Магнитные поля асинхронных двигателей. Вращающееся магнитное поле

Взаимодействие вращающегося магнитного поля и короткозамкнутых обмоток или элементов, приравненных к ним, как основной принцип действия асинхронных двигателей. Расчет магнитного потока и длины его векторов. Связь конфигурации обмоток и частоты вращения.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.06.2015
Размер файла 634,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Магнитные поля асинхронных двигателей. Вращающееся магнитное поле

Принцип действия асинхронных двигателей базируется на взаимодействии вращающегося магнитного поля и короткозамкнутых обмоток или элементов, приравненных к ним. Поэтому проблема получения вращающегося поля в магнитной системе машины является основной. В большинстве случаев для получения вращающегося магнитного поля используется трехфазная система источников питания, которая и получила широкое распространение. Но не следует забывать о том, что существуют и другие способы получения магнитных полей, близких к вращающимся магнитным полям. Что же такое идеальное вращающееся магнитное поле?

Вращающимся магнитным полем называют такое магнитное поле, которое, не изменяя своей конфигурации и интенсивности, вращается в пространстве вокруг оси, перпендикулярной силовым линиям и являющейся осью симметрии поля. Наглядным примером такого поля является поле постоянного магнита, вращающегося вокруг собственной оси симметрии OO'.

Магнитная индукция поля в любой точке постоянного магнита, как и величина магнитного потока магнитопровода остаются неизменными, но направление этих величин изменяется в соответствии с законом вращения этого магнита.

Способы получения вращающегося магнитного поля различны. Наиболее простым из них является использование трехфазной системы напряжений, с помощью которой можно достаточно легко получить намагничивающие силы равной величины с фазовым сдвигом, равным трети периода.

Расположим три прямоугольные рамки в пространстве так, чтобы угол между плоскостями, составил 120.

Стороны рамок, параллельные оси OO', обозначим буквами AX, BY и CZ. Рассмотрим суммарное магнитное поле трех рамок, по которым протекают токи, изменяющиеся во времени по синусоидальному закону, но сдвинутые во времени на треть периода. Индексы токов выберем в соответствии с обозначением, принятым в трехфазной системе напряжений.

Эти токи, как было уже сказано, изменяются во времени по законам синуса, т.е.

, , .

Условимся под положительным направлением токов понимать такое направление токов рамок, когда в сторонах A, B, C ток идет от читателя, а в сторонах X, Y, Z к читателю. Временная диаграмма токов представлена на рис.

В дальнейших рассуждениях будем считать, что магнитный поток рамки пропорционален току этой рамки, а его направление определяется известным правилом буравчика. Магнитные потоки рамок будем представлять векторами, перпендикулярными плоскостям рамок. Длины векторов пропорциональны мгновенным значениям магнитных потоков рамок.

Мгновенные значения потоков рамок могут быть найдены из формул

, , .

Определим магнитный поток системы рамок, питаемых трехфазной системой токов.

В момент времени t = 0 ток фазы A равен нулю, ток фазы B имеет отрицательное направление, ток фазы C положителен.

Магнитный поток рамки A равен нулю, магнитный поток рамки B . Его абсолютное значение .

Магнитный поток фазы C . Его абсолютное значение .

Результирующий магнитный поток

,

его направление показано на рис.

Рассмотрим магнитный поток рамок в момент времени t = t1.

В этот момент времени ток рамки A положительный, ток рамки B отрицательный и ток фазы C положительный.

Фаза токов увеличилась на 30 . Магнитные потоки рамок

Магнитные потоки рамок представлены векторами на рис. 6.4, б. Суммарный магнитный поток  . Таким образом, магнитный поток в момент времени t = t1 остался таким же, каким он был в момент времени t = 0, однако его направление изменилось, т.е. он повернулся в пространстве на 30 .

В момент времени t = t2, соответствующий изменению фазы токов на 60 , ток рамки A положительный, ток фазы C равен нулю и ток фазы B отрицательный, что отражено на рис. 6.4, в знаками (+) и () на сечении проводников рамок.

Длина векторов магнитных потоков определяется с помощью формул

,

,

.

Длина суммарного магнитного потока

+ .

