Компенсация реактивной мощности - проблема энергосистемы и потребителя
Возникновение проблемы компенсации реактивной энергии и мощности. Характеристика компенсаторов как устройств для компенсации реактивной энергии. Анализ системы скидок и надбавок в тарифах на электроэнергию для снижения величины реактивной мощности.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 18.07.2015 |
Размер файла | 15,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Компенсация реактивной мощности - проблема энергосистемы и потребителя
Якшина Н.В., ведущий инженер ОАО «Белгородэнерго», г. Белгород
В настоящее время проблема компенсации реактивной мощности особенно остро обсуждается как энергетиками, так и потребителями. Опубликовано множество распорядительных и нормативных документов, касающихся этой проблемы. Что послужило толчком к такому всеобщему вниманию? Неужели до сих пор компенсация реактивной мощности не имела стратегического значения? Причинам и следствиям этих актуальных вопросов, а также грядущим перспективам в этом направлении и посвящена данная статья.
Для более глубокого осмысления проблемы давайте совершим короткий экскурс в основы электротехники.
Проблема компенсации реактивной энергии и мощности возникла одновременно с применением на практике переменного и особенно трехфазного тока. При включении в цепь индуктивной или емкостной составляющей нагрузки (а это и всевозможные двигатели, и промышленные печи, и даже высоковольтные линии электропередач) между электроустановкой и источником возникает обмен потоками энергии, суммарная мощность которого равна нулю, но при этом он вызывает дополнительные потери активной энергии, потери напряжения и снижает пропускную способность электрических сетей. Так как избежать подобных негативных воздействий невозможно, необходимо просто свести их к минимуму.
Для компенсации реактивной мощности используются различные устройства на основе статических или синхронных элементов. В общих чертах действие всех компенсирующих устройств основано на том, что на участке цепи с индуктивной или емкостной нагрузкой устанавливается дополнительный источник реактивной мощности, таким образом, описанный выше обмен потоками энергии происходит между этим источником и устройством на небольшом участке цепи, не проходя по основным сетям и, следовательно, не вызывая в них негативных последствий.
Синхронная компенсация может достигаться с помощью специализированных устройств -синхронных компенсаторов, которые представляют собой синхронные двигатели без нагрузки на валу, а также с использованием уже имеющихся двигателей в режиме перевозбуждения или путем перевода генераторов в режим синхронных компенсаторов. Таким приемом пользуются промышленные потребители, имеющие собственные блок-станции и синхронные двигатели.
Статические компенсаторы тоже бывают двух видов - продольные и поперечные. Продольная компенсация применяется для высоковольтных линий электропередач. Дело в том, что высоковольтные ЛЭП обладают собственным емкостным сопротивлением и генерируют реактивную мощность, основным негативным следствием которой являются не столько потери электроэнергии, сколько потери напряжения и, следовательно, снижение качества электроснабжения. Для предотвращения этих последствий в схему последовательно включают компенсирующее устройство, которое уменьшает реактивное сопротивление линии.
Но наиболее распространено использование статических компенсаторов, которые представляют собой батарею конденсаторов и включаются на шины подстанций. Такая компенсация применяется в различных узлах электрических сетей и для различных классов напряжения.
Итак, основное влияние на величину реактивной мощности в электрических сетях оказывает характер нагрузки, то есть характеристики электроустановок, присоединенных к электрическим сетям энергосистемы. Получается, что энергокомпания несет убытки и риски, возникающие по причине потребителя. Разграничение зон ответственности за реактивную составляющую мощности между распределительной сетевой компанией и потребителем - пожалуй, самая сложная задача в процессе управления реактивной мощностью.
Стимулирование промышленных потребителей к поддержанию оптимального для энергосистемы коэффициента реактивной мощности было введено еще в 30-х годах прошлого века, во времена интенсивной индустриализации. Была разработана гибкая система скидок и надбавок к тарифу на электроэнергию. Основной целью снижения величины реактивной мощности тогда было стремление к минимизации расходов на строительство электрических сетей.
То есть, снизив величину реактивной мощности, можно было сэкономить на сечении проводов и уменьшении мощности трансформаторов.
Система скидок и надбавок с течением времени претерпевала свои изменения, равно как и менялись нормы на оптимальный коэффициент реактивной мощности. Последняя редакция «Правил применения скидок и надбавок к тарифам на электрическую энергию за потребление и генерацию реактивной энергии» была утверждена в декабре 1997 года. А спустя три года она же была отменена приказом Минэнерго от 28 декабря 2000 года №167. Получается, что с 2001 года никакой правовой основы для взаимодействия с потребителем в части оптимизации реактивной мощности энергосистема не имела. Принимались ли какие-либо меры в этот период сетевыми компаниями? Безусловно, да. Мероприятия по оптимизации реактивной мощности в электрических сетях внедрялись как в Белгородэнерго, так и в других сетевых компаниях. Но, не имея порой полной информации о режимах работы потребительских электроустановок, и не имея возможности повлиять на них, вряд ли можно было добиться полного контроля над процессом управления реактивной мощностью.
