Типы диодов

Параметры и характеристики диодов, их классификация и функциональные особенности. Основные статические и динамические параметры данных устройств. Физические закономерности, положенные в основу их работы, схемы выпрямления. Схема двуполярного питания.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 27.06.2015
Размер файла 229,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Типы диодов

1. Параметры и характеристики диодов. Классификация диодов

Полупроводниковым диодом называют прибор, который имеет 2 вывода и содержит один (или несколько) p-n-переходов.

Все полупроводниковые диоды можно разделить на 2 группы: выпрямительные и специальные. Выпрямительные диоды предназначены для выпрямления переменного тока. В зависимости от частоты и формы переменного напряжения они делятся на высокочастотные, низкочастотные и импульсные. Специальные типы полупроводниковых диодов используют различные свойства p-n-переходов; явление пробоя, барьерную емкость, наличие участков с отрицательным сопротивлением и др.

Основные статические параметры:

1) прямое падение напряжения Uпр при заданном прямом токе Iпр

2) постоянный Iобр при заданном Uобр

Основные динамические параметры:

1) Iвып.ср. - ср. за период значение выпрямленного I

2) Uпр.ср - ср. зн-ние прям. падения U при Iпр.ср

3) Iобр.ср - ср. зн-ние обрат-го I при заданном зн-нии Uобр.

4) Uобр.ср. - ср. зн-ние за период Uобр.

5) fгр. - граничная частота, где Iвып. VD-да до уст-ого уровня.

2. Физические закономерности, положенные в основу работы диодов

Образование электронно-дырочного перехода. Ввиду неравномерной концентрации на границе раздела p и n полупроводника возникает диффузионный ток, за счёт которого электроны из n-области переходят в p-область, а на их месте остаются некомпенсированные заряды положительных ионов донорной примеси. Электроны, приходящие в p-область, рекомбинируют с дырками, и возникают некомпенсированные заряды отрицательных ионов акцепторной примеси. Ширина p-n перехода - десятые доли микрона. На границе раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела.

Для неосновных носителей заряда поле будет ускоряющим и будет переносить их в область, где они будут основными. Максимум напряжённости электрического поля - на границе раздела.

3. Однополупериодная схема выпрямления

Для питания электронных устройств требуется энергия постоянного тока. Преобразование переменного тока в постоянный осуществляется в выпрямителе.

,

-постоянная составляющая (среднее значение нагрузки)

-пульсация

, /

-эффективное, действующее напряжение

, , , где =-коэффициент схемы

4. Двухполупериодная (двухпульсная) нулевая схема выпрямления

Устройство, предназначенное для преобразования переменного тока в постоянный ток, называется выпрямителем. Необходимость выпрямления тока на практике возникает: в электроприводе постоянного тока, системах возбуждения машин, химической промышленности, системах управления и регулирования, электротяге, при передаче электроэнергии постоянным током на дальние расстояния и т.д.

Наиболее часто в выпрямителях применяются полупроводниковые диоды. Принцип выпрямления переменного напряжения основан на нелинейной ВАХ полупроводникового диода, у которого сопротивление в прямом и обратном включении p-n-перехода сильно отличаются.

Схема выпрямления с выводом от средней точки трансформатора

Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством.

5. Двухполупериодная мостовая схема выпрямления

Поочередно отпираются диоды VD1-VD2 и VD3-VD4.

0<t<T/2: диоды VD1-VD2 открыты при полуволне u2 положительной полярности. Диоды VD1-VD2 обеспечивают связь вторичной обмотки трансформатора с нагрузкой, создавая в ней напряжение ud той же величины и полярности, что и напряжение u2.

T/2<t<T: под воздействием отрицательной полуволны u2 открыты диоды VD3-VD4, которые подключают напряжение u2 к нагрузке с той же полярностью, что и на интервале 0<t<T/2.

6. Экономичная схема двуполярного питания

диод физический двуполярный

Эта схема позволяет расщеплять напряжение питания (получать на выходе одинаковые напряжения положительной и отрицательной полярности). Эта схема эффективна, так как в каждом полупериоде входного сигнала используются обе половины вторичной обмотки.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Если ток мал, то можно использовать другую схему:

7. Умножители напряжения

Умножитель напряжения состоит из включенных определенным образом диодов и конденсаторов и представляет собой преобразователь напряжения переменного тока низковольтного источника в высокое напряжение постоянного тока.