Как и в предыдущие моменты времени, суммарный магнитный поток сохранил свою величину. Направление вектора этого потока изменилось на 60 .

Очевидным является то, что за время, равное периоду, магнитное поле рамок, сохраняя свою конфигурацию и интенсивность, повернется в пространстве на 360 градусов или сделает полный оборот.

Если частота питающих токов будет равна 50 герцам, то за одну секунду поле сделает 50 оборотов, а за минуту 3000 оборотов.

Магнитное поле трех рамок, питаемых трехфазной системой токов, представленное магнитными силовыми линиями, изображено на рис. 6.5, a. Такое поле называют двухполюсным.

В данном случае обмотка каждой фазы состоит из двух рамок. При этом рамки одной фазы расположены соосно и создают магнитные потоки противоположного направления.

Направление токов в рамках в момент времени t1 в соответствии с временной диаграммой токов представлено соответствующими символами (+) и ()б. Результирующее магнитное поле представлено силовыми линиями. Такое магнитное поле называется четырехполюсным. Не составляет труда показать, что за один период колебаний токов магнитное поле в этом случае повернется не на 360  в пространстве, а на 180  и за одну минуту такое поле будет совершать 1500 оборотов.

Таким образом, изменяя конфигурацию обмоток, образующих магнитное поле, можно изменять ее частоту вращения. В общем случае частота вращения магнитного поля прямо пропорциональна частоте питающих токов и обратно пропорциональна числу пар полюсов этого поля, т.е.

магнитный ток двигатель асинхронный

,

где n1 - частота вращения поля в оборотах в минуту, f - частота тока, герц, p - число пар полюсов поля.

Для изменения частоты вращения магнитного поля можно изменить частоту питающего напряжения. Это наиболее очевидное решение вопроса изменения частоты вращения магнитного поля, которое связано с необходимостью создания специального источника трехфазного напряжения регулируемой частоты. Другим способом изменения частоты вращения поля является укладка в пазы статора такой обмотки, которая создала бы число пар полюсов больше одной. Тогда за один период изменения питающего напряжения поле повернется не на 360 в пространстве, а на 180, 120, 90  в зависимости от количества периодов укладки обмотки по окружности воздушного зазора машины. Поэтому частота вращения магнитного поля машины в этом случае определяется формулой (об/мин), где p - число пар полюсов машины или число периодов укладки обмотки в пазах статора.

Магнитное поле асинхронных двигателей, работающих в реальных условиях, не всегда является круговым вращающимся, т.е. таким, когда величина магнитного потока одного полюса результирующего поля не зависит от времени. В ряде случаев используется пульсирующее магнитное поле. Такое магнитное поле может быть образовано однофазной обмоткой, расположенной на статоре и питаемой источником однофазного синусоидального тока. На рис. 6.6 и 6.7, a представлен пример расположения однофазной обмотки на статоре, образующей поле с одной парой полюсов, и на рис. 6.7, б схема расположения проводников однофазной обмотки, образующей две пары полюсов. И в том, и в другом случае магнитное поле будет пульсирующим.

Круговое вращающееся магнитное поле может быть получено с помощью двухфазной системы токов, т.е. токов, сдвинутых по фазе на четверть периода.

Рассмотрим магнитное поле двух рамок с токами, изменяющимися во времени по косинусному закону и расположенными

в пространстве под 90 , как это показано на рис 6.6.

Ток рамки AX .

Ток рамки BY .

Пусть ток рамки AX сдвинут по фазе относительно тока рамки BY на четверть периода. Мгновенные значения магнитных потоков рамок пропорциональны соответствующим токам, поэтому

и .

Представим потоки рамок в векторной форме, совместив плоскость поперечного сечения рамок с комплексной плоскостью так, что действительная ось будет расположена в плоскости рамки AX, а мнимая в плоскости рамки BY, как показано на рис. 6.6.

Вектор суммарного магнитного потока определится в этом случае из уравнения

.

Модуль вектора магнитного потока

.

Аргумент вектора t, определяющий его направление на комплексной плоскости, совпадает с его направлением в пространстве

или = .

