Общие вопросы энергетики

Энергетические ресурсы земли и их использование. Топливно-энергетический комплекс России. Классификация и основное назначение электрических станций. Понятие потребителей электрической энергии. Графики электрических и тепловых нагрузок энергосистем.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 11.07.2015
Размер файла 416,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Для крупных городских и пригородных ТЭЦ основным видом тепловой нагрузки является отопительная, и поэтому значение фмакс. для них ниже числа часов использования максимума электрической нагрузки.

Рис. 3. График суточной тепловой нагрузки предприятий:

- - - лето;

------ зима

Рис. 4. Суточные графики изменения расхода теплоты на бытовые нужды района: а -- в рабочие дни недели; б -- по субботам.

Потребление теплоты на горячее водоснабжение является круглогодичным, однако средняя нагрузка летом снижается относительно зимней на 15-25%. График нагрузки горячего водоснабжения в течение одних суток приведен на рис. 5 и подобен суточному графику потребления электроэнергии.

Рис. 5. Суточный график нагрузки горячего водоснабжения.

Ночью имеет место глубокий провал нагрузки, затем утром -- пик нагрузки, за которым следуют дневной провал примерно до среднесуточной нагрузки Qср и вечерний пик. Суточные графики нагрузки горячего водоснабжения различны для различных дней недели. Особенно высокий вечерний пик эта нагрузка имеет в субботу.

При расчете тепловых нагрузок принимается постоянная средненедельная нагрузка горячего водоснабжения, которая подсчитывается по нормам на одного жителя и затем суммируется.

8. Балансы мощности и энергии энергосистем

Процессы производства и потребления электроэнергии в энергосистемах в каждый момент времени происходят одновременно. Отсюда - должно иметь место соответствие между расходной частью баланса мощности, к которой относится мощность нагрузок с учетом потерь в сетях и собственных нужд электростанций, и его приходной частью, к которой относится располагаемая мощность электростанций (с учетом обменных перетоков между энергосистемами). Поскольку потребители электроэнергии имеют активно-индуктивную нагрузку, рассматривают балансы активной и реактивной мощности в электроэнергетической системе.

В условиях эксплуатации баланс мощности составляется на каждый час суток (диспетчерский график нагрузки) и на каждый месяц календарного года. При этом производится проверка достаточности в системе мощностей (активной и реактивной) для покрытия ее максимальной нагрузки в суточном, месячном и годовом разрезах.

При проектировании энергосистем баланс мощности составляется для определения суммарного необходимого ввода мощности на электростанциях и обмена потоками мощности с другими энергосистемами. Отличительной чертой здесь является многовариантность расчетов, определяемая различными прогнозами динамики роста или снижения энергопотребления, различными прогнозами развития структуры генерирующих мощностей.

Баланс активной мощности производится для периода прохождения абсолютного годового (зимнего) максимума нагрузки энергосистемы. При наличии в энергосистеме крупных сезонных потребителей электроэнергии или электростанций с сезонным изменением располагаемой мощности (ГЭС, ТЭЦ) производится проверка баланса для весенне-летнего сезона. Для энергосистем с большим удельным весом нерегулируемых по генерируемой мощности электростанций (АЭС) баланс активной мощности составляется и для минимальной нагрузки выходных дней.

Общее выражение для баланса активной мощности имеет вид

,

Где - суммарная располагаемая мощность энергосистемы,

- суммарная мощность потребителей в момент прохождения годового максимума.

Форма баланса мощности, используемая при проектировании энергосистем, приведена в табл. 2.

Таблица 2

№ п/п

Наименование

1

2

3

4

Потребность

Совмещенный максимум нагрузки энергосистемы

Потери и необходимый резерв

Передача мощности в другие системы (экспорт)

Итого потребная мощность электростанций (1+2+3)

5

6

7

8

9

10

Покрытие

Установленная мощность электростанций

Неиспользуемая мощность и резерв (ограничения в использовании)

Располагаемая мощность, в том числе ГЭС, КЭС, ТЭЦ (5 - 6)

Получение мощности из других систем (импорт)

Итого покрытие (7+8)

Избыток (+) или дефицит (-) мощности (9 - 4)