Принцип его работы понятен из рис. 1, на котором приведена схема однополупериодного умножителя. Рассмотрим происходящие в нем процессы поэтапно. Во время действия отрицательного полупериода напряжения конденсатор С1 заряжается через открытый диод VD1 до амплитудного значения приложенного напряжения Uа. Когда к входу умножителя приложено напряжение положительного полупериода, конденсатор С2 через открытый диод VD2 заряжается до напряжения 2Uа. Во время следующего этапа - отрицательного полупериода - через диод VD3 до напряжения 2Uа заряжается конденсатор С3. И, наконец, при очередном положительном полупериоде до напряжения 2Uа заряжается конденсатор С4. Очевидно, что запуск умножителя происходит за несколько периодов переменного напряжения. Постоянное выходное напряжение складывается из напряжений на последовательно включенных и постоянно подзаряжаемых конденсаторах С2 и С4 и составляет 4Uа.

8. Способы сглаживания выпрямленного напряжения (фильтрация)

Напряжение на выходе любого выпрямителя всегда пульсирующее и содержит постоянную и переменную составляющую напряжения. Для сглаживания пульсаций применяют сглаживающие фильтры (СФ) - устройства, предназначенные для подавления пульсаций выпрямленного напряжения до уровня, при котором происходит нормальная работа потребителя. СФ бывают активные и пассивные. Простейшим СФ является конденсатор, включаемый параллельно нагрузке. Также можно подключить катушку индуктивности, но уже последовательно с нагрузкой. А можно комбинировать.

Форма выходного напряжения однополупериодного выпрямителя

Пример выпрямителя с простейшим сглаживающим фильтром

Форма выходного напряжения выпрямителя со сглаживающим фильтром

Итак, на выходе выпрямителя образуется пульсирующее напряжение. Допустим конденсатор разряжен. При подаче напряжения на конденсатор он начинает заряжаться - короткий отрезок на рисунке. Достигнув максимального значения, амплитуда выходного напряжения выпрямителя начинает уменьшаться до нуля. Соответственно, заряженный до максимального значения конденсатор начинает разряжаться через нагрузку - длинный отрезок. При следующем нарастании амплитуды процесс повторяется. Чем больше емкость, тем меньше пульсации.

Чаще емкостной и индуктивный фильтр комбинируют и получают так называемый LC-фильтр.

Простейший транзисторный фильтр

На коллектор транзистора VT поступает напряжение с выпрямителя с большой амплитудой пульсаций. Цепь базы питается через интегрирующую цепь RC. Эта цепочка сглаживает пульсации на базе транзистора. В принципе, эту цепь можно представить, как RC-фильтр. Чем больше постоянная времени ф = RC, тем меньше пульсации напряжения на базе транзистора.

9. Амплитудный диодный дискриминатор

Устройство, автоматически выделяющее электрические сигналы, амплитуда которых превышает определённое (пороговое) значение величины. А. д. широко применяют в телеуправлении и телеметрии, при выделении полезного сигнала из шумов, при исследовании случайных процессов с помощью амплитудных анализаторов. В А. д. используют электронные схемы или приборы, имеющие амплитудную характеристику с резко выраженной нелинейностью (изломом). Такими характеристиками обладают диоды (особенно электровакуумные), некоторые приёмно-усилительные лампы и специальные электронные спусковые схемы. Наиболее распространена в А. д. диодная схема с использованием излома характеристики анодного тока. В зависимости от запирающего напряжения, которое в такой схеме равно порогу дискриминации, через диод проходят только сигналы с амплитудой, превышающей запирающее напряжение. Точность такого А. д. в основном определяется стабильностью диодной характеристики. Для надёжной работы с сигналами малой амплитуды применяют предварительное усиление, а для исследования наносекундных импульсов производят дополнительное формирование сигналов с помощью специальных схем. Спусковые схемы в качестве А. д. позволяют получить на выходе импульсы, амплитуда и длительность которых не зависят от формы входного сигнала.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие полупроводникового диода. Вольт-амперные характеристики диодов. Расчет схемы измерительного прибора. Параметры используемых диодов. Основные параметры, устройство и конструкция полупроводниковых диодов. Устройство сплавного и точечного диодов.

    курсовая работа [1,0 M], добавлен 04.05.2011

  • Классификация диодов в зависимости от технологии изготовления: плоскостные, точечные, микросплавные, мезадиффузионные, эпитаксально-планарные. Виды диодов по функциональному назначению. Основные параметры, схемы включения и вольт-амперные характеристики.

    курсовая работа [909,2 K], добавлен 22.01.2015

  • Параметры, свойства, характеристики полупроводниковых диодов, тиристоров и транзисторов, выпрямительных диодов. Операционный усилитель, импульсные устройства. Реализация полной системы логических функций с помощью универсальных логических микросхем.

    контрольная работа [233,1 K], добавлен 25.07.2013

  • Понятие диодов как электровакуумных (полупроводниковых) приборов. Устройство диода, его основные свойства. Критерии классификации диодов и их характеристика. Соблюдение правильной полярности при подключении диода в электрическую цепь. Маркировка диодов.