Очевидно то, что величина магнитного потока остается постоянной, а его направление определяется углом е = t. Частота вращения полученного магнитного поля в пространстве равна угловой частоте питающих токов. Другими словами, магнитное поле двух рамок, расположенных в пространстве под 90 и питаемых токами с фазовым сдвигом в четверть периода, является круговым вращающимся полем.

Размещено на Allbest.ru

...

Подобные документы

  • Функционирование асинхронных машин в режиме генератора. Устройство асинхронных двигателей и их основные характеристики. Получение вращающегося магнитного потока. Создание вращающего момента. Частота вращения магнитного потока статора и скольжения.

    реферат [206,2 K], добавлен 27.07.2013

  • Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.

    дипломная работа [168,7 K], добавлен 18.07.2012

  • Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.

    презентация [293,1 K], добавлен 16.11.2011

  • История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.

    презентация [3,9 M], добавлен 22.04.2010

  • Процесс формирования и появления магнитного поля. Магнитные свойства веществ. Взаимодействие двух магнитов и явление электромагнитной индукции. Токи Фуко — вихревые индукционные токи, возникающие в массивных проводниках при изменении магнитного потока.

    презентация [401,5 K], добавлен 17.11.2010

  • Особенности расчета характеристик и определение параметров асинхронных короткозамкнутых двигателей по каталожным данным. Расчеты параметров обмоток статора и ротора, характеристики двигателя в двигательном режиме и в режиме динамического торможения.

    курсовая работа [801,8 K], добавлен 03.04.2010

  • Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

    презентация [443,8 K], добавлен 12.01.2010

  • Электродинамическое взаимодействие электрических токов. Открытие магнитного действия тока датским физиком Эрстедом - начало исследований по электромагнетизму. Взаимодействие параллельных токов. Индикаторы магнитного поля. Вектор магнитной индукции.

    презентация [11,7 M], добавлен 28.10.2015

  • Режимы работы и области применения асинхронных машин. Конструкции и обмотки асинхронных машин. Применение всыпных обмоток с мягкими катушками и обмотки с жесткими катушками. Отличительные черты короткозамкнутых и фазных обмоток роторов асинхронных машин.

    реферат [708,3 K], добавлен 19.09.2012

  • Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.

    курсовая работа [840,5 K], добавлен 12.02.2014

  • Введение в магнитостатику, сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля и его графическое изображение. Сущность принципа суперпозиции. Примеры расчета магнитного поля прямого тока и равномерно движущегося заряда.

    лекция [324,8 K], добавлен 24.09.2013

  • Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.

    презентация [321,9 K], добавлен 14.08.2013

  • Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.

    контрольная работа [30,6 K], добавлен 07.12.2011

  • Образование вращающегося магнитного поля. Подключение обмотки статора к цепи переменного трехфазного тока. Принцип действия асинхронного двигателя. Приведение параметров вторичной обмотки к первичной. Индукция магнитного поля. Частота вращения ротора.

    презентация [455,0 K], добавлен 21.10.2013

  • Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

    курсовая работа [2,5 M], добавлен 30.03.2014

  • Разборка машин средней мощности. Ремонт статорных обмоток машин переменного тока. Обмотки многоскоростных асинхронных двигателей с короткозамкнутым ротором. Ремонт якорных и роторных обмоток. Ремонт обмоток возбуждения. Сушка и пропитка обмоток.

    учебное пособие [3,4 M], добавлен 30.03.2012

  • Основные законы электротехники. Принцип действия электрического генератора. Образование вращающегося магнитного поля в асинхронном двигателе. Потери мощности в асинхронных машинах. Электромагнитный момент машины. Пусковой момент электродвигателя.

    презентация [1,6 M], добавлен 21.10.2013

  • Открытие связи между электричеством и магнетизмом, возникновение представления о магнитном поле. Особенности магнитного поля в вакууме. Сила Ампера, магнитная индукция. Магнитное взаимодействие параллельных и антипараллельных токов. Понятие силы Лоренца.

    презентация [369,2 K], добавлен 21.03.2014

  • Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.

    контрольная работа [1,7 M], добавлен 31.01.2013

  • Сила Лоренца - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Магнитные силовые линии; влияние индукции магнитного поля на силу Ампера. Применение силы Лоренца в электроприборах; Северное сияние как проявление ее действия.

    презентация [625,3 K], добавлен 14.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.