Внутренние шумы
Минимальное значение усиливаемого сигнала и нормирование его ограничений. Обоснование флуктуации напряжений и токов в электрических цепях. Основные характеристики внутренних шумов, их источники. Параметры шумов электрических цепей, ламп, полупроводников.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.06.2015 |
Размер файла | 33,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Внутренние шумы
1. Общие сведения о внутренних шумах
Минимальное значение усиливаемого сигнала, т.е. чувствительность усилительного устройства, ограничивается внутренними флуктуациями, неизбежно существующими в электрических цепях и компонентах усилительных устройств. Вместо термина флуктуация, что наиболее точно отражает физику явлений, в радиоэлектронике обычно применяют термин «шумы». Это вызвано акустическим эффектом в радиоприемных и усилительных устройствах, предназначенных для воспроизведения звуковых колебаний, так как флуктуационная помеха в громкоговорителе воспроизводится в виде шума.
Флуктуации напряжений и токов в электрических цепях заложены глубоко в природе вещей и являются результатом дискретного строения вещества. Так, например, хаотическое тепловое движение свободных электронов в любом проводнике вызывает случайную разность потенциалов на его концах. Этот вид флуктуации называется тепловым шумом. Причиной собственных шумов электронных ламп и полупроводниковых приборов является дискретная природа носителей заряда. Эмиссия электронов накаленным катодом представляет собой случайный процесс, так как электроны из катода вылетают не в равные промежутки времени, а совершенно нерегулярно. Поэтому анодный ток лампы имеет беспорядочные колебания. Эти флуктуации анодного тока создают соответствующее шумовое напряжение (напряжение помехи) на нагрузке. Такой вид флуктуации называют дробовым шумом, или дробовым эффектом.
Экспериментально доказано, что шум пентода намного больше, чем шум триода. В многосеточных лампах действует еще один источник шума - шум токораспределения. Этот вид шума объясняется случайным характером распределения электронов между анодом и экранной сеткой. На низких частотах шумы электронных ламп возрастают за счет фликер-эффекта или эффекта мерцания. Эффект мерцания вызван медленными случайными изменениями эмиссионных свойств катода.
В полупроводниковых приборах также имеют место дробовые шумы за счет хаотических процессов генерации и рекомбинации.
Рассмотренные причины внутренних шумов показывают, что все виды флуктуационных помех представляют собой случайный процесс или случайную функцию времени.
2. Основные характеристики внутренних шумов
При изучении случайных процессов было бы целесообразно воспользоваться спектральными представлениями. Но спектральные характеристики их оказываются также случайными функциями. Для стационарных процессов можно ввести усредненные спектральные характеристики, имеющие энергетический смысл. Для них вводят понятие спектральной плотности мощности.
Спектральная плотность мощности G(щ) в интервале щ определяется как отношение мощности процесса, которая приходится на щ к ширине щ. Для определения плотности мощности в некоторой «точке» частотного диапазона необходимо щ 0.
Бесконечно малая мощность, заключенная в элементарном участке частотного интервала щ / щ 0=dщ. выражается через G(щ) следующим образом;
dP=G(щ) dщ (1)
Общая мощность процесса равна сумме мощностей, заключенных в элементарных участках, и определяется выражением
(2)
Отсюда видно, что спектральная плотность мощности соответствует усредненной по времени мощности, приходящейся на единицу полосы, и характеризует распределение мощности в спектре частот. Спектральную плотность, выраженную функцией частоты, называют энергетическим спектром. Энергетический спектр флуктуационной помехи зависит от источника флуктуации, а также от полосы пропускания цепей, через которые она проходит. При G(щ)=const имеем так называемый белый шум. На деле белого шума нет, но иногда идеализация допустима и значительно упрощает расчетные соотношения. Итак, имея энергетический спектр шума, можно найти среднеквадратичное напряжение шума
. (3)
Рассмотрим прохождение флуктуационного шума через линейный четырехполюсник с коэффициентом передачи К(jщ), на который воздействует стационарное напряжение шума со спектральной плотностью мощности G(щ)вх. Спектральная плотность на выходе
G(щ)вых= G(щ)вх |К (jщ)|2, (4)
Согласно (2), можно найти все статистические характеристики выходного напряжения шума
= G(щ)вх |К (jщ)|2 dщ, (5)
