Аппаратура защиты и управления до 1000 В

Назначение, устройство, принцип работы, маркировка и выбор аппаратуры защиты и управления до 1000 В. Требования, предъявляемые к электрическим аппаратам. Устройство, принцип действия предохранителей. Рубильники, переключатели, автоматические выключатели.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 15.07.2015
Размер файла 562,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В электрических аппаратах чаще всего повреждаются подвижные, неподвижные и дугогасительные контакты. Ремонт в основном заключается в определении неисправности, устранении ее, замене поврежденных и изношенных деталей с последующей регулировкой и испытанием. При эксплуатации контакты очищают от нагара металла, копоти, окислов. Очищают напильником с тонкой (мелкой) насечкой. Устраняют сильный и слабый нажим контактов. Для этого между контактами помещают бумагу (фольгу), оттягивая подвижные контакты через динамометр, вытягивают фольгу. Нормальное усилие 0,5-0,7кГ. Магнитная система контактов может создавать шум, гудение, причины этого: неплотно прилегает якорь к сердечнику, повреждение короткозамкнутого витка, очень большое натяжение контактов, якорь перекошен по отношению к сердечнику, в местах прикосновения якоря и сердечника имеется ржавчина, у магнитных пускателей и контакторов нельзя допускать разновременности замыкания силовых контактов.

Короткозамкнутые витки у контакторов и магнитных пускателей выполняются из меди, латуни и алюминия. Они укладываются в штампованные пазы на концах сердечника. Обращается внимание на дугогасительные камеры. Отсутствие их может вызвать перекрытие дугой отдельных фаз. Катушки ремонтируют при повреждении каркаса, обрывах, витковых замыканиях и полном сгорании. Обрыв в катушке определяется, если не развивается тяговое усилие и не потребляется ток. Витковое замыкание обнаруживается по ненормальному нагреву и уменьшению тяги.

У контакторов чаще меняют главные контакты, гибкие соединения, дугогасительные камеры, катушки, пружины, короткозамкнутые витки. Сопротивление изоляции обмоток не должно превышать 0,5 МОм. У реле чаще перегорают нагревательные элементы. Для нагревательных элементов применяют нихром, фехраль. Отдельные нагревательные элементы изготавливают методом штамповки. Спиральные нагревательные элементы кадмируют для предохранения от окисления. На рисунке 6 показан контактор магнитного пускателя. Ремонт контактов. Загрязнения, износ, обгорание, копоть или окисления, наплывы и брызги металла на поверхности подвижных (включая и ножи рубильников) или неподвижных (губки ножей) контактов, а также на пластинах и контактных мостиках устраняются хлопчатобумажной салфеткой, смоченной в бензине, или надфилем.При изломе или ослаблении контактных пружин, повреждениях антикоррозийного покрытия, пружины заменяют.

Ремонт катушек электромагнитов. Катушки бывают каркасными и бескаркасными. Наиболее часто встречающееся повреждение - трещины длиной до 15мм в каркасе. Их устраняют следующим образом. Поверхность каркаса вокруг трещины очищают от пыли и масла хлопчатобумажной салфеткой, смоченной в бензине.

При повреждении наружного слоя изоляции катушки или обрыве обмоточного провода в верхних слоях обмотки снимают наружную изоляцию обмотки и поврежденные витки до места повреждения или обрыва, припаивают, изолируют место пайки нового обмоточного провода и доматывают требуемое количество витков, повторив операции, которые выполняются при намотке новых катушек.

При значительных повреждениях каркаса, междувитковых замыканиях, обгорании изоляции обмотки на большую глубину катушка должна быть заменена новой.

Ремонт каркасных катушек. Подбирают необходимый для катушки каркас и провод, параметры которого должны соответствовать паспортным данным. Перед установкой на намоточный станок каркас следует обернуть двойным слоем электроизоляционной бумаги толщиной 0,02-0,03мм и конец ее приклеить к каркасу. При намотке необходимо следить за тем, чтобы натяжение провода не было чрезмерным, это может вызвать обрыв провода. Провод при намотке должен ложиться ровным плотным слоем. Между 1-м и 2-м слоями обмотки укладывают межслоевую изоляцию из изоляционной бумаги. Если катушка нагревостойкая, то для межслоевой изоляции используют тонкую стеклоткань.

Ремонт магнитопровода. Загрязнения удаляют хлопчатобумажной салфеткой, смоченной в бензине; следы коррозии тщательно зачищают стальной щеткой и шлифовальной шкуркой; наклеп на поверхностях соприкосновения сердечника и ярма удаляют шлифовкой поверхности напильником на шлифовальном станке.

НОВШЕСТВО

Обоснование структурной схемы источника бесперебойного питания

Источник бесперебойного питания -- автоматическое устройство, которое обеспечивает питание нагрузки при полном исчезновении напряжения во внешней электросети, например в результате аварии или от недопустимо высокого отклонения параметров напряжения сети от номинальных значений. Пари этом ИБП использует для аварийного питания нагрузки энергию аккумуляторных батарей.