Такое половинчатое решение проблемы привело к совершенно негативным последствиям, как для энергосистемы, так и для потребителей. Во-первых, несоблюдение потребителями установленных норм по коэффициенту реактивной мощности создает дополнительные потери для энергосистемы, а во-вторых, снижение пропускной способности сетей ухудшает показатели работы сетевой компании и создает риск прекращения электроснабжения для потребителя. Крупнейшая авария на подстанции Чагино в Московской области 25 мая 2005 года стала еще одним сигналом к тому, что проблемой компенсации реактивной мощности и взаимодействия сетевых компаний с промышленными и сельскохозяйственными потребителями нужно заниматься. Тогда локальная авария на трансформаторной подстанции повлекла за собой каскадное отключение электроэнергии, вызванное неспособностью сетей пропускать повышенные нагрузки, несмотря на вполне допустимые расчетные режимы. Конечно, реактивная мощность в сети не стала причиной массовых отключений, но своевременная ее оптимизация могла бы предотвратить столь тяжелые последствия.
В наше время речь уже не идет об экономии при строительстве электрических сетей, как в 30-е годы. В наш век высокотехнологичных процессов и стремительно развивающихся отраслей потребитель требует от нас самого главного - надежного, бесперебойного и качественного электроснабжения. Одним из слагаемых успеха в этом направлении и является контроль и управление реактивной мощностью со стороны сетевых компаний. Именно управление. Локального снижения и компенсации здесь недостаточно. Передача электроэнергии
- это непрерывный процесс, владелец которого
- электросетевая компания, и она должна полностью контролировать все его параметры.
Последние законодательные акты опровергают представление процесса управления реактивной мощностью проблемой только энергосистемы. На потребителя тоже возлагаются определенные требования и обязанности. В частности, недавно опубликован и введен в действие Приказ Минпромэнерго от 22 февраля 2007 года № 49, утверждающий «Порядок расчета значений соотношения потребления активной и реактивной мощности для отдельных энергопринимающих устройств потребителей электрической энергии, применяемых для определения обязательств сторон в договорах об оказании услуг по передаче электрической энергии (договоры энергоснабжения)». Данный порядок утверждает предельные значения коэффициента реактивной мощности tgц для потребителей. компенсация реактивный энергия мощность
В настоящее время в разработке находится новая методика применения скидок и надбавок к тарифам на электроэнергию. Согласно данной методике потребителю будет дана возможность получить скидку за поддержание требуемого коэффициента реактивной мощности в случае участия потребителя по соглашению с сетевой организацией в регулировании реактивной мощности в часы больших и/или малых нагрузок электрической сети. С другой стороны, при нарушении потребителем установленных норм величина тарифа будет расти. В то время, пока методика только готовится к утверждению, ОАО «Белгородэнерго» и другие распределительные сетевые компании интенсивно готовятся к переходу на новый уровень взаимоотношений с потребителем и новую организацию работ по управлению реактивной мощностью.
В частности проводится инвентаризация и модернизация средств учета реактивной мощности, пересматриваются технические условия на присоединение новых потребителей, производятся расчеты предельных соотношений активной и реактивной мощности для включения в договора энергоснабжения с потребителями и многие другие мероприятия. В ОАО «Белгородэнерго» готовится к выходу Регламент порядка работ и взаимоотношений при учете и контроле потребляемой электрической мощности потребителей, присоединенным к электрическим сетям ОАО «Белгородэнерго». Более того, на особо проблемных участках электрических сетей уже устанавливаются компенсирующие устройства.
Значение оптимизации реактивной мощности трудно переоценить. Время требует и от энергетиков и от потребителей повышенной дисциплины и ответственности в решении этого вопроса для достижения и теми, и другими высоких показателей в нынешней работе и качественного развития в будущем.
Журнал «Электротехнические комплексы и системы управления», www.v-itc.ru/electrotech
Размещено на Allbest.ru
...Подобные документы
Основные принципы компенсации реактивной мощности. Оценка влияния преобразовательных установок на сети промышленного электроснабжения. Разработка алгоритма функционирования, структурной и принципиальной схем тиристорных компенсаторов реактивной мощности.
дипломная работа [2,1 M], добавлен 24.11.2010Источники реактивной мощности. Преимущества использования статических тиристорных компенсаторов - устройств, предназначенных как для выдачи, так и для потребления реактивной мощности. Применение и типы синхронных двигателей, их располагаемая мощность.
презентация [2,4 M], добавлен 10.07.2015Разработка алгоритма управления режимом реактивной мощности при асимметрии системы электроснабжения промышленного предприятия. Источники реактивной мощности. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии.