В случае белого шума G(щ)= Go = const выражение (5) примет вид
Gвх |К (щ)|2 dщ, (6)
Для практических расчетов Uш2вых удобно пользоваться понятием шумовой полосы пропускания. Для определения шумовой полосы пропускания несколько преобразуем выражение (6)
Gвх К2(f) df =
GвхK02 K2(f) df (7)
где К(f) - модуль коэффициента передачи Ко - значение модуля на частоте f0. Шумовой полосой пропускания четырехполюсника называется входящий в правую часть множитель (7)
Пш=K2(f) df, (8)
Интеграл K2(f) df выражает площадь, заключенную между кривой K2(f) и осью абсцисс, а деление на К02 дает ширину равновеликого прямоугольника высотой, равной К02. Учитывая (8), среднеквадратичное значение напряжения шума можно вычислить по формуле:
Uш2вых = GвхКо2 Пш. (9)
3. Шумы электрических цепей
Шумы электрических цепей рассмотрим на примере простейшего RC - контура. Из статистической физики известно, что любая система, находящаяся в состоянии стационарного теплового движения, обладает средним квадратом флуктуационного напряжения на контуре, определяемым по формуле Найквиста:
Uш2=4kТR(f) df,
Uш2=4kТRПш. (10)
где k=1,38-10-23 Дж/град - постоянная Больцмана; Т-абсолютная температура по Кельвину.
Это соотношение является наиболее простой формулой для расчета среднего квадрата флуктуационного напряжения любой цепи, имеющего определенные значения сопротивления R и шумовой полосы пропускания Пш. Анализируя выражение (10), можно сделать вывод, что спектральная плотность мощности теплового шума, генерируемого сопротивлением, не зависит от частоты. Можно отметить, что напряжение тепловых шумов зависит только от активной составляющей R(щ) сопротивления двухполюсника и не зависит непосредственно от реактивной составляющей х(щ).
Для облегчения анализа в схемах шумящее сопротивление обычно заменяют нешумящим сопротивлением того же значения, включенным последовательно с генератором напряжения шума или параллельно с генератором шумового тока.
Источником внутренних шумов в LC - контуре является активное сопротивление потери r. ЭДС теплового шума, создаваемого этим сопротивлением, определяются в соответствие с выражением (10). Реактивные элементы колебательного контура L и С не создают шумов. Среднеквадратичное напряжение шума на контуре за счет резонансных явлений будет значительно выше и определяется выражением
(11)
где Q - добротность контура; Roe=- резонансное сопротивление контура.
4. Шумы электронных ламп
Рассмотрим шум диода, у которого флуктуация эмиссионного тока полностью воспроизводится в анодном токе.
Хаотичность процесса термоэлектронной эмиссии приводит к тому, что мгновенное значение анодного тока колеблется вокруг среднего значения I0.
Для определения флуктуации анодного тока воспользуемся соотношением (2), т.е. средний квадрат флуктуационного шума I2ш определим через энергетический спектр (спектральную плотность мощности) этого процесса. Средний квадрат флуктуационного тока в некотором интервале f можно определить по формуле Шоттки
I2ш= 2I0qПш (12)
Выражение (12) показывает, что спектральная плотность не зависит от частоты, т.е. флуктуация анодного тока электронных ламп также является белым шумом.
При анализе шумов триодов удобно перейти к эквивалентной схеме лампы: реальный, шумящий триод заменяют обладающим теми же параметрами нешумящим триодом, к цепи сетки которого последовательно включен генератор шумового напряжения Uш. ЭДС шумового напряжения определяется следующим соотношением:
Uш2=4KTRшПш (13)
Для характеристики шумовых свойств лампы применяется шумовое сопротивление лампы Rш. Шумовым сопротивлением лампы называется такое активное сопротивление, которое при T=300 К будет создавать шумовое напряжение, равное ЭДС шума, пересчитанного в цепь сетки.
Для приемно-усилительных ламп этот параметр обязательно задается в справочниках. Обычно для триодов шумовое сопротивление лампы определяется следующим выражением
Rш=2,5/S (14)
Рассмотренные выше соотношения справедливы при отсутствии сеточного тока. Во многих схемах лампы работают при отрицательном смещении, когда сеточный ток очень мал, и при анализе шума его можно не учитывать. В многоэлектродных лампах помимо шумов, обусловленных флуктуациями анодного тока, присутствуют шумы перераспределения катодного тока между анодом и экранной сеткой. Распределение тока между указанными электродами подвержено хаотическим колебаниям, т.е. электронный поток в лампе испытывает непрерывные флуктуации, поэтому уровень шума многосеточных ламп намного больше, чем у триодов.