Рассмотрим несколько основных типов построения структурных схем ИБП:

· ИБП с двойным преобразованием напряжения (On-line)

· ИБП резервного типа (Off-Line или Standby).

· Линейно-интерактивный ИБП.

ИБП с двойным преобразованием напряжения (On-line)

Рис. 1. ИБП с двойным преобразованием энергии.

Основная идея этой схемы действительно очень проста. Нагрузка питается от сети переменного тока. Значит на выходе ИБП должен выдавать переменный ток. И на входе ИБП тоже должен потреблять переменный ток, поскольку он питается от той же электрической сети. Но внутри ИБП (где-то в середке) должно быть постоянное напряжение, потому что оно необходимо для питания аккумуляторной батареи.

Вся мощность, потребляемая ИБП от сети, сначала преобразуется из переменного тока в постоянный с помощью выпрямителя. После этого в действие вступает преобразователь постоянного тока в переменный - инвертор, обеспечивающий на выходе ИБП необходимое переменное напряжение.

Аккумуляторная батарея, как ей и положено, находится в цепи постоянного тока, между выпрямителем и инвертором. Если в сети нормальное напряжение, выходного тока выпрямителя хватает для работы инвертора и для подзаряда батареи.

Когда напряжение в сети становится таким маленьким, что выпрямитель уже не может обеспечить полноценную работу инвертора, аккумуляторная батарея заменяет выпрямитель и питает инвертор требующимся ему постоянным током. Инвертор, в свою очередь, продолжает, как ни в чем ни бывало, подавать напряжение на нагрузку.

Достоинства:

Практически идеальное питание нагрузки при любых неполадках сети.

Нулевое время переключения в аварийный режим без возникновения переходных процессов на выходе устройства.

Недостатки:

Более высокая цена, по сравнению с другими типами ИБП.

Повышенное тепловыделение, по сравнению с другими типами ИБП.

Снижение общего КПД системы из-за потерь при двукратном преобразовании напряжения.

В таких схемах присутствует режим Bypass -- питание нагрузки отфильтрованным напряжением электросети в обход основной схемы ИБП.

Переключение в режим Bypass, который поддерживается внутренней схемой ИБП или специальным внешним модулем, может выполняться автоматически или вручную. ИБП, который имеет соответствующую встроенную схему, автоматически переходит в режим Bypass по команде устройства управления, при перегрузке электросетей или при выявлении неисправности в важных узлах ИБП.

Таким способом нагрузка защищается не только от сбоев в электросети, но и от неполадок в самом ИБП.

Возможность ручного включения режима Bypass предусматривается на случай проведения профилактического обслуживания ИБП или замены его узлов без отключения нагрузки.

Рис.2 Схема работы Bypass.

ИБП резервного типа (Off-line или Standby)

Рис.3 ИБП резервного типа (Off-line или Standby)

Это источник бесперебойного питания, выполненный по схеме с коммутирующим устройством, которое в нормальном режиме работы обеспечивает подключение нагрузки непосредственно к внешней питающей электросети, а в аварийном - переводит её на питание от аккумуляторных батарей. ИБП резервного типа, как правило имеют небольшую мощность и применяются для обеспечения гарантированного электропитания отдельных устройств (персональных компьютеров, рабочих станций, офисного оборудования) в регионах с хорошим качеством электросети.

Достоинства:

Простота и как следствие невысокая стоимость.

Недостаток:

Ненулевое время переключения (от 2 до 20 мс) на питание от батарей и более интенсивная их эксплуатация, так как источник переводится в аварийный режим при любых неполадках электросети.

Линейно-интерактивный ИБП (Line-Interactive)

Рис.4 Линейно-интерактивный ИБП (Line-Interactive).

Это источник бесперебойного питания, выполненный по схеме с коммутирующим устройством (Off-line), дополненной стабилизатором входного напряжения (бустером) на основе автотрансформатора с переключаемыми обмотками.

По эффективности линейно-интерактивные ИБП занимают промежуточное положение между простыми и относительно дешёвыми резервными источниками (Off-line) и высокоэффективными, но дорогостоящими ИБП с двойным преобразованием энергии (On-line). Как правило линейно-интерактивные ИБП применяют для серверов, узлов локальных вычислительных сетей и офисного оборудования.

Достоинства:

По сравнению с источниками резервного типа, такая схема способна обеспечить нормальное питание нагрузки при повышенном или пониженном напряжении электросети (наиболее распространенный вид неполадок в отечественных линиях электроснабжения) без перехода в аварийный режим. В итоге продлевается срок службы аккумуляторных батарей.

Недостаток:

Ненулевое время переключения (от 2 до 20 мс) на работу от аккумуляторных батарей.

В связи с особенностями ТРЛК «УТЁС-Т» нас интересует схема источника бесперебойного питания с нулевым временем переключения в аварийный режим. Поэтому выберем схему с двойным преобразованием напряжения (On-line).