Расходная часть баланса мощности (потребность) приводится к той или иной ступени номинального напряжения в зависимости от принадлежности системы к конкретному иерархическому уровню электроснабжения. Для РЭС это приведение обычно осуществляется к шинам 110 кВ, для ОЭС - 220 кВ. При приведении к ступени U расчетная активная мощность определяется путем суммирования нагрузок потребителей с учетом коэффициентов разновременности максимумов , соответствующих всем более низким ступеням напряжения

,

Где - суммарная максимальная мощность потребителей энергосистемы, включая постоянно присоединенную нагрузку смежных районов соседних РЭС за вычетом нагрузки, постоянно присоединенной к смежным районам других РЭС.

При перспективном проектировании, когда точные графики нагрузок потребителей могут быть неизвестны, используют среднестатистические значения коэффициентов разновременности максимумов для конкретных ступеней напряжений:

.

Второй составляющей расходной части баланса активной мощности являются суммарные потери мощности при передаче и распределении электроэнергии (потери в ЛЭП и силовых трансформаторах), приближенно оцениваемые как некоторая доля суммарной расчетной мощности:

,

где - эквивалентный коэффициент, учитывающий потери в сетях всех номинальных напряжений энергосистемы.

К этой же составляющей относят необходимый расчетный резерв активной мощности.

Суммарная эквивалентная нагрузка энергосистемы:

.

Третья составляющая расходной части баланса - экспортируемая мощность в другие энергосистемы того же иерархического уровня по межсистемным ЛЭП (включая экспорт), выдаваемая в режиме максимальной нагрузки (задается энергообъединением более высокого уровня).

Таким образом, потребная активная мощность энергосистемы

.

Приходная часть баланса активной мощности (покрытие) формируется на основании технико-экономических расчетов по выбору структуры генерирующих мощностей, т.е. расчетов по обоснованию состава, местоположения, основных параметров (типа, единичной мощности, количества агрегатов), вида используемого топлива и очередности строительства электростанций на рассматриваемую перспективу.

Определение оптимального развития генерирующих мощностей производится в увязке с оптимизацией топливно-энергетического комплекса (ТЭК) страны. В результате оптимизации ТЭК по ЕЭС в целом и каждой ОЭС определяются оптимальные диапазоны суммарных мощностей АЭС, КЭС и ТЭЦ на разных видах органического топлива, общая мощность ГЭС и специализированных пиковых установок, а также оптимальные размеры перетоков мощности и энергии между ОЭС.

В основе формирования приходной части активной мощности энергосистемы лежит суммарная установленная мощность генераторов электростанций энергосистемы как сумма номинальных мощностей генераторов:

,

Где k - число электростанций энергосистемы,

n - число генераторов j-й электростанции,

- установленная мощность j-й электростанции.

Суммарная располагаемая мощность генераторов энергосистемы меньше установленной мощности на значение резервной и неиспользуемой мощности:

.

Суммарная необходимая резервная мощность предназначена для проведения плановых текущих ремонтов основного оборудования электростанций, а также для покрытия дефицита мощности в системе (оперативный резерв) :

.

Мощность приближенно оценивается в 4-6% от . Дополнительного резерва для капитальных ремонтов не предусматривается, т.к. они выполняются в летний период, когда имеются провалы в графике месячных максимальных нагрузок.

Оптимальный оперативный резерв энергосистемы в России составляет 5-10% от , причем меньшее значение соответствует более крупным энергосистемам.

Причиной неиспользования мощности является в основном неполное освоение в эксплуатации агрегатов, параметры которых не соответствуют номинальным значениям. В целом эта мощность не превышает 1% от .

Располагаемую мощность генераторов энергосистемы дополнительно уменьшают на суммарную нагрузку собственных нужд электростанций (1-5% в зависимости от типа и мощности электростанций).

Мощность, выдаваемая с шин электростанций системы:

.

Полная располагаемая мощность энергосистемы складывается из мощности, выдаваемой генераторами, и мощности, импортируемой из соседних энергосистем:

.

Баланс активной мощности считается удовлетворительным, если отклонение приходной части баланса от расходной не превышает половины мощности наиболее крупного из вводимых агрегатов. Дефициты или избытки мощности в указанных пределах рассматриваются как случайные отклонения, лежащие в пределах точности прогноза.