Пентоды характеризуются также шумовым сопротивлением
Rш= (15)
где S - крутизна, мА/В Iа, Iэ - анодный и экранный токи, мА. Шумовое сопротивление пентодов в среднем в 3-6 раз больше, чем у триодов.
шум электрический полупроводник ток
5. Внутренние шумы полупроводниковых приборов
Большой интерес представляет изучение электрических флуктуации в полупроводниках и полупроводниковых приборах (ППП), поскольку их изучение создает основу для глубокого понимания свойств полупроводниковых материалов и приборов. Представления о природе этих флуктуации могут быть использованы в качестве средства изучения физики полупроводниковых приборов и материалов. В частности, они позволяют более четко обнаружить некоторые физические явления и точнее определить физические параметры материалов и приборов по сравнению с другими методами. В полупроводниковых приборах имеют место тепловой шум, дробовой шум и низкочастотный шум. Тепловой шум обусловлен хаотическим движением носителей заряда в объеме полупроводника и их взаимодействием с кристаллической решеткой. Напряжение шума определяется по формуле Найквиста.
шт2=4kTRПш. (16)
В транзисторе распределенное сопротивление базы rб преобладает над распределенными сопротивлениями эмиттера и коллектора, поэтому при расчете уровня теплового шума учитывают только шумы базового сопротивления
штб2=4KTrбПш. (17)
Дробовой шум в ППП обусловлен флуктуацией числа носителей тока, пересекающих область пространственного заряда p-n - перехода. Флуктуации носителей тока в полупроводниковых приборах вызваны хаотическим процессом генерации и рекомбинации. Интенсивность дробовых шумов по аналогии с ламповыми диодами определяется по формуле Шоттки:
Iдр2=2qI0Пш. (18)
Дробовые шумы возникают как в эмиттерном, так и в коллекторном переходах транзистора и их среднеквадратичные напряжения вычисляются соответственно:
=2qrэ2(Iэ+Iэ0) Пш (19)
дрк2=2qrк2(h21б Iэ+Iк0) Пш (20)
где rэ, rк - дифференциальные сопротивления эмиттерного и коллекторного p-n - переходов соответственно; h21Б - коэффициент передачи по току в схеме с общей базой; Iэ0 - обратный ток эмиттерного p-n - перехода: Iэ - ток эмиттера.
Если теория тепловых и дробовых шумов достаточно полно разработана применительно к широкой классу ППП и получила хорошее экспериментальное подтверждение, то такого заключения еще невозможно сделать по низкочастотному шуму. На основе многочисленных данных экспериментального исследования внутренних шумов ППП в области низких частот можно отметить следующие свойства:
- слабая температурная зависимость;
- сильная зависимость уровня от состояния поверхности реального прибора;
- зависимость шума от механических деформаций, дозы радиации, плотности дислокации и дефектов структуры.
Спектральная плотность мощности шума в области низких частот имеет вид:
G(f) =AInf--f. (21)
где I - ток, протекающий через p-n переход;
А - коэффициент, учитывающий физические свойства прибора;
n - показатель токовой зависимости (n12);
=0,52 - коэффициент частотной зависимости, определяющий скорость спада спектральной плотности;
Наиболее вероятной причиной возникновения низкочастотного шума считается флуктуация плотности носителей заряда, вызывающая флуктуации проводимости. Последние, в свою очередь, могут быть вызваны следующими причинами: генерация-рекомбинация носителей; флуктуация высоты потенциального барьера; туннельное прохождение носителей через потенциальный барьер диффузии носителей. Указанные процессы могут протекать как в объеме, так и на поверхности полупроводникового прибора. Одними из основных источников низкочастотного шума в полупроводниковых приборах являются дефекты кристаллической решетки, рассмотренные выше. Эти дефекты создают дискретные энергетические уровни в запрещенной зоне, которые могут проявлять себя в качестве рекомбинационных центров. Причем время захвата этих центров может принимать значения до нескольких минут, тем самым существенное влияние оказывают на электрические свойства р-n перехода. Расчеты, проведенные для объемного центра, локализованного в обедненной области р-n перехода показывают, что случайные процессы эмиссии носителей заряда глубоких центров приводят к большой постоянной времени и появлению НЧ шумов. Уровень шума определяется концентрацией дефектных уровней. Среди различных моделей НЧ шума можно выделить модели, которые связывают происхождение шума со свойствами поверхности полупроводников. Эти модели основываются на случайном распределении поверхностного потенциала, образуемого статистическим распределением связанных зарядов, локализованных в оксидном слое. Полученные результаты находят достаточно точное экспериментальное подтверждение.