Описание структурной схемы источника бесперебойного питания

Трехфазный ИБП может работать на четырех режимах работы:

1. При нормальной работе нагрузка питается по цепи выпрямитель-инвертор стабилизированным напряжением, отфильтрованным от импульсов и шумов за счет двойного преобразования энергии.

2.Работа от батареи. На это режим ИБП переходит в случае, если напряжение на выходе ИБП становится таким маленьким, что выпрямитель оказывается не в состоянии питать инвертор требуемым током, или выпрямитель не может питать инвертор по другой причине, например из-за поломки. Продолжительность работы ИБП от батареи зависит от емкости и заряда батареи, а также от нагрузки ИБП.

3.Когда какой-нибудь инвертор выходит из строя или испытывает перегрузку, ИБП безразрывно переходит на режим работы через статический байпас. Нагрузка питается просто от сети через вход статического байпаса, который может совпадать или не совпадать со входом выпрямителя ИБП.

4.Если требуется обслуживание ИБП, например для замены батареи, то ИБП переключают на сервисный байпас. Нагрузка питается от сети, а все цепи ИБП, кроме входного выключателя сервисного байпаса и выходных выключателей отделены от сети и от нагрузки. Режим работы на сервисном байпасе не является обязательным для небольших однофазных ИБП с двойным преобразованием. Трехфазный ИБП без сервисного байпаса немыслим.

Рассмотрим основные блоки, которые входят в состав устройства:

1. Устройство коммутаций.

2. Аккумуляторная батарея.

3. Выпрямитель.

4. Инвертор.

5. Блок статического байпаса.

6. Датчик тока.

7. Датчик температуры.

8. Интерфейс.

9. Устройство индикации.

10. Устройство управления работой ИБП.

Схема включает пять проводов: три фазных , нейтраль и землю. Между сетью и ИБП - предохранители (плавкие или автоматические). Они позволяют защитить сеть от аварии ИБП.

Выпрямитель

Выпрямитель ИБП с двойным преобразованием должен иметь мощность, достаточную для двух его основных функций. Его максимальный выходной ток должен быть не меньше суммы максимального входного тока инвертора и максимального зарядного тока батареи.

Выпрямитель в этой схеме - регулируемый тиристорный. Управляющая им схема изменяет время (долю периода синусоиды), в течение которого тиристоры открыты, т.е. выпрямляют сетевое напряжение 380 В частотой 50 Гц. Чем большая мощность нужна для работы ИБП, тем дольше открыты тиристоры.

Если батарея ИБП заряжена, на выходе выпрямителя поддерживается стабилизированное напряжение постоянного тока, независимо от величины напряжения в сети и мощности нагрузки. Если батарея требует зарядки, то выпрямитель регулирует напряжение так, чтобы в батарею тек ток заданной величины.

Такой выпрямитель называется шести-импульсным, потому, что за полный цикл трехфазной электрической сети он выпрямляет 6 полупериодов синусоиды (по два в каждой из фаз). Поэтому в цепи постоянного тока возникает 6 импульсов тока (и напряжения) за каждый цикл трехфазной сети. Кроме того, во входной электрической сети также возникают 6 импульсов тока, которые могут вызвать гармонические искажения сетевого напряжения.

Конденсатор в цепи постоянного тока служит для уменьшения пульсаций напряжения на аккумуляторах. Это нужно для полной зарядки батареи без протекания через аккумуляторы вредных импульсных токов. Иногда к конденсатору добавляется еще и дроссель, образующий совместно с конденсатором L-C фильтр.

Коммутационный дроссель ДР уменьшает импульсные токи, возникающие при открытии тиристоров и служит для уменьшения искажений, вносимых выпрямителем в электрическую сеть.

Аккумуляторная батарея

Для формирования батареи трехфазных ИБП применяются герметичные свинцовые аккумуляторы. Обычно это самые распространенные модели аккумуляторов с расчетным сроком службы 5 лет. Иногда используются и более дорогие аккумуляторы с большими сроками службы.

В большинстве случаев, аккумуляторы устанавливаются в отдельном корпусе, а иногда и в отдельном помещении.

Инвертор

Инвертор ИБП с двойным преобразованием энергии имеет возможность изменения выходной частоты инвертора для синхронизации выходного напряжения инвертора с сетью.

Эта функция используется в ИБП с двойным преобразованием постоянно и просто необходима для переключения ИБП на статический байпас.

Для того, чтобы ИБП с двойным преобразованием имел непрерывное выходное напряжение без скачков и разрывов на всех режимах работы, нужно обеспечить гладкое переключение на статический байпас при выходе из строя инвертора или его перегрузке.

Для этого необходимо, чтобы фаза и частота сетевого напряжения (т.е. напряжения в цепи байпаса) в момент переключения были такими же, как фаза и частота выходного напряжения инвертора.