дипломная работа [1,6 M], добавлен 20.05.2017Анализ влияния компенсации реактивной мощности на параметры системы электроснабжения промышленного предприятия. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии. Моделирование измерительной части установки.
дипломная работа [1,7 M], добавлен 02.06.2017Оценка величины потребляемой реактивной мощности электроприемников. Анализ влияния напряжения на величину потребляемой реактивной мощности. Векторная диаграмма токов и напряжений синхронного генератора. Описания основных видов компенсирующих устройств.
презентация [1,9 M], добавлен 26.10.2013Потребители и нормирование использования реактивной мощности. Перечень и краткая характеристика основных источников реактивной мощности. Выработка или потребление реактивной мощности с помощью компенсирующих устройств. Маркировка конденсаторных батарей.
презентация [269,8 K], добавлен 30.10.2013Оценка стоимости конденсаторных установок и способы снижения потребления реактивной мощности. Преимущества применения единичной, групповой и централизованной компенсации. Расчет экономии электроэнергии и срока окупаемости конденсаторных установок.
реферат [69,8 K], добавлен 14.12.2012Способы повышения энергоэффективности производства и распределения электрической энергии путем внедрения установок компенсации реактивной мощности. Совершенствование электрификации животноводческого комплекса с. Большепесчанское Омской области.
дипломная работа [1,1 M], добавлен 23.06.2011Система электроснабжения ферросплавного производства. Руднотермические печи как источник реактивной мощности. Компенсация реактивной мощности в ферросплавном производстве. Экранирование короткой сети руднотермической печи, принцип и этапы процесса.
дипломная работа [186,1 K], добавлен 08.12.2011Естественный и искусственный способы снижения потребления реактивной мощности. Выбор силовых трансформаторов, сечения проводов, кабелей и шин. Защитные аппараты, предохранители, автоматы. Расчет защитного заземления. Построение графиков нагрузки.
реферат [310,6 K], добавлен 08.02.2010Виды, способы размещения и правила подключения источников реактивной мощности. Методы снижения потребления реактивной мощности: применение компенсирующих устройств, замена асинхронных двигателей синхронными, ограничение холостой работы двигателя.
презентация [382,3 K], добавлен 30.10.2013Связь подстанции с энергосистемой. Характеристика потребителей электроэнергии. Определение максимальных расчётных активных и реактивных нагрузок потребителей. Потери реактивной мощности в силовых трансформаторах. Компенсация реактивной мощности.
дипломная работа [86,1 K], добавлен 17.07.2009Приемники электрической энергии. Качество электрической энергии и факторы, его определяющие. Режимы работы нейтрали. Выбор напряжений, числа и мощности силовых трансформаторов, сечения проводов и жил кабелей, подстанций. Компенсация реактивной мощности.
курс лекций [1,3 M], добавлен 23.06.2013Математические модели оптимизационных задач электроснабжения. Обзор способов повышения коэффициента мощности и качества электроэнергии. Выбор оптимальных параметров установки продольно-поперечной компенсации. Принцип работы тиристорного компенсатора.
дипломная работа [986,2 K], добавлен 30.07.2015Напряжение, ток, мощность, энергия как основные электрические величины. Способы измерения постоянного и переменного напряжения, мощности в трехфазных цепях, активной и реактивной энергии. Общая характеристика электросветоловушек для борьбы с насекомыми.
контрольная работа [2,2 M], добавлен 19.07.2011Анализ хозяйственной деятельности Северной ЭС. Основные цели мероприятий по снижению энергопотерь, методы их внедрения. Методика, алгоритм и программная реализация оперативной оптимизации режима по реактивной мощности. Оценка радиоактивного загрязнения.
дипломная работа [207,6 K], добавлен 18.06.2011Задача на определение активного и индуктивного сопротивления, ёмкостной проводимости фазы и реактивной мощности. Параметры схемы замещения трёхфазного трёхобмоточного трансформатора. Потери в линии электропередачи, реактивной мощности в трансформаторах.
контрольная работа [789,0 K], добавлен 27.02.2013Оптимизация систем промышленного электроснабжения: выбор сечения проводов и жил кабелей, способ компенсации реактивной мощности, автоматизация и диспетчеризация. Выбор числа и мощности цеховых трансформаторов. Установка компенсирующих устройств.
курсовая работа [382,2 K], добавлен 06.06.2015График нагрузки по продолжительности. Определение активного сопротивления линии передачи напряжением 35 кВ для провода АС-50. Нахождение потерь реактивной мощности. Расчет линии передач. Экономическая плотность тока и сечения для левой и правой сети.
контрольная работа [83,9 K], добавлен 16.01.2011Классификация потерь в системе электроснабжения промышленного предприятия. Влияние коэффициента мощности сети на потери электроэнергии. Пути уменьшения потерь в системе электроснабжения промышленных предприятий за счет компенсации реактивной мощности.
дипломная работа [2,4 M], добавлен 08.06.2017