Одной из разновидностей НЧ шума является «взрывной шум». Этому вопросу в последнее время посвящено значительное число работ. Источник взрывного шума пока не вполне ясен, но считается, что он связан с наличием тонких, сильно легированных эмиттерных переходов. Появление и исчезновение импульсов связывается с одной ловушкой в области пространственного заряда. Наиболее правдоподобной теорией взрывного шума следует считать дислокационную теорию, находящуюся в хорошем согласии с экспериментом. Таким образом, в полупроводниковых приборах имеются следующие процессы обусловливающие НЧ шумы: а) флуктуация тока за счет захвата носителей объемными центрами, локализованными в однородных областях кристалла; б) флуктуация тока вследствие флуктуации высоты потенциального барьера р-n - перехода; в) флуктуации тока за счет захвата и эмиссии носителей заряда медленными поверхностными состояниями; г) флуктуации тока вследствие изменения потенциала в при поверхностной области p-n перехода.
Список литературы
1. Схемотехника электронных систем. Аналоговые и импульсные устройства; БХВ-Петербург - Москва, 2004. - 488 c.
2. Авдеев В.А. Периферийные устройства. Интерфейсы, схемотехника, программирование; ДМК Пресс - Москва, 2012. - 848 c.
3. Авдеев В.А. Периферийные устройства. Интерфейсы, схемотехника, программирование; Книга по Требованию - Москва, 2009. - 848 c.
4. Аверченков О.Е. Схемотехника. Аппаратура и программы; ДМК Пресс - Москва, 2012. - 588 c.
5. Амосов В. Схемотехника и средства проектирования цифровых устройств; БХВ-Петербург - Москва, 2007. - 560 c.
6. Ашихмин А.С. Цифровая схемотехника. Шаг за шагом; Диалог-МИФИ -, 2008. - 304 c.
7. Блум Хансиоахим Схемотехника и применение мощных импульсных устройств; Додэка XXI - Москва, 2008. - 352 c.
8. Бойко В., др. Схемотехника электронных систем. Цифровые устройства; БХВ-Петербург - Москва, 2004. - 506 c.
9. Гальперин М.В. Практическая схемотехника в промышленной автоматике; Энергоатомиздат - Москва, 1987. - 320 c.
10. Дуглас С. Схемотехника современных усилителей; Книга по Требованию - Москва, 2011. - 528 c.
11. Кучумов А.И. Электроника и схемотехника; Гелеос АРВ - Москва, 2005. - 336 c.
12. Лаврентьев Б.Ф. Схемотехника электронных средств; Академия - Москва, 2010. - 336 c.
13. Лехин С.Н. Схемотехника ЭВМ; БХВ-Петербург - Москва, 2010. - 672 c.
14. Павлов В.Н. Схемотехника аналоговых электронных устройств; Академия - Москва, 2008. - 288 c.
15. Перепелкин Д.А. Схемотехника усилительных устройств; Полигон, АСТ, Харвест - Москва, 2013. - 238 c.
16. Полонников Д.Е. Операционные усилители. Принципы построения, теория, схемотехника; Энергоатомиздат - Москва, 1983. - 216 c.
Размещено на Allbest.ru
...Подобные документы
Понятие шумов как флуктуаций напряжения, возникающих в усилителе одновременно с исследуемыми сигналами. Проблема соотношения мощности сигнала и мощности шума. Анализ основных источников и видов шумов, вызванных флуктуациями электрических зарядов.
контрольная работа [1,8 M], добавлен 12.02.2015Основные законы электрических цепей. Освоение методов анализа электрических цепей постоянного тока. Исследование распределения токов и напряжений в разветвленных электрических цепях постоянного тока. Расчет цепи методом эквивалентных преобразований.