Но управлять фазой и частотой сети не представляется возможным, следовательно нужно добиться желаемой цели за счет настройки инвертора. Не представляется возможным также подстроить фазу и частоту инвертора перед самым переключением. Ведь, к сожалению, не известно в какой момент инвертор выйдет из строя или испытает перегрузку.

Поэтому инвертор ИБП с двойным преобразованием должен всегда быть синхронизован с сетью. Точнее говоря, должна быть достигнута синхронизации инвертора с линией статического байпаса, которая в общем случае может быть подключена к другой линии электроснабжения, чем вход выпрямителя ИБП.

Что произойдет с ИБП , если частота сети вдруг начнет отличаться от стандартной (50 Гц).

ИБП с двойным преобразованием имеет некоторые пределы допустимых изменений частоты сети. Минимальная допустимая частота равна 49 Гц, а максимальная допустимая частота - 51 Гц (т.е. пределы допустимых изменений частоты равны ± 2%)

Если частота в линии байпаса находится в пределах допустимого, то частота инвертора аккуратно следует за ней. Частота и фаза инвертора равны частоте и фазе в линии байпаса. Следовательно ИБП в любой момент (при выходе из строя инвертора или его перегрузке) может переключиться на статический байпас, не испытывая импульсных нагрузок.

Если же частота в линии байпаса станет равной 48 Гц, то частота инвертора не может следовать за ней, чтобы не питать нагрузку напряжением с частотой, сильно отличающейся от номинальной.

ИБП с двойным преобразованием энергии отрабатывают эту ситуацию гораздо лучше, чем ИБП построенные по другим схемам. Блок управления просто разрешает инвертору ИБП прекратить синхронизацию с линией байпаса и перейти на режим независимой работы. Частота инвертора становится равной ровно 50 Гц и остается такой до тех пор, пока частота линии байпаса не вернется в пределы допустимого.

Во время независимой работы инвертора, переключение ИБП на статический байпас блокируется, поскольку при таком переключении возможны сильные фазовые и амплитудные искажения, которые могут нанести ущерб чувствительной нагрузке. Более того, переключение в отсутствие синхронизации опасно для самого ИБП.

Казалось бы, чем уже диапазон допустимых колебаний частоты, тем лучше для чувствительной нагрузки. На самом деле улучшение качества стабилизации частоты происходит за счет общей надежности системы. Ведь если диапазон допустимых изменений частоты установлен меньше реального диапазона изменения частоты сети в месте установки ИБП, то ИБП большую часть времени работает без синхронизации инвертора с линией байпаса. Это снижает общую надежность системы, защищаемой с помощью ИБП, поскольку во время независимой работы инвертора невозможно переключение на статический байпас.

Инвертор естественно имеет ограничение по допустимой нагрузке. При постоянной нагрузке этой границей является номинальная мощность ИБП. Кратковременно инвертор способен выдерживать большие токи. Обычно допускается перегрузка около 50-150 % на несколько миллисекунд и около 10-50 % на несколько секунд или десятков секунд.

В ИБП существует несколько уровней защиты инвертора от перегрузки. При небольших перегрузках инвертор может уменьшать выходное напряжение (пытаясь снизить ток, проходящий через силовые полупроводники). Если перегрузка очень велика (например нагрузка составляет более 125 % номинальной), ИБП начинает отсчет времени работы в условиях перегрузки и через некоторое время (зависящее от степени перегрузки - от долей секунды до минут) переключается на работу через статический байпас.

В случае большой перегрузки или короткого замыкания, переключение на статический байпас происходит сразу.

Инвертор построен по мостовому принципу на основе полностью управляемых силовых полупроводниковых приборов - биполярных IGBT-транзисторов с изолированным затвором (транзисторы, в которых наиболее удачно удалось соединить особенности полевых и биполярных транзисторов, работающих в ключевом режиме) , управляемый схемой широтно-импульсной модуляции (ШИМ).

Блок статического байпаса

Блок статического байпаса состоит из двух трехфазных тиристорных переключателей :

- статического выключателя инвертора (СВИ);

- статического выключателя байпаса (СВБ).

Выбор такого переключателя обусловлен высоким быстродействием тиристоров и их способностью выдерживать значительные кратковременные перегрузки по току.

При нормальной работе ИБП (от сети или от батареи) статический выключатель инвертора замкнут, а статический выключатель байпаса разомкнут. Во время значительных перегрузок или выхода из строя инвертора замкнут статический переключатель байпаса, переключатель инвертора разомкнут. В момент переключения оба статических переключателя на очень короткое время замкнуты. Это позволяет обеспечить безразрывное питание нагрузки.

ИБП имеет свою логику управления и, соответственно, свой набор условий срабатывания статических переключателей. ИБП сконструирован так, чтобы даже если байпас недоступен (т.е. отсутствует синхронизация инвертора и байпаса) в любом случае постарается обеспечить электроснабжение нагрузки, пусть даже за счет уменьшения напряжения на выходе инвертора.