Баланс реактивной мощности определяется аналогично условию для активных мощностей. Суммарное потребление реактивной мощности определяется реактивной нагрузкой потребителей и потерями реактивной мощности в линиях и трансформаторах электрических сетей. При этом доля потерь реактивной мощности достаточно высока и достигает 50% в общем потреблении. Располагаемая реактивная мощность генераторов электростанций составляет 0,5-0,75 квар на 1 кВт установленной мощности и недостаточна для покрытия общей потребности энергосистемы в реактивной мощности. Обеспечение баланса реактивной мощности требует установки непосредственно у потребителей источников реактивной мощности (компенсирующих устройств). В сетях 35-110 кВ передача реактивной мощности влияет на степень падения напряжения в элементах сети и условия регулирования напряжения. В сетях 220 кВ и выше с достаточно протяженными и сильно загруженными ЛЭП обеспечение баланса реактивной мощности является важнейшим условием, гарантирующим статическую устойчивость энергосистемы в нормальных и послеаварийных режимах.

Баланс электроэнергии энергосистем составляется:

- для проверки возможности выработки требуемого количества электроэнергии в течение года электростанциями, учтенными в балансе мощности;

- для определения потребности энергосистемы в топливе;

- для определения потоков энергии между энергосистемами.

Расходная часть баланса энергии складывается из суммарного электропотребления данной энергосистемы (с учетом собственных нужд электростанций и потерь в сетях), расхода энергии на заряд гидроаккумулирующих электростанций (ГАЭС) и планируемой передачи электроэнергии в другие энергосистемы.

Приходная часть баланса энергии включает в себя выработку электроэнергии всеми электростанциями системы и планируемое получение энергии из других энергосистем. Выработка ГЭС учитывается в балансе по среднему значению за несколько лет.

Для энергосистем с большим удельным весом ГЭС (30% и более) производится проверка баланса также и для условий гарантированной в условиях маловодного года 95%-ной обеспеченности выработки электроэнергии гидроэлектростанциями.

Распределение годовой выработки электроэнергии между тепловыми электростанциями производится исходя из их экономичности, обеспеченности ресурсами, стоимости различных видов топлива.

Для приближенных расчетов выработка отдельными типами электростанций может оцениваться по годовым числам часов использования их установленной мощности.

Баланс энергии считается удовлетворительным, если число часов использования среднегодовой располагаемой мощности тепловых электростанций в среднем не превышает 6500 часов. При меньших значениях числа часов использования необходимо предусматривать либо мероприятия по разгрузке электростанций, либо по передаче избытков электроэнергии в смежные энергетические системы.

9. Традиционное топливо и его характеристики

Традиционное топливо - это горючие вещества, выделяющие при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в другие виды энергии. К ним относятся полезные ископаемые органического происхождения - уголь, горючие газы, горючие сланцы, нефть, торф, а также древесина и растительные отходы. Органическое топливо является в настоящее время основным источником энергии и обеспечивает 70-80% потребителей теплоты и электроэнергии.

В ядерной энергетике применяется понятие ядерного топлива - вещества, ядра которого делятся под действием нейтронов, выделяя при этом энергию в основном в виде кинетической энергии осколков деления ядер и нейтронов.

Традиционное органическое топливо подразделяют на твердое топливо (дрова, торф, бурый и каменный уголь, антрациты и полуантрациты, сланцы), жидкое топливо (нефть, бензин, керосин, дизельное топливо, мазут, метанол), газообразное топливо (природный и нефтепромысловый газ, коксовый и полукоксовый газ, доменный газ, водород и др.). Для анализа тепловых характеристик традиционных топлив, определения состава газов и других расчетов необходимо знать химическую структуру каждого вида топлива. Органическая часть твердых и жидких топлив состоит из большого количества сложных химических соединений, в состав которых в основном входят пять химических элементов: углерод С, водород Н, кислород О, сера S и азот N. Кроме того, топливо содержит минеральные примеси А и влагу W, представляющие вместе внешний балласт топлива.