    презентация [388,6 K], добавлен 05.10.2015

  • Понятие и классификация полевых транзисторов, их разновидности и функциональные особенности. Входные и выходные характеристики данных устройств, принцип их действия, внутренняя структура и элементы. Физическое обоснование работы и сферы применения.

    презентация [2,4 M], добавлен 29.03.2015

  • Исследование вольтамперных характеристик диодов, снятие характеристик при различных значениях напряжения. Аппроксимация графиков вольтамперных характеристик диодов, функции первой и второй степени, экспоненты. Исходный код программы и полученные данные.

    лабораторная работа [1,6 M], добавлен 24.07.2012

  • Классификация радиоволн по диапазонам и способам распространения. Явление рефракции и дифракции, рассеивания, отражения и преломления. Параметры антенн. Параметры и характеристики передающих и приемных антенн. Применение ДМВ, СМВ, МВ, ММВ и ДММВ.

    реферат [444,3 K], добавлен 29.08.2008

  • Вакуумные лампы с управлением током - важные элементы электронных схем. Использование вакуумных диодов для выпрямления, преобразования, умножения частоты, для детектирования. Вакуумный триод. Тетрод. Уравнение статической и динамической характеристики.

    реферат [1,0 M], добавлен 08.10.2008

  • Электронные устройства для преобразования энергии переменного тока в энергию постоянного тока. Классификация выпрямителей, их основные параметры. Работа однофазной мостовой схемы выпрямления. Диаграммы токов и напряжений двухполупериодного выпрямителя.

    реферат [360,2 K], добавлен 19.11.2011

  • Анализ принципа функционирования импульсных источников питания (ИИП), их основные параметры, характеристики и способы построения. Разновидности схемотехнических решений ИИП. Структурная и принципиальная схема. Виды входного и выходного напряжения ИИП.

    научная работа [5,0 M], добавлен 01.03.2013

  • Структурные схемы автоматических регуляторов с типовыми сервоприводами, воспроизводящие основные законы регулирования методом параллельной и последовательной коррекции. Переходная характеристика ПД-регулятора, параметры настройки и функциональные схемы.

    реферат [300,7 K], добавлен 27.02.2009

  • Расчёт трансформатора и параметров интегрального стабилизатора напряжения. Принципиальная электрическая схема блока питания. Расчет параметров неуправляемого выпрямителя и сглаживающего фильтра. Подбор выпрямительных диодов, выбор размеров магнитопровода.

    курсовая работа [151,6 K], добавлен 14.12.2013

  • Принцип действия биполярного транзистора. Его статические характеристики и эксплуатационные параметры. Температурные и частотные свойства транзистора. Эквивалентные схемы полевых транзисторов. Схематическое изображение ПТ с изолированным затвором.

    лекция [460,9 K], добавлен 15.03.2009

  • Лампы бегущей волны, основные принципы их работы. Параметры и особенности конструкции ЛБВ. Системы формирования магнитного поля в ЛБВ. Методы магнитной фокусировки электронного луча. Модуляция с помощью электрода "штырь-кольцо". Методы повышения КПД ЛБВ.

    лекция [297,8 K], добавлен 16.12.2010

  • Построение схем с диодом из библиотеки SimElectronics и электрическим диодом из библиотеки Simscape и графиков зависимости тока от напряжения. Аппроксимация графиков вольтамперных характеристик диодов различными методами при 2-х разных температурах.

    контрольная работа [1,6 M], добавлен 08.07.2012

  • Физические величины и их измерения. Различие между терминами "контроль" и "измерение". Штриховая мера длины IА-0–200 ГОСТ 12069–90. Параметры для оценки шероховатости. Назначение, типы и параметры угольников поверочных. Измерение деформаций и напряжений.

    контрольная работа [2,3 M], добавлен 28.05.2014

  • Основные динамические характеристики средств измерения. Функционалы и параметры полных динамических характеристик. Весовая и переходная характеристики средств измерения. Зависимость выходного сигнала средств измерения от меняющихся во времени величин.

    презентация [127,3 K], добавлен 02.08.2012

  • Характеристика сущности резисторов, которые предназначены для перераспределения и регулирования электрической энергии между элементами схемы. Классификация, конструкции и параметры резисторов, характеризующие их эксплуатационные возможности применения.

    реферат [409,2 K], добавлен 10.01.2011

  • Параметры транзистора МП–40А, чертеж его основных выводов. Входная и выходная характеристики данного транзистора. Определение параметров для схемы с общим эмиттером. Схема с общим коллектором и общей базой. Расчет параметров для соответствующей схемы.

    контрольная работа [642,0 K], добавлен 28.03.2011

  • Классификация и основные параметры электрических источников света. Лампы накаливания. Люминесцентные лампы низкого и высокого давления. Схемы питания люминесцентных ламп. Основные светотехнические величины. Техника безопасности.

    курсовая работа [710,5 K], добавлен 21.09.2006

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.