Для обеспечения работы и нормального функционирования всех частей ИБП, необходимо звено, которое осуществляло бы связь между всеми этими частями. Можно рассмотреть несколько видов таких схем:

1. Аналоговые системы, операции регулирования в которых осуществляются путем сравнения, усиления и преобразования аналоговых сигналов. Погрешность установки параметров в такой системе сильно зависит от параметров активных и пассивных элементов схемы. Такие системы используются, в основном в недорогих устройствах.

2. Цифровые системы, операции управления проводятся над цифровыми величинами, полученными из аналоговых сигналов путем оцифровки аналого-цифровыми преобразователями (АЦП). Точность таких систем намного выше за счет использования математического аппарата вычисления.

3. Комбинируемые, операции управления и регуляции в которых выполняются либо аналоговыми, либо цифровыми устройствами.

В нашем случае система управления работой ИБП построена на микроконтроллере ATTiny26. Он представляет собой высокопродуктивный контролер с функциями многоканального аналого-цифрового преобразователя. Ввод и вывод информации в микроконтроллер (далее МК) может осуществляться как в аналоговом так и в цифровом виде. Использование новейших разработок, которые содержат в своем составе МК, позволяет намного упростить схему. Микроконтроллер управляет работой как схемы управления так и работой всего устройства.

Схема управления выполняет роль интерфейса ИБП, подавая соответствующую команду включения на устройство коммутаций, осуществляет управление переключения нагрузки на питание от сети или от аккумуляторных батарей, следит за напряжением на аккумуляторных батареях (далее АБ). Если напряжение на АБ становится меньшим 10,5 В, то осуществляется аварийное отключение ИБП. Аварийное отключение осуществляется также, когда температура окружающей среды выходит за пределы допустимой. Для измерения температуры используется температурный датчик. На устройство управления работой ИБП поступает информация о величинах напряжения в сети. Обрабатывая эту информацию МК производит соответствующие сигналы управления для других узлов, составляющих блока.

Для измерения выходной мощности используется датчик тока. Если через датчик протекает ток больше допустимого, схема управления отключает нагрузку. Это обеспечивает защиту от выхода из строя устройства преобразования постоянного напряжения в переменную.

Особенно большое значение в ИБП имеет наличие связи с ПК. Это позволяет оператору (администратору) следить за состоянием сети, состоянием АБ и всей работы ИБП. В данном случае используется стандартный интерфейс связи МК и ПК - RS-232. Это позволяет осуществлять дистанционный мониторинг ИБП и безопасное завершение работы ПК при аварии или долговременном отсутствии напряжения в сети (при условии настройки программного обеспечения ПК).

Входное напряжение 380В, 50Гц поступает через устройство коммутации и сетевой фильтр на зарядное устройство и байпас.

Сетевой фильтр предназначен для предотвращения попадания помех в сеть, которые возникают при работе ИБП.

Преобразователь переменного напряжения в постоянное выполняет роль преобразователя переменного напряжения 220В в постоянное 200В. Данное устройство построено по схеме импульсного преобразователя с ШИМ. Напряжение на его выходе постоянно, но не стабилизировано, то есть зависит от изменения входного напряжения. Для стабилизации используется стабилизатор постоянного напряжения. Стабилизатор построен по схеме однотактного импульсного повышающего стабилизатора. Напряжение на аккумуляторе изменяется в пределах 10,5...13,8 В, а выходное ИБП должно оставаться стабильным.

Преобразователь постоянного напряжения в переменное осуществляет формирование выходного стабилизированного напряжения 220В, 50Гц. Управление и синхронизацию данного устройства с сетью осуществляет устройство управления ИБП. Выходной фильтр служит фильтром электромагнитных помех и предотвращению их попадания в нагрузку.

Алгоритм работы ИБП приведен в графической части проекта.

Другие элементы ИБП с двойным преобразованием

Сравним еще раз схемы ИБП с двойным преобразованием и взаимодействующего с сетью. У ИБП с двойным преобразованием отсуствуют (хотя и не у всех моделей) некоторые элементы: фильтры шумов и импульсов. В ИБП этого типа импульсы и шумы фильтруются в результате выпрямления напряжения переменного тока: на выходе выпрямителя имеются схемы подавления пульсаций напряжения, выполняющие роль фильтров.

В процессе второго преобразования энергии шумы и импульсы еще раз уменьшаются и нагрузка питается чистым синусоидальным напряжением.

Поэтому отсутствие в схеме фильтров можно считать своего рода фокусом: внутри ИБП есть элементы, выполняющие эти функции, но называющиеся по другому. Кроме того, в некоторых ИБП с двойным преобразованием энергии установлены варисторные шунты.