Химический состав твердых, жидких и газообразных топлив определяют не по количеству соединений, а по суммарной массе химических элементов (в процентах на 1 кг или 1 куб. м топлива), т.е. устанавливают элементарный состав топлива. Различают три основных элементарных состава топлива:

рабочая масса топлива C+H+O+N+S+A+W=100%;

сухая масса топлива C+H+O+N+A=100%;

горючая масса топлива C+ H+O+N=100%.

Рабочей считается масса топлива в том виде, в каком она поступает на предприятие.

Если топливо нагреть до 102-105 єС, то влага испарится, и получится сухая масса топлива. Название горючей массы является условным, так как входящие в его состав азот и кислород не являются горючими элементами и составляют внутренний балласт топлива. Азот и кислород способствуют процессу горения топлива.

Горючими элементами топлива являются углерод, водород и сера. Углерод - основной, горючий элемент топлива. Он имеет высокую теплоту сгорания (33600 кДж/кг) и составляет большую часть рабочей массы топлива (50-75% для твердых топлив и 80-85% для мазутов). Водород имеет высокую теплоту сгорания (примерно 130000 кДж/кг), однако его количество в твердых топливах невелико (Н = 2-6%) и несколько больше в жидких (около 10%). Это делает теплоту сгорания жидких топлив выше, чем твердых.

Сера имеет невысокую теплоту сгорания (9000 кДж/кг). Содержание ее в топливах невелико (S = 0,2-4%), поэтому сера, как горючая составляющая, не ценится.

Наличие окислов серы в продуктах сгорания при определенных концентрациях опасно для организмов и растений и требует определенных мер и средств для ее улавливания или рассеивания в атмосфере.

Основными техническими характеристиками топлива являются: теплота сгорания; выход газообразных веществ при нагреве, зольность топлива, свойства зольного остатка, влажность и сернистость топлива.

Теплота сгорания Q является основной характеристикой топлива. Различают высшую и низшую теплоту сгорания. Высшей теплотой сгорания называют количество тепла, которое выделяется при сгорании 1 кг твердого (жидкого) или 1 куб. м газообразного топлива. Низшая теплота сгорания отличается от высшей на теплоту испарения влаги и влаги, образующейся при горении водорода. Чем больше влажность топлив, тем меньше будет величина низшей теплоты сгорания.

Высшая величина сгорания твердого и жидкого топлива определяется экспериментально. Низшая теплота сгорания положена в основу классификации топлив.

Выход летучих веществ. Если сухую массу топлива поместить в тигель и постепенно нагревать в инертной среде без доступа воздуха, то будет происходить уменьшение ее массы. При высоких температурах начинается разложение кислородосодержащих молекул топлива с образованием газообразных продуктов, получивших название летучих веществ. Выход летучих веществ из твердых топлив происходит в интервале температур от 110 до 1100єС.

Выход летучих веществ определяет температуру воспламенения топлива и условия его хранения, сильно влияет на конструкцию топок, где сжигается это топливо.

Чем больше выход летучих веществ, тем легче воспламеняется топливо (газообразные, летучие вещества имеют низкую температуру воспламенения).

Зольность топлива. В процессе горения топлива его минеральная часть подвергается химическим преобразованиям. Масса несгораемого остатка - золы оказывается на 10-15% меньше, чем масса исходной минеральной части топлива и существенно отличается от нее по составу. Свойства золы играют большую роль при сжигании топлива.

Образовавшаяся после сгорания топлива зола - это смесь минералов, а их сплавы, возникающие в зоне высоких температур, называют шлаками. Суммарное количество золы и шлаков принято называть зольностью топлива. Температуры плавления отдельных минералов и их сплавов сильно различаются и находятся в пределах от 600 до 3000 єС. Поэтому плавление представляет собой процесс постоянного размягчения от твердого до жидкого состояния по мере роста температуры.

Влажность топлива. Влажность топлива (W) в процентах от его рабочей массы определяется опытным путем сушки при температуре 105 єС до достижения постоянства массы.

Большая влажность топлива вызывает трудности при сжигании. Снижается теплота сгорания, растет расход топлива, увеличиваются потери тепла с уходящими газами. Влажность топлива вызывает усиление коррозии металла отдельных конструкций топок, приводит к повышенному загрязнению поверхностей нагрева.