лабораторная работа [212,5 K], добавлен 05.12.2014Составление математических моделей электрических цепей при действии источников сигнала произвольной формы и гармонического сигнала. Расчет тока ветви методами контурных токов, узловых напряжений, эквивалентного генератора. Параметры постоянного тока.
контрольная работа [1,6 M], добавлен 29.10.2012Понятие о электрических цепях и резонансе в физике. Характеристика линейной электрической цепи. Резонанс напряжений, токов, в разветвленной цепи, взаимной индукции. Понятие нелинейных электрических цепей. Параметрический резонанс в нелинейном контуре.
курсовая работа [867,4 K], добавлен 05.01.2017Мгновенные значения величин. Векторная диаграмма токов и топографическая диаграмма напряжений. Расчет показателей ваттметров, напряжения между заданными точками. Анализ переходных процессов в линейных электрических цепях с сосредоточенными параметрами.
реферат [414,4 K], добавлен 30.08.2012Расчет линейной электрической цепи постоянного тока, а также электрических цепей однофазного синусоидального тока. Определение показаний ваттметров. Вычисление линейных и фазных токов в каждом трехфазном приемнике. Векторные диаграммы токов и напряжений.
курсовая работа [1,2 M], добавлен 21.10.2013Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях. Комплектующие персонального компьютера.
курсовая работа [393,3 K], добавлен 10.01.2016Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.
курсовая работа [510,7 K], добавлен 13.01.2016Сущность расчета переходных процессов в электрических цепях первого и второго порядков. Построение временных диаграмм токов и напряжений. Составление и решение характеристических уравнений. Расчет форм и спектров сигналов при нелинейных преобразованиях.
курсовая работа [1,2 M], добавлен 14.07.2012Расчет источника гармонических колебаний. Составление и расчет баланса мощностей. Расчёт четырёхполюсника, установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии, переходных процессов классическим методом.
контрольная работа [1,0 M], добавлен 11.12.2012Понятие и примеры простых резистивных цепей. Методы расчета простых резистивных цепей. Расчет резистивных электрических цепей методом токов ветвей. Метод узловых напряжений. Описание колебания в резистивных цепях линейными алгебраическими уравнениями.
реферат [128,0 K], добавлен 12.03.2009Исторический обзор развития электрических источников света. Виды электрических источников света, их сравнительные энергетические и технические характеристики, применение. Особенности ламп накаливания, светодиодных, люминесцентных, газоразрядных ламп.
контрольная работа [35,9 K], добавлен 07.08.2013Основные методы расчета токов и напряжений в цепях, в которых происходят переходные процессы. Составление системы интегро-дифференциальных уравнений цепи, используя для этого законы Кирхгофа и уравнения связи. Построение графиков токов и напряжения.
курсовая работа [125,4 K], добавлен 13.03.2013Расчет источника гармонических колебаний. Определение резонансных режимов электрической цепи. Расчет переходных процессов классическим методом. Определение установившихся значений напряжений и токов в электрических цепях при несинусоидальном воздействии.
курсовая работа [1,8 M], добавлен 18.11.2012Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.
презентация [485,2 K], добавлен 17.04.2019Электрическая цепь при последовательном и параллельном соединении элементов с R, L и C, их сравнительные характеристики. Треугольник напряжений и сопротивлений. Понятие и свойства резонанса токов и напряжений, направления и особенности его регулирования.
реферат [344,8 K], добавлен 27.07.2013Анализ электрического состояния цепей постоянного или переменного тока. Системы уравнений для определения токов во всех ветвях схемы на основании законов Кирхгофа. Исследование переходных процессов в электрических цепях. Расчет реактивных сопротивлений.
курсовая работа [145,0 K], добавлен 16.04.2009Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Переходные процессы в электрических цепях, содержащих конденсатор и сопротивление.
курсовая работа [4,4 M], добавлен 14.05.2010Основные элементы электрической цепи, источник ЭДС и источник тока. Линейные цепи постоянного тока, применение законов Кирхгофа. Основные соотношения в синусоидальных цепях: сопротивление, емкость, индуктивность. Понятие о многофазных электрических цепях.
курс лекций [1,2 M], добавлен 24.10.2012Анализ электрического состояния линейных и нелинейных электрических цепей постоянного тока. Определение токов во всех ветвях методом контурных токов. Расчет однофазных цепей переменного тока. Уравнение мгновенного значения тока источника, баланс мощности.
реферат [1,3 M], добавлен 05.11.2012