Блок управления ИБП с двойным преобразованием энергии не анализирует состояния электрической сети (вы видите, что на блок-схеме нет соответствующей стрелки). В этом нет необходимости, ведь нам не нужно управлять переключением (или, вернее, переходом) ИБП с двойным преобразованием на работу от батареи - этот переход производится или, вернее, происходит, без участия управляющей электроники. Нет необходимости и производить анализ формы напряжения переменного тока на входе ИБП: выпрямитель ИБП с двойным преобразованием энергии может питаться напряжением переменного тока практически любой формы - все равно на выходе выпрямителя будет стабилизированное напряжение постоянного тока, а на выходе инвертора - чистая синусоида. Задача блока управления - регулировать напряжение на выходе выпрямителя, напряжение на выходе инвертора (как и у других, рассмотренных ранее ИБП) и не пропустить момент, когда понадобится произвести переключение на работу через статический байпас.

ОХРАНА ТРУДА

Организационные мероприятия

Организационными мероприятиями, обеспечивающими безопасность работы в электроустановках, являются:

а) оформление работы наряд-допуском, распоряжением или перечнем работ, выполняемых в порядке текущей эксплуатации;

б) допуск к работе;

в) надзор во время работы;

г) оформление перерыва в работе, переводов на другое рабочее место, окончания работы.

Наряд, распоряжение, текущая эксплуатация

Работа в электроустановках производится по наряду, распоряжению, в порядке текущей эксплуатации.

Наряд - это задание на производство работы, оформленное на специальном бланке установленной формы и определяющее содержание, место работы, время ее начала и окончания, условия безопасного проведения, состав бригады и лиц, ответственных за безопасность выполнения работы, и пр.

По наряду могут производится работы в электроустановках, выполняемые:

а) со снятием напряжения;

б) без снятия напряжения на токоведущих частях и вблизи них.

Распоряжение - это задание на производство работы, определяющее ее содержание, место, время, меры безопасности (если они требуются) и лиц, которым поручено ее выполнение. Распоряжение может быть передано непосредственно или с помощью средств связи с последующей записью в оперативном журнале.

Текущая эксплуатация - это проведение оперативным (оперативно-ремонтным) персоналом самостоятельно на закрепленном за ним участке в течении одной смены работ по перечню

Лица, ответственные за безопасность работ, их права и обязанности

Ответственными за безопасность работ являются:

а) лицо, выдающее наряд, отдающее распоряжение;

б) допускающий - ответственное лицо из оперативного персонала;

в) ответственный руководитель работ

г) производитель работ;

д) наблюдающий;

е) члены бригады.

Лицо, выдающее наряд, отдающее распоряжение, устанавливает необходимость и объем работы, отвечает за возможность безопасного ее выполнения, достаточность квалификации ответственного руководителя, производителя работ или наблюдающего, а также членов бригады.

Право выдачи нарядов и распоряжений предоставляется лицам из электротехнического персонала предприятия, уполномоченным на этом распоряжением лица, ответственного за электрохозяйство предприятия.

Указанные лица должны иметь группу по электробезопасности не ниже V в электроустановках напряжением выше 1000 В и не ниже IV в установках напряжением до 1000 В. Право давать распоряжения на производство ряда работ, перечень которых определяется лицом, ответственным за электрохозяйство предприятия, предоставляется также лицам из оперативного персонала с группой не ниже IV.

Допускающий - ответственное лицо из оперативного персонала - несет ответственность:

а) за правильность выполнения необходимых для допуска и производства работ мер безопасности, их достаточность и соответствие характеру и месту работы;

б) за правильность допуска к работе, приемку рабочего места по окончании работы с оформлением в нарядах или журналах.

Допускающий должен иметь группу по электробезопасности не ниже IV при работе в электроустановках выше 1000 В и не ниже III - в установках до 1000 В

Ответственный руководитель, принимая рабочее место от допускающего и осуществляя допуск, отвечает наравне с допускающим за правильную подготовку рабочего места и достаточность выполненных мер безопасности, необходимых для производства работы, в том числе и за достаточность мер, предусмотренных в графе наряда Отдельные указания

Ответственному руководителю запрещается принимать непосредственное участие в работе по нарядам, кроме случаев, когда он совмещает обязанности ответственного руководителя и производителя работ

Ответственный руководителями назначаются лица из электротехнического персонала, имеющие группу по электробезопасности V

Производитель работ, принимая рабочее место от допускающего, отвечает за правильность его подготовки и за выполнение необходимых для производства работы мер безопасности.

Производитель работ обязан проинструктировать бригаду о мерах безопасности, которые необходимо соблюдать при работе, обеспечить их выполнение членами бригады.

Производитель работ соблюдает настоящие Правила сам и отвечает за их соблюдение членами бригады, следит за исправностью инструмента, такелажа и другой ремонтной оснастки. Производитель работ обязан также следить за тем, чтобы установленные на месте работы ограждения, плакаты, заземления не снимались и не переставлялись.

Производитель работ, выполняемых по наряду с электроустановках напряжением выше 1000 В, должен иметь группу по электробезопасности не ниже IV, в установках до 1000 В - группу не ниже III. Производитель работ, выполняемых по распоряжению во всех электроустановках, должен иметь группу не ниже III

Наблюдающий назначается для надзора за бригадами строительных рабочих, разнорабочих, такелажников и других лиц из неэлектротехнического персонала при выполнении ими работы в электроустановках по нарядам или распоряжениям.