Сернистость топлива. При сжигании сера создает серьезные экологические проблемы. Окислы серы и азота, образующиеся в зоне высоких температур, представляют большую опасность для жизнедеятельности. Для улавливания этих окислов строят сложные очистные сооружения, что приводит к удорожанию примерно вдвое энергетических установок.

Рассмотрим характеристики отдельных видов топлив, которые зависят от химического возраста этих топлив.

Торф. Самый молодой вид топлива. Энергетические установки сжигают преимущественно фрезерный торф, получаемый путем срезания с поверхности тонкого слоя фрезами. Фрезерный торф имеет высокую влажность рабочей массы (W до 50% и более) и в связи с этим низкую теплоту сгорания Q = 8500 кДж/кг. Как молодое топливо торф обладает большим выходом летучих веществ (V = 70%), что позволяет успешно его сжигать в пылевидном состоянии. Из-за большой влажности и низкой теплотворности его не перевозят на дальние расстояния. Торф используют как местное сырье.

Бурые угли по содержанию влаги в рабочей массе делятся на сильно влажные, повышенно влажные, влажные. Кроме большой влажности, бурые угли имеют высокую зольность и невысокую теплоту сгорания (Q = 6700 -17000 кДж/кг), поэтому дальние перевозки также нецелесообразны. Большой выход летучих веществ обеспечивает высокоэкономичное сжигание этих углей в виде подсушенной пыли.

Каменные угли объединяют большое количество углей различного химического возраста. Молодые каменные угли по выходу летучих веществ, близки к бурым углям, но имеют меньшую влажность и зольность. Это увеличивает их теплоту сгорания (Q = 19000-27000 кДж/кг). Средняя по возрасту группа углей отличается повышенной зольностью. Их теплота сгорания ниже, чем у молодых углей. Более старые угли имеют малую влажность, невысокую зольность и, соответственно, высокую теплотворную способность (Q = 25000-27000 кДж/кг), однако низкий выход летучих веществ затрудняет их воспламенение в топках.

Полуантрациты и антрациты - это наиболее старые угли с низким выходом летучих веществ, низкой влажностью и зольностью. Также являются хорошим сырьем для металлургической промышленности.

Мазут. К техническим характеристикам жидкого топлива относятся вязкость и температура вспышки. Вязкость мазута положена в основу его маркировки. Она измеряется при определенных стандартных температурах как отношение времени вытекания через стандартное отверстие мазута и такого же количества воды и определяется в градусах условной вязкости.

С повышением температуры вязкость мазута уменьшается.

Температура вспышки мазута составляет 135-240 єС в зависимости от его вязкости. Теплота сгорания Q = 40000 кДж/кг.

Газы. В качестве топлива используют преимущественно природный (естественный) горючий газ, а также различные виды искусственных (производственных) горючих газов. Газовое топливо, как правило, представляет собой смесь нескольких индивидуальных газов.

Естественные горючие газы подразделяется на собственно газы природные и газы нефтяные попутные.

Месторождения, содержащие только природное газовое топливо, в зависимости от состава последнего делятся на чисто газовые и газоконденсатные.

Природные газы преимущественно содержат метан и его гомологи (этан, пропан, бутан и другие). В них также присутствуют углекислый газ, азот, сероводород и другие. Природные газы - это высокоэкономичное энергетическое топливо, имеющее высокую теплоту сгорания (Q = 35000 кДж/кг и выше).

Газ чисто газовых месторождений состоит почти из одного метана. Этан и пропан содержатся в общем объеме в незначительных количествах, другие углеводороды и прочие газы практически отсутствуют. При таком составе (содержание гомологов менее 50 г/куб. м) газ называют бедным или тощим.

Газ газоконденсатных месторождений помимо метана содержит значительное количество высших углеводородов, главным образом пропан и бутан. Газ с высоким содержанием гомологов называют богатым или жирным.

Газы нефтяные попутные содержат в значительных количествах гомологи, в том числе высокомолекулярные предельные углеводороды, кроме того, в них присутствуют пары воды, углекислый газ, азот, сероводород, редкие газы - гелий, аргон. Попутный газ (нефтепромысловый) получают при разработке нефтяных месторождений. Количество газов (в куб. м), приходящихся на 1 тонну добытой нефти (т.н. газовый фактор), зависит от условий формирования и залегания нефтяных месторождений и может изменяться от 1-2 до нескольких тысяч куб. м/т нефти.

