроколесами, отличающимися конструкцией, материалами, высотой над землей, и для разных природных условий (скорость и направление ветра, подстилающая поверхность и т.д.).

Шумовые эффекты от ВЭУ имеют разную природу и подразделяются на механические (шум от редукторов, подшипников и генераторов) и аэродинамические воздействия. Последние, в свою очередь, могут быть низко-частотными (менее 16-20 Гц) и высокочастотными (от 20 Гц до нескольких кГц). Они вызваны вращением рабочего колеса и определяются следующими явлениями: образованием разряжения за ротором или ветроколесом с устремлением потоков воздуха в некую точку схода турбулентных потоков; пульсациями подъемной силы на профиле лопасти; взаимодействием турбулентного пограничного слоя с задней кромкой лопасти.

Удаление ВЭС от населенных пунктов и мест отдыха решает проблему шумового эффекта для людей. Однако шум может повлиять на фауну, в том числе на морскую фауну в районе экваториальных ВЭС. По зарубежным данным, вероятность поражения птиц ветровыми турбинами оценивается в 10%, если пути миграции проходят через ветровой парк. Размещение ветровых парков повлияет на пути миграции птиц и рыб для экваториальных ВЭС.

Высказываются предположения, что экранирующее действие ВЭС на пути естественных воздушных потоков будет незначительным и его можно не принимать во внимание. Это объясняется тем, что ВЭУ используют не-большой приземный слой перемещающихся воздушных масс (около 100-150 м) и притом не более 50% их кинетической энергии. Однако мощные ВЭС могут оказать влияние на окружающую среду: например, уменьшить вентиляцию воздуха в районе размещения ветрового парка. Экранирующее действие ветрового парка может оказаться эквивалентным действию возвышенности такой же площади и высотой порядка 100-150 м.

Помехи, вызванные отражением электромагнитных волн лопастями ветровых турбин, могут сказываться на качестве телевизионных и микроволновых радиопередач, а также различных навигационных систем в районе размещения ветрового парка ВЭС на расстоянии нескольких километров. Наиболее радикальный способ уменьшения помех - удаление ветрового парка на соответствующее расстояние от коммуникаций. В ряде случаев помех можно избежать, установив ретрансляторы. Этот вопрос не относится к категории трудноразрешимых, и в каждом случае может быть найдено конкретное решение

Размещено на Allbest.ru

...

Подобные документы

  • Основные способы получения энергии, их сравнительная характеристика и значение в современной экономике: тепловые, атомные и гидроэлекростанции. Нетрадиционные источники энергии: ветровая, геотермальная, океаническая, энергия приливов и отливов, Солнца.

    курсовая работа [57,0 K], добавлен 29.11.2014

  • Характеристика возобновляемых источников энергии: основные аспекты использования; преимущества и недостатки в сравнении с традиционными; перспективы использования в России. Способы получения электричества и тепла из энергии солнца, ветра, земли, биомассы.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.

    контрольная работа [55,9 K], добавлен 11.04.2010

  • Классификация возобновляемых источников энергии. Современное состояние и перспективы дальнейшего развития гидро-, гелео- и ветроэнергетики, использование энергии биомассы. Солнечная энергетика в мире и в России. Развитие биоэнергетики в мире и в РФ.

    курсовая работа [317,6 K], добавлен 19.03.2013

  • Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат [253,9 K], добавлен 30.05.2016

  • Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат [4,5 M], добавлен 29.03.2011

  • Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа [419,7 K], добавлен 06.05.2016

  • Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.

    презентация [2,9 M], добавлен 18.12.2013

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Виды нетрадиционных возобновляемых источников энергии, технологии их освоения. Возобновляемые источники энергии в России до 2010 г. Роль нетрадиционных и возобновляемых источников энергии в реформировании электроэнергетического комплекса Свердловской обл.

    реферат [3,1 M], добавлен 27.02.2010

  • Ветроэнергетика, солнечная энергетика и гелиоэнергетика как альтернативные источники энергии. Нефть, уголь и газ как основные источники энергии. Жизненный цикл биотоплива, его влияние на состояние природной среды. Альтернативная история острова Самсо.

    презентация [158,1 K], добавлен 15.09.2013

  • Современные методы генерации и использование электричества из энергии ветра. Экономические и экологические аспекты ветроэнергетики, перспективы развития в РФ. Моделирование систем электроснабжения на базе дизель-генератора и ветроэлектрической установки.

    дипломная работа [4,5 M], добавлен 29.07.2012

  • Использование ветрогенераторов, солнечных батарей и коллекторов, биогазовых реакторов для получения альтернативной энергии. Классификация видов нетрадиционных источников энергии: ветряные, геотермальные, солнечные, гидроэнергетические и биотопливные.

    реферат [33,0 K], добавлен 31.07.2012

  • Ветер как источник энергии. Выработка энергии ветрогенератором. Скорость ветра как важный фактор, влияющий на количество вырабатываемой энергии. Ветроэнергетические установки. Зависимость использования энергии ветра от быстроходности ветроколеса.

    реферат [708,2 K], добавлен 26.12.2011

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация [1,1 M], добавлен 25.05.2016

  • Применение нетрадиционной энергетики в строительстве энергоавтономных экодомов. Четыре альтернативные системы получения энергии: установка "солнечных батарей" из фотоэлектрических панелей; солнечные коллекторы; ветроэнергетические установки и миниГЭС.

    курсовая работа [2,5 M], добавлен 31.05.2013

  • Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа [82,0 K], добавлен 23.04.2016

  • География мировых природных ресурсов. Потребление энергии - проблема устойчивого развития. Статистика потребления мировой энергии. Виды нетрадиционных (альтернативных) источников энергии и их характеристика. Хранение отработавшего ядерного топлива.

    презентация [1,2 M], добавлен 28.11.2012

  • Создание институциональной базы в арабских странах. Инвестиционные возможности для развития возобновляемой энергетики. Стратегическое планирование развития возобновляемых источников энергии стран Ближнего Востока. Стратегии развития ядерной энергии.

    курсовая работа [4,7 M], добавлен 08.01.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.