Наблюдающий за электротехническим персоналом, в том числе командированным, назначается в случае проведения работ в электроустановках при особо опасных условиях, определяемых лицом, ответственным за электрохозяйство предприятия, где эти работы производится.

Наблюдающий контролирует наличие установленных на месте работы заземлений, ограждений, плакатов, запирающих устройств и отвечает за безопасность членов бригады от поражения электрическим током электроустановки.

Наблюдающему запрещается совмещать надзор с выполнением какой-либо работы и оставлять бригаду без надзора во время работы.

Наблюдающими назначается лица с группой не ниже III.

Члены бригады обязаны соблюдать настоящие Правила и инструктивные указания, полученные при допуске к работам и во время работы.

Технические мероприятия

Для подготовки рабочего места при работах со снятием напряжения должны быть выполнены в указанном порядке следующие технические мероприятия:

а) произведены необходимые отключения и приняты меры, препятствующие подаче напряжения на место работы вследствие ошибочного или самопроизвольного включения коомутационной аппаратуры;

б) на приводах ручного и на ключах дистанционного управления коммутационной аппаратуры вывешены запрещающие плакаты;

в) проверено отсутствие напряжения на токоведущих частях, которые должны быть заземлены для защиты людей от поражения электрическим током;

г) наложено заземление (включены заземляющие ножи, а там, где они отсутствуют, установлены переносные заземления;

д) вывешены предупреждающие и предписывающие плакаты, ограждены при необходимости рабочие места и оставшиеся под напряжением токоведущие части.

При оперативном обслуживании электроустановки двумя и более лицами в смену перечисленные в настоящем пункте мероприятия должны выполнять двое. При единоличном обслуживании их может может выполнять одно лицо, кроме наложения переносных заземлений в электроустановках выше 1000 В и производства переключений, проводимых на двух и более присоединениях в электроустановках напряжением выше 1000 В, не имеющих действующих устройств блокировки разъединителей от неправильных действий.

Список используемой литературы

1. ГОСТ Р 50030.4.1-2002 (МЭК 60947-4-1-2000) Аппаратура распределения и управления низковольтная. Часть 4-1. Контакторы и пускатели.

2. ГОСТ 2491-82 «Пускатели электромагнитные низковольтные. Общие технические условия».

3. А.Г. Прищеп “Учебник сельского электрика” Москва “Колос” 1981 г.

4. И.Ф. Кудрявцев “Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок” Москва ВО “Агропромиздат”

1988 г.

5. Сибикин М.Ю. Техническое обслуживание, ремонт электрооборудования и сетей промышленных предприятий. - ПрофОбрИздат, 2001.

6. Б.С.Сергеев «Схемотехника функциональных узлов источников вторичного электропитания», «Радио и связь», Москва, 1992г.

7. В.Л.Шило «Линейные интегральные схемы», «Советское радио», Москва, 1979г.

8. В.Петик «Максимальный КПД в повышающих преобразователях», «Радиолюбитель» №2 с.26, 1997г.

9. Б.И.Горошков «Элементы радиоэлектронных устройств», «Радио и связь», Москва

10. Г.Д.Фрумкин «Расчет и конструирование радиоэлектронной аппаратуры», «Высшая школа», Москва, 1989 г.

11. Н.Н.Акимов, Е.П.Ващуков «Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства радиоэлектронной аппаратуры. Справочник», «Беларуссб», Минск, 1994г.

Размещено на Allbest.ru

...

Подобные документы

  • Основные понятия защиты электроустановок. Основные характеристики и требования к механизмам защиты до и выше 1000 В. Плавкие предохранители как основные устройства защиты электрических цепей: устройство, принцип действия, достоинства и недостатки.

    презентация [748,6 K], добавлен 23.03.2016

  • Понятие и принцип работы предохранителей, особенности и назначение. Технические характеристики предохранителей напряжением до 1000 Вольт, охрана труда при работе с ними. Анализ возможных неисправностей в работе предохранителей и пути их устранения.

    контрольная работа [85,3 K], добавлен 08.10.2009

  • Преимущество автоматических выключателей перед плавкими предохранителями. Автоматические выключатели с электромагнитными, тепловыми и комбинированными расцепителями, их устройство и принцип действия. Особенности выбора автоматических выключателей.

    реферат [230,9 K], добавлен 27.02.2009

  • Задача защиты устройств от перегрузок и токов короткого замыкания. Предохранители: устройство, характеристики, требования к ним. Современный плавкий предохранитель. Наполнители для предохранителей. Применения предохранителей, критерии их классификации.

    реферат [373,4 K], добавлен 08.10.2012

  • Изучение высоковольтных изоляторов, предохранителей, шин, разъединителей. Измерительные трансформаторы тока и напряжения, масляные выключатели и приводы к ним. Конструкции, типы аппаратов защиты. Аппаратура ручного и дистанционного управления, пускатели.