Искусственные газы содержат больше негорючих компонентов (балласта). Газы коксовых печей содержат до 57% водорода, 22% метана, около 7% окиси углерода, остальное - балластные газы. Теплота сгорания коксового газа около 17000 кДж/кг. Доменный газ содержат около 30% горючих компонентов, остальное - балласт. Поэтому теплота сгорания доменного газа низкая и немного превышает 4000 кДж/кг условного топлива.

Литература

1. ПУЭ, 7-е изд. М.: Энергосервис, 2004 г.

2. Стерман Л.С., Лавыгин Л.М., Тишин С.Г. Тепловые и атомные электрические станции: Учебник для вузов. - 3-е изд., перераб. - М.: МЭИ, 2004. - 424 с.

3. Тепловые и атомные электрические станции // Под ред. В.А. Григорьева, В.М. Зорина. М.: Энергоатомиздат, 1988.

4. Вукалович М.П. Теплофизические свойства воды и водяного пара. - М: Машиностроение, 1967.

5. Соколов Е.Я. Теплофикация и тепловые сети. М.: Энергоатомиздат, 1982.

6. Стырикович М.А., Катковская К.Я., Серов Е.П. Парогенераторы электростанций. - М.-Л.: Энергия, 1966.

7. Роддатис К.Ф., Справочник по котельным установкам малой мощности. - М.: Машиностроение, 1984.

8. Газомазутные паровые котлы типа Е (ДЕ). Техническое описание, инструкция по монтажу, обслуживанию и ремонту. - Бийск: Бийскэнергомаш, 1995.

9. Зыков А.К. Паровые и водогрейные котлы. - М.: Машиностроение, 1987.

10. Марочкин В.К. Паровые, водогрейные котлы низкого давления. Справочник. - М.: Энергетика, 1991.

11. Нормы технологического проектирования тепловых электростанций ВНТП 81. - М.: Теплоэлектропроект, 1981.

12. Стефан Е.П. Основы автоматического регулирования теплоэнергетических объектов. - М.: Наука, 1973.

13. А.В. Троицкий. Природоохранные проблемы в гидроэнергетике. М.: Энергия. - 2003, № 5. С. 29-34.

14. Битюкова В.Р., Бурденко В.О. Реструктуризация топливного баланса российских регионов // Экология и промышленность России, 2002.

15. Протасов В.Ф. Экология, здоровье и охрана окружающей среды в России (учебное и справочное пособие) // М.: Финансы и статистика, 1999.

16. Крылов Д.А, Путинцева В.Е. ТЭС: уголь и газ // Ядерное общество. №1. 2001.

17. Крылов Д.А., Путинцева В.Е. «Газпром» предупредил: газа на всех не хватит // Энергия, №4, 2002.

18. Гидроэнергетика и комплексное использование водных ресурсов СССР. - М.: Энергоатомиздат, 1982г.

19. Дьяков А.Ф. Проблемы развития гидроэнергетики России. М.: Энергетик, 2002, № 2.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие о многоступенчатой передаче электроэнергии. Характеристики основных промышленных потребителей. Графики электрических нагрузок. Определение приведенного числа приемников, средних нагрузок, расхода электроэнергии, расчетных электрических нагрузок.

    контрольная работа [465,0 K], добавлен 13.07.2013

  • Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.

    реферат [27,7 K], добавлен 16.09.2010

  • Задачи и критерии оптимизации режимов энергосистем. Математическое моделирование. Оптимизации режимов электрической сети. Контроль напряжений узлов и перетоков мощности в линиях электропередачи. Планирование режимов работы электрических станций.

    реферат [198,5 K], добавлен 08.01.2017

  • Принцип действия тепловых конденсационных электрических станций. Описание назначения и технических характеристик тепловых турбин. Выбор типа и мощности турбогенераторов, структурной и электрической схем электростанции. Проектирование релейной защиты.

    дипломная работа [432,8 K], добавлен 11.07.2015

  • Силовое, измерительное и коммутационное оборудования электрических станций и подстанций. Механизм выработки энергии на тепловых электрических станциях. Особенности построения государственных районных электрических станций. Структурные схемы подстанций.

    презентация [7,8 M], добавлен 10.03.2019

  • Расчет электрических нагрузок. Построение графиков электрических нагрузок. Основные показатели и коэффициенты, характеризующие графики нагрузок. Средняя активная мощность. Выбор силовых трансформаторов. Схемы электрических соединений подстанции.

    дипломная работа [2,7 M], добавлен 23.06.2011

  • Факторы распространенности электроэнергии на современных производствах и в быту в виде энергии пара, горячей воды, продуктов сгорания топлива. Виды тепловых электрических станций. Графики электрической и тепловой нагрузки, способы покрытия их пиков.

    контрольная работа [62,5 K], добавлен 19.01.2011

  • Расчет годовой потребности в электрической энергии и электрических нагрузок потребителей. Расчет годовой потребности района теплоснабжения в тепловой энергии. Выбор турбинного и котельного оборудования. Выработка электроэнергии по теплофикационному циклу.

    курсовая работа [459,3 K], добавлен 04.04.2012

  • Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).

    контрольная работа [45,8 K], добавлен 31.01.2015

  • Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.

    учебное пособие [2,2 M], добавлен 19.04.2012

  • Интеллектуальные энергетические системы: технические возможности и эффективность. Рынок электрической энергии в России: состояние и проблемы развития. Анализ аварийных электрических режимов в электроэнергетической системе и расчет управляющих воздействий.

    курсовая работа [461,4 K], добавлен 12.12.2013

  • Принцип построения схем распределения электрической энергии внутри жилых зданий. Описание схемы электроснабжения двенадцати этажного дома. Метод определения электрических нагрузок в жилых зданиях. Расчётные нагрузки жилых домов второй категории.

    контрольная работа [1,1 M], добавлен 24.11.2010

  • Характеристика потребителей электрической энергии. Расчет электрических нагрузок, мощности компенсирующего устройства, числа и мощности трансформаторов. Расчет электрических сетей, токов короткого замыкания. Выбор электрооборудования и его проверка.

    курсовая работа [429,5 K], добавлен 02.02.2010

  • Использование альтернативных океанических возобновляемых источников энергии: биомассы и водорода, волн и течения, разности в солености морской и речной воды. Энергетический потенциал тепловых станций в тропиках и на осмотических станциях в устьях рек.

    реферат [589,8 K], добавлен 15.06.2011

  • Характеристика штамповочного цеха, электрических нагрузок и его технологического процесса. Классификация помещений по взрыво-, электробезопасности. Расчет электрических нагрузок силового оборудования, компенсирующего устройства и выбор трансформаторов.

    дипломная работа [318,6 K], добавлен 10.07.2015

  • Проектирование цикла тепловых электрических станций: паросиловой цикл Ренкина, анализ процесса трансформации. Регенеративный цикл паротурбинной установки, техническая термодинамика и теплопередача, установки со вторичным перегреванием пара, цикл Карно.

    курсовая работа [360,0 K], добавлен 12.06.2011

  • Электрическая энергия как основной вид энергии при разработке угольных сланцевых россыпных, рудных и нерудных месторождений. Характеристика внешнего и внутреннего электроснабжения. Классификация электрических станций, подстанций и электрических сетей.

    реферат [22,2 K], добавлен 03.07.2009

  • Вторичные энергетические ресурсы. Проблемы энергосбережения в России. Проведение расчетов потребления коммунальных ресурсов в многоквартирном доме. Климатические параметры отопительного периода. Потребление энергии в системе горячего водоснабжения.

    курсовая работа [581,8 K], добавлен 25.12.2015

  • Особенности сборки простейших электрических цепей. Использование электроизмерительных приборов. Методы анализа электрических цепей со смешанным соединением резисторов (потребителей). Справедливость эквивалентных преобразований схем электрических цепей.

    лабораторная работа [460,4 K], добавлен 27.07.2013

  • Характеристика электроприемников городских электрических сетей. Графики нагрузок потребителей. Система электроснабжения микрорайона. Число и тип трансформаторных подстанций. Расчет токов короткого замыкания. Расчет электрических сетей.

    курсовая работа [98,8 K], добавлен 15.02.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.