    лабораторная работа [434,6 K], добавлен 25.10.2009

  • Воздушные выключатели, гасительные устройства с двусторонним дутьем и полыми контактами. Элегазовые выключатели, принцип действия. Автопневматические дугогасительные устройства. Вакуумные выключатели, краткая характеристика гашения дуги переменного тока.

    презентация [338,8 K], добавлен 08.07.2014

  • Выбор контакторов и магнитного пускателя для управления и защиты асинхронного двигателя. Схема прямого и обратного пуска. Реализация реверсирования двигателя. Пускатели электромагнитные, тепловые реле. Принцип действия и конструкция, условия эксплуатации.

    контрольная работа [876,6 K], добавлен 25.03.2011

  • Назначение, устройство и принцип действия однофазного и трёхфазного трансформаторов, коэффициент трансформации, обозначение зажимов обмоток. Устройство и принцип работы асинхронного двигателя, соединение обмоток статора. Устройство магнитных пускателей.

    шпаргалка [8,7 K], добавлен 23.10.2009

  • Общие характеристики и конструкция тепловой части реактора ВВЭР-1000. Технологическая схема энергоблоков с реакторами, особенности системы управления и контроля. Назначение, состав и устройство тепловыделяющей сборки. Конструктивный расчет ТВЕЛ.

    курсовая работа [1,4 M], добавлен 25.01.2013

  • Ядерный реактор ВВЭР-1000 - водо-водяной энергетический реактор с водой под давлением, без кипения в активной зоне. Регулирование мощности, топология локальной вычислительной сети. Коррекция базы данных конфигурации. Обмен данными между ОБД и ЛВС.

    дипломная работа [1,3 M], добавлен 11.09.2011

  • Состав и краткая техническая характеристика рейсмусовых станков, их назначение и сферы применения. Требования к электрооборудованию, критерии его подбора. Принцип действия электрооборудования и систем управления. Расчет и выбор аппаратов защиты.

    курсовая работа [61,1 K], добавлен 06.12.2010

  • Функции аппаратуры управления и защиты, ее классификация. Выбор электрических аппаратов по роду тока, числу полюсов, мощности, режиму работы, условиям управления и защиты. Определение напряжения срабатывания защитного реле. Основы электробезопасности.

    контрольная работа [31,9 K], добавлен 27.11.2012

  • Назначение и техническая характеристика оборудования. Краткий технологический процесс работы оборудования. Требования, предъявляемые к системе управления электроприводом. Выбор функциональных блоков и устройств системы управления. Краткий принцип работы.

    курсовая работа [491,6 K], добавлен 12.05.2009

  • Краткая характеристика подогревателя турбины К-1000–60/3000, ее структура и основные элементы, принцип работы и назначение. Схема движения сред. Определение тепловых нагрузок в ОП, СП, ОК. Тепловой расчёт собственно подогревателя и охладителя конденсата.

    курсовая работа [159,8 K], добавлен 02.07.2011

  • Составление альбома главных принципиальных технологических схем АЭС и ее вспомогательных систем. Устройство, состав оборудования и элементы двух типов атомных реакторов: ВВЭР-1000 и РБМК-1000. Характеристика технологического режима работы системы.

    методичка [2,3 M], добавлен 10.09.2013

  • Строение и конструкция реакторной установки РБМК-1000. Запорно-регулирующий клапан. Перегрузка топлива в реакторах РБМК. Механизмы для подъема и опускания ТВС. Тепловыделяющая кассета РБМК-1000. Конструкция защиты от ионизирующего излучения ректора.

    курсовая работа [1023,3 K], добавлен 11.08.2012

  • Базовое устройство Sepam 1000+ со стандартным интерфейсом и дополнительными модулями. Выбор микропроцессорных устройств. Описание существующей схемы питания кардиоцентра на напряжении 10 кВ. Расчет токов короткого замыкания в электрических сетях.

    дипломная работа [1,8 M], добавлен 06.04.2014

  • Принцип действия ядерного реактора. Строение защиты реактора, механизмы его управления и защиты. Сервопривод ручного и автоматического управления. Исследование биологической защиты реактора. Оборудование бетонной шахты: основные сборочные единицы.

    реферат [130,5 K], добавлен 13.11.2013

  • История развития и сферы применения электропривода. Назначение и основные параметры мостовых кранов, виды их электрооборудования. Расчет мощности приводного механизма, выбор аппаратуры управления и защиты. Разработка схемы соединений, устройство тормозов.

    курсовая работа [97,9 K], добавлен 04.09.2012

  • Описание схемы дистанционного управления проходческим комбайном 4ПП-2. Устройство и принцип действия высоковольтного вентильного разрядника. Требования, предъявляемые к релейной защите. Коэффициент мощности и способы его повышения, применяемые на шахтах.

    контрольная работа [1,1 M], добавлен